1
|
Sabu Mathew S, Jaiswal AK, Jaiswal S. Carrageenan-based sustainable biomaterials for intelligent food packaging: A review. Carbohydr Polym 2024; 342:122267. [PMID: 39048183 DOI: 10.1016/j.carbpol.2024.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 07/27/2024]
Abstract
This article explores the use of carrageenan-based biomaterials in developing sustainable and efficient intelligent food packaging solutions. The research in this field has seen a notable surge, evident from >1000 entries in databases such as Web of Science, PubMed and Science Direct between 2018 and 2023. Various film preparation techniques are explored, including solvent casting, layer-by-layer (LbL) assembly, and electrospinning. Solvent casting is commonly used to incorporate active compounds, while LbL assembly and electrospinning are favored for enhancing mechanical properties and solubility. Carrageenan's film-forming characteristics enable the production of transparent films, ideal for indicator films that facilitate visual inspection for color changes indicative of pH variations, crucial for detecting food spoilage. Surface properties can be modified using additives like plant extracts to regulate moisture interaction, affecting shelf life and food safety. These materials' antioxidant and antimicrobial attributes are highlighted, demonstrating their efficacy against pathogens such as E. coli.
Collapse
Affiliation(s)
- Sneha Sabu Mathew
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Amit K Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR), School of Food Science and Environmental Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Sustainability and Health Research Hub, Technological University Dublin-City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| |
Collapse
|
2
|
Cen BZ, Chen YS, Li LP, Wu JW, Xie YF. Observation of therapeutic effect of lamp irradiation combined with purple gromwell oil gauze on alleviating intestinal colic in patients. World J Gastrointest Surg 2024; 16:1749-1755. [PMID: 38983316 PMCID: PMC11230015 DOI: 10.4240/wjgs.v16.i6.1749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Intestinal colic is a common complication in patients who have undergone radical surgery for colorectal cancer. Traditional Chinese medicine has advantages, including safety and stability, for the treatment of intestinal colic. Lamp irradiation for abdominal ironing has been applied in the treatment of many gastrointestinal diseases. Purple gromwell oil has the effects of clearing heat, cooling blood, reducing swelling, and relieving pain. AIM To investigate the impact of lamp irradiation combined with purple gromwell oil gauze on ameliorating intestinal colic in patients after radical surgery for colorectal cancer. METHODS A total of 120 patients who experienced postoperative intestinal colic complications after radical surgery for colorectal cancer and who were admitted to Foshan Traditional Chinese Medicine Hospital between June 2019 and March 2023 were enrolled as study subjects. The patients were divided into a control group (60 patients) and an observation group (60 patients) based on treatment method. The control group was treated with lamp irradiation, while the observation group was treated with lamp irradiation and external application of purple gromwell oil gauze. The clinical efficacy, Numeric Rating Scale (NRS) score, duration of symptoms, and rate of adverse reaction occurrence were further compared between the two groups. RESULTS The general effective rate in the observation group was 95.00%, which was significantly higher than that in the control group (86.67%, P < 0.05). Before treatment, there was no significant difference in the duration of symptoms between the groups (P > 0.05). After 1, 2, 3, and 4 d of treatment, the duration of symptoms in both groups were decreased, and the duration in the observation group was significantly lower than that in the control group (96.54 ± 9.57 vs 110.45 ± 11.23, 87.26 ± 12.07 vs 104.44 ± 11.68, 80.45 ± 16.21 vs 99.44 ± 14.95, 73.18 ± 15.58 vs 92.17 ± 14.20; P < 0.05). After 1, 3, 5, and 7 d of treatment, the NRS scores in both groups were decreased, and the NRS scores in the observation group were significantly lower than those in the control group (3.56 ± 0.41 vs 4.04 ± 0.58, 3.07 ± 0.67 vs 3.74 ± 1.02, 2.52 ± 0.76 vs 3.43 ± 0.85, 2.03 ± 0.58 vs 3.03 ± 0.82; P < 0.05). There was no significant difference in the rate of adverse reaction occurrence between the groups (P > 0.05). CONCLUSION The use of lamp irradiation combined with purple gromwell oil gauze in patients with intestinal colic after radical surgery for colorectal cancer can reduce symptom duration, alleviate intestinal colic, and improve treatment efficacy, and this approach is safe. It is worth promoting the use of this treatment in clinical practice.
Collapse
Affiliation(s)
- Bi-Zhi Cen
- Department of Tumor Center, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, Guangdong Province, China
| | - Yin-Song Chen
- Department of Tumor Center, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, Guangdong Province, China
| | - Li-Ping Li
- Department of Tumor Center, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, Guangdong Province, China
| | - Jing-Wen Wu
- Department of Tumor Center, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, Guangdong Province, China
| | - Yan-Fen Xie
- Department of Tumor Center, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, Guangdong Province, China
| |
Collapse
|
3
|
Watson M, Saitis T, Shareef R, Harb C, Lakhani M, Ahmad Z. Shikonin and Alkannin inhibit ATP synthase and impede the cell growth in Escherichia coli. Int J Biol Macromol 2023; 253:127049. [PMID: 37758110 DOI: 10.1016/j.ijbiomac.2023.127049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Naturally occurring naphthoquinones, shikonin and alkannin, are important ingredients of traditional Chinese medicine Zicao. These constituents are reported to have many therapeutic uses, such as wound healing; scar treatment; and anti-inflammation, anti-acne, anti-ulcer, anti-HIV, anticancer, and antibacterial properties. The primary objective of this investigation was to explore the effect of shikonin and alkannin on Escherichia coli ATP synthase and its cell growth. Shikonin caused complete (100 %) inhibition, and alkannin caused partial (79 %) inhibition of wild-type E. coli ATP synthase. Both caused partial (4 %-27 %) inhibition of ATP synthase with genetically modified phytochemical binding site. The growth inhibition of strains expressing normal, deficient, and mutant ATP synthase by shikonin and alkannin, corroborated the inhibition observed in isolated normal wild-type and mutant ATP synthase. Trivial inhibition of mutant enzymes indicated αR283D, αE284R, βV265Q, and γT273A are essential for formation of the phytochemical binding site where shikonin and alkannin bind. Further, shikonin was a potent inhibitor of ATP synthase than alkannin. The antimicrobial properties of shikonin and alkannin were tied to the binding at phytochemical site of microbial ATP synthase. Selective targeting of bacterial ATP synthase by shikonin and alkannin may be an advantageous alternative to address the antibiotic resistance issue.
Collapse
Affiliation(s)
- Megan Watson
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Timoteea Saitis
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Rahim Shareef
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Christine Harb
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Muhaib Lakhani
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA.
| |
Collapse
|
4
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Shikonin as a WT1 Inhibitor Promotes Promyeloid Leukemia Cell Differentiation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238264. [PMID: 36500358 PMCID: PMC9735585 DOI: 10.3390/molecules27238264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
This study aims to observe the differentiating effect of shikonin on Wilms' tumor 1 (WT1)-positive HL-60 cells and investigate the fate of the differentiated leukemia cells. WT1 overexpression unaffected cell viability but promoted resistance to H2O2-induced DNA injury and cell apoptosis. The binding of shikonin to the WT1 protein was confirmed by molecular docking and drug affinity reaction target stability (DARTS). Shikonin at the non-cytotoxic concentration could decrease the WT1 protein and simultaneously reduced the CD34 protein and increased the CD11b protein in a dose-dependent manner in normal HL-60 cells but not in WT1-overexpressed HL-60 cells. Shikonin unaffected HL-60 cell viability in 48 h. However, it lasted for 10 days; could attenuate cell proliferation, mitochondrial membrane potential (MMP), and self-renewal; prevent the cell cycle; promote cell apoptosis. In a mouse leukemia model, shikonin could decrease the WT1 protein to prevent leukemia development in a dose-dependent manner. In this study, we also confirmed preliminarily the protein-protein interactions between WT1 and CD34 in molecular docking and CO-IP assay. Our results suggest that: 1. shikonin can down-regulate the WT1 protein level for leukemia differentiation therapy, and 2. the interaction between WT1 and CD34 proteins may be responsible for granulocyte/monocyte immaturity in HL-60 cells.
Collapse
|
6
|
López-Díaz AS, Méndez-Lagunas LL. Mucilage-Based Films for Food Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- A. S. López-Díaz
- Instituto Politécnico Nacional, CIIDIR-Oaxaca, Santa Cruz Xoxocotlán, Oaxaca, México
| | - L. L. Méndez-Lagunas
- Instituto Politécnico Nacional, CIIDIR-Oaxaca, Santa Cruz Xoxocotlán, Oaxaca, México
| |
Collapse
|
7
|
Berdimurodov E, Eliboyev I, Berdimuradov K, Kholikov A, Akbarov K, Dagdag O, Rbaa M, El Ibrahimi B, Verma DK, Haldhar R, Arrousse N. Green β-cyclodextrin-based corrosion inhibitors: Recent developments, innovations and future opportunities. Carbohydr Polym 2022; 292:119719. [PMID: 35725191 DOI: 10.1016/j.carbpol.2022.119719] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
β-Cyclodextrin-based compounds are used to develop and innovate materials that protect against corrosion due to their sustainability, low cost, environmental friendliness, excellent water solubility and high inhibition efficiency. However, corrosion potentials of β-CD-based compounds were not reviewed with the modern trends. The essence of the problem is that a deep understanding of the development and innovation of β-CD-based compounds as corrosion inhibitors is very important in creating next-generation materials for corrosion protection. In this review, the fundamental behaviour, importance, developments and innovations of β-CD modified with natural and synthetic polymers, β-CD grafted with the organic compounds, β-CD-based supramolecular (host-guest) systems with organic molecules, polymer β-CD-based supramolecular (host-guest) systems, β-CD-based graphene oxide materials, β-CD-based nanoparticle materials and β-CD-based nanocarriers as corrosion inhibitors for various metals were reviewed and discussed with recent research works as examples. In addition, the corrosion inhibition of β-CD-based compounds for biocorrosion, microbial corrosion and biofouling was reviewed. It was found that (i) these compounds are sustainable, inexpensive, environmentally friendly, and highly water-soluble and have high inhibition efficiency; (ii) the molecular structure of β-CD makes it an excellent molecular container for corrosion inhibitors compounds; (iii) the β-CD is excellent core to develop the next generation of corrosion inhibitors. It is recommended that (i) β-CD compounds would be synthesized by green methods, such as using biological sustainable catalysts and green solvents, green methods include irradiation or heating, energy-efficient microwave irradiation, mechanochemical mixing, solid-state reactions, hydrothermal reactions and multicomponent reactions; (ii) this review will be helpful in creating, enhancing and innovating the next green and efficient materials for future corrosion protection in high-impact industries.
Collapse
Affiliation(s)
- Elyor Berdimurodov
- Faculty of Chemistry, National University of Uzbekistan, Tashkent 100034, Uzbekistan.
| | - Ilyos Eliboyev
- Faculty of Chemistry, National University of Uzbekistan, Tashkent 100034, Uzbekistan
| | - Khasan Berdimuradov
- Faculty of Industrial Viticulture and Food Production Technology, Shahrisabz branch of Tashkent Institute of Chemical Technology, Shahrisabz 181306, Uzbekistan
| | - Abduvali Kholikov
- Faculty of Chemistry, National University of Uzbekistan, Tashkent 100034, Uzbekistan
| | - Khamdam Akbarov
- Faculty of Chemistry, National University of Uzbekistan, Tashkent 100034, Uzbekistan
| | - Omar Dagdag
- Institute of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Mohamed Rbaa
- Laboratory of Organic Chemistry, Catalysis and Environment, Faculty of Sciences, Ibn Tofail University, PO Box 133, 14000 Kenitra, Morocco
| | - Brahim El Ibrahimi
- Department of Applied Chemistry, Faculty of Applied Sciences, Ibn Zohr University, 86153, Morocco
| | - Dakeshwar Kumar Verma
- Department of Chemistry, Government Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh 491441, India
| | - Rajesh Haldhar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712749, South Korea
| | - Nadia Arrousse
- Laboratory of Engineering, Electrochemistry, Modeling and Environment (LIEME), Faculty of Sciences, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
8
|
Pharmacological and analytical aspects of alkannin/shikonin and their derivatives: An update from 2008 to 2022. CHINESE HERBAL MEDICINES 2022; 14:511-527. [DOI: 10.1016/j.chmed.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/31/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
|
9
|
Zhang X, Liu J, Ren J. Structure and release properties of pyrethroid/sulfobutyl ether β-cyclodextrin intercalated into layered double hydroxide and layered hydroxide salt. Front Chem 2022; 10:894386. [PMID: 35991605 PMCID: PMC9388771 DOI: 10.3389/fchem.2022.894386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to realize the intercalation of the pyrethroid pesticides beta-cypermethrin (BCT) and lambda-cyhalothrin (LCT) into ZnAl-layered double hydroxides (LDH) and NiZn-layered hydroxide salt (LHS). BCT (LCT)/SBECD-LDH and BCT (LCT)/SBECD-LHS hybrids were obtained with the aid of sulfobutyl ether β-cyclodextrin (SBECD) through one step method. The hybrids were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetry and differential thermal analysis (TGA/DTA). The hybrids based on LHS had larger basal spacing than those on LDH. The LDH-hybrids prepared in N-methylpyrrolidone (NMP) had larger basal spacing than those in ethanol. These results were discussed in terms of the matrix structure and solvent properties. The supramolecular structure of the hybrid was reasonably proposed. Furthermore, the release properties of BCT (LCT) from the hybrids were investigated and discussed in two media. The release rate in pH = 5.0 was slower than that in pH = 6.8. The accumulated release amount of pesticide in pH = 5.0 was lower than that in pH = 6.8. LHS-hybrids synthesized in ethanol exhibit a sustainable release property. These depend on the inclusion complexes’ arrangement and release medium. The release kinetic processes could be described by pseudo-second order and parabolic diffusion models. The release behavior can be controlled by adjusting the synthesis conditions and the releasing media. This provides the guidance for the application of SBECD and LDH (LHS) in pesticide formulation.
Collapse
Affiliation(s)
- Xiaoguang Zhang
- College of Chemistry, Nankai University, Tianjin, China
- *Correspondence: Xiaoguang Zhang, ; Jiexiang Liu,
| | - Jiexiang Liu
- School of Chemical Engineering, Hebei University of Technology, Tianjin, China
- *Correspondence: Xiaoguang Zhang, ; Jiexiang Liu,
| | - Jihui Ren
- School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
10
|
Yu SC, Hou YT, Hsu CM, Tsai FJ, Tsai Y. Inclusion complex of emodin and glycyrrhetinic acid-conjugated-β-cyclodextrin to target liver cells: synthesis, characterization, and bioactivity in vitro and in vivo. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01123-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Kaur K, Singh A, Sharma H, Punj S, Bedi N. Formulation Strategies and Therapeutic Applications of Shikonin and Related Derivatives. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:55-67. [PMID: 35236278 DOI: 10.2174/2667387816666220302112201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Shikonin and its derivatives are excellent representatives of biologically active naphthoquinones. A wide range of investigations carried out in the last few decades validated their pharmacological efficacy. Besides having magnificent therapeutic potential, shikonin and its derivatives suffer from various pharmacokinetic, toxicity, and stability issues like poor bioavailability, nephrotoxicity, photodegradation, etc. Recently, various research groups have developed an extensive range of formulations to tackle these issues to ease their path to clinical practice. The latest formulation approaches have been focused on exploiting the unique features of novel functional excipients, which in turn escalate the therapeutic effect of shikonin. Moreover, the codelivery approach in various drug delivery systems has been taken into consideration in a recent while to reduce toxicity associated with shikonin and its derivatives. This review sheds light on the essential reports and patents published related to the array of formulations containing shikonin and its derivatives.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Hamayal Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sanha Punj
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
12
|
Ezati P, Priyadarshi R, Bang YJ, Rhim JW. CMC and CNF-based intelligent pH-responsive color indicator films integrated with shikonin to monitor fish freshness. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108046] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Rincón-López J, Almanza-Arjona YC, Riascos AP, Rojas-Aguirre Y. Technological evolution of cyclodextrins in the pharmaceutical field. J Drug Deliv Sci Technol 2020; 61:102156. [PMID: 33078064 PMCID: PMC7553870 DOI: 10.1016/j.jddst.2020.102156] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023]
Abstract
We herein disclose how global cyclodextrin-based pharmaceutical technologies have evolved since the early 80s through a 1998 patents dataset retrieved from Derwent Innovation Index. We used text-mining techniques based on the patents semantic content to extract the knowledge contained therein, to analyze technologies related to the principal attributes of CDs: solubility, stability, and taste-masking enhancement. The majority of CDs pharmaceutical technologies are directed toward parenteral aqueous solutions. The development of oral and ocular formulations is rapidly growing, while technologies for nasal and pulmonary routes are emerging and seem to be promising. Formulations for topical, transdermal, vaginal, and rectal routes do not account for a high number of patents, but they may be hiding a great potential, representing opportunity research areas. Certainly, the progress in materials sciences, supramolecular chemistry, and nanotechnology, will influence the trend of that, apparently neglected, research. The bottom line, CDs pharmaceutical technologies are still increasing, and this trend is expected to continue in the coming years. Patent monitoring allows the identification of relevant technologies and trends to prioritize research, development, and investment in both, academia and industry. We expect the scope of this approach to be applied in the pharmaceutical field beyond CDs technological applications.
Collapse
Affiliation(s)
- Juliana Rincón-López
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Yara C Almanza-Arjona
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Alejandro P Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000, Ciudad de México, Mexico
| | - Yareli Rojas-Aguirre
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| |
Collapse
|
14
|
Ezati P, Bang YJ, Rhim JW. Preparation of a shikonin-based pH-sensitive color indicator for monitoring the freshness of fish and pork. Food Chem 2020; 337:127995. [PMID: 32919274 DOI: 10.1016/j.foodchem.2020.127995] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
A novel intelligent pH-responsive color indicator was prepared by adsorbing a natural naphthoquinone pigment, shikonin, onto cellulose paper. FTIR results indicated that shikonin was crosslinked with the cellulose of the indicator paper. The addition of shikonin increased antioxidant activity, thermal stability, and water resistance properties of the paper. The indicator changed the color from red to dark blue, depending on the pH of buffer solutions. Also, the indicator showed high stability after 4 months of storage and maintained high sensitivity to pH changes. This indicator was used to monitor fish and pork freshness during storage at room temperature, and the results showed a high correlation between the color change of the indicator and the pH change of the sample. The shikonin-adsorbed indicator with stable and sensitive color change depending on pH can be used in the intelligent food packaging applications to monitor the quality of packaged food in real-time.
Collapse
Affiliation(s)
- Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yeong-Ju Bang
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
15
|
Feng J, Yu P, Zhou Q, Tian Z, Sun M, Li X, Wang X, Jiang H. An integrated data filtering and identification strategy for rapid profiling of chemical constituents, with Arnebiae Radix as an example. J Chromatogr A 2020; 1629:461496. [PMID: 32846341 DOI: 10.1016/j.chroma.2020.461496] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023]
Abstract
Profiling the chemical components of complicated herbal extracts using traditional analytical methods is time-consuming and laborious. In this study, an integrated data filtering and identification strategy was developed to efficiently identify the chemical constituents in Arnebiae Radix. The post-acquisition data processing steps with this strategy were as follows: (1) data acquisition by ultra-high performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-MS); (2) background subtraction on the basis of the total ion chromatogram (TIC) to obtain the background-subtracted ion chromatogram; (3) construction of a diagnostic ion database based on the measured MS/MS fragment ions of reference standards and auxiliary diagnostic information according to literatures; (4) mass defect filtering (MDF) to filter the background-subtracted ion chromatogram; and (5) rapid structural identification in the MDF-processed ion chromatogram on the basis of the diagnostic ion database and further structural confirmation by analysing the retention time, fragment behaviour, and online databases (Chemspider, PubChem, and SciFinder). In this study, the herbal medicine Arnebiae Radix was used to illustrate this strategy. A total of 96 compounds were efficiently exposed and characterized from Arnebiae Radix samples obtained from 20 sources, and 13 of these compounds were confirmed by comparison with the reference standards. Thirty components with a low abundance, that remained undetected in the TIC, were identified in the MDF-processed ion chromatogram. Nine of these compounds had not been identified from Arnebiae Radix previously, and were tentatively screened as unknowns. The chemical components in traditional Chinese medicine preparations are considered to be the material basis for the effectiveness of this medical system, and are closely related to the pharmacological activities of the drugs. The pharmacodynamics of these drugs are known to be influenced by the synergistic effects of various components. Therefore, comprehensive profiling of the chemical compositions of herbal extracts is essential for systematic elucidation of the pharmacodynamics of these medicines.
Collapse
Affiliation(s)
- Junjie Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Pengfei Yu
- Inner MenGolia Mengqi Pharmaceutical Co. LTD, Huhhot, 011700, China
| | - Qian Zhou
- Shandong Academy of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhenhua Tian
- Expermiental Centre, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengjia Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xueling Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoming Wang
- Expermiental Centre, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Haiqiang Jiang
- Expermiental Centre, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
16
|
Kumar R, Sinha VR, Dahiya L, Singh G, Sarwal A. Impact of cyclodextrin derivatives on systemic release of duloxetine HCl via buccal route. Drug Dev Ind Pharm 2020; 46:931-945. [PMID: 32420753 DOI: 10.1080/03639045.2020.1764019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aim: The aim of this work was to develop buccoadhesive tablets for the systemic delivery of duloxetine HCl (DXT) using more soluble derivatives of β-cyclodextrin, i.e. hydroxypropyl-β-cyclodextrin (HPβCD) and sulfobutylether-β-cyclodextrin (SBEβCD) and to investigate enhanced cellular uptake of inclusion complexed drug.Materials and methods: Freeze dried and spray dried complexes of both cyclodextrin derivatives with DXT (1:1 molar) were prepared and characterized with DSC, FTIR, and PXRD techniques. C971 and PC, on the basis of swelling behavior, erosion and in vitro residence time, were selected for further study at different levels (-1, 0, +1) to optimize the formulation in terms of enhanced drug release and ex vivo permeation.Results: SBEβCD based complexes show more aqueous solubility of DXT (0.782 and 0.958 mM) and more complexation efficiency compared to HPβCD at 25 °C and 37 °C, respectively. Apparent stability constant was reported to be higher (1109.94 and 1693.25 M-1) for DXT-SBEβCD at 25 °C and 37 °C, respectively, than the corresponding values for DXT-HPβCD systems. Enhanced cellular uptake using fibroblast cells was revealed for complexed drug compared to free drug .Conclusion: Both cyclodextrin derivatives are able to enhance drug release and permeation in vitro and ex vivo.
Collapse
Affiliation(s)
- Rajiv Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - V R Sinha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Lalita Dahiya
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Amita Sarwal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
17
|
Li H, Lu S, Luo M, Li X, Liu S, Zhang T. A matrix dispersion based on phospholipid complex system: preparation, lymphatic transport, and pharmacokinetics. Drug Dev Ind Pharm 2020; 46:557-565. [PMID: 32126844 DOI: 10.1080/03639045.2020.1735408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Raloxifene hydrochloride (RH) suffers from low oral bioavailability due to its low water-solubility and first-pass metabolism. Therefore, a novel phospholipid complex of RH (RHPC) and a matrix dispersion based on phospholipid complex (RHPC-MD) were successfully prepared and optimized. Several methods were used to validate the formation of RHPC and RHPC-MD, such as differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, particle size, and zeta potential, meanwhile, their octanol-water partition coefficient, solubility, and dissolution in vitro were also evaluated. To investigate the absorption mechanism of RHPC in vivo, the RHPC was administered to the chylomicron flow blockage rat model. Interestingly, as we expected, a significant reduction in RHPC absorption (67%) (**p< .01) in presence of cycloheximide (CXI) inhibitor was observed, thus confirming the RHPC could be absorbed by lymphatic transport in vivo. Pharmacokinetic studies revealed that the relative oral bioavailability of RHPC as well as RHPC-MD was 223% and 329%, respectively, when comparing with the commercial RH tablets. These outcomes suggested that the current study provided an attractive formulation to enhance the oral bioavailability of RH and stimulated to further research the absorption mechanism of RHPC in vivo.
Collapse
Affiliation(s)
- Huixin Li
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Sirun Lu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Meiling Luo
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoting Li
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Suyan Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianhong Zhang
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
18
|
Hsu CM, Tsai FJ, Tsai Y. Antioxidant activity and protective effects of the Angelica sinensis-hydroxypropyl-β-cyclodextrin complex on CCl4-induced hepatic failure in mice. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-00975-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Chen Z, Hu Y, Li J, Zhang C, Gao F, Ma X, Zhang J, Fu C, Geng F. A feasible biocompatible hydrogel film embedding Periplaneta americana extract for acute wound healing. Int J Pharm 2019; 571:118707. [DOI: 10.1016/j.ijpharm.2019.118707] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/24/2019] [Accepted: 09/16/2019] [Indexed: 01/20/2023]
|
20
|
Hsu CM, Yu SC, Tsai FJ, Tsai Y. Characterization of in vitro and in vivo bioactivity of a ferulic acid-2-Hydroxypropyl-β-cyclodextrin inclusion complex. Colloids Surf B Biointerfaces 2019; 180:68-74. [PMID: 31028966 DOI: 10.1016/j.colsurfb.2019.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/15/2019] [Accepted: 04/09/2019] [Indexed: 01/14/2023]
Abstract
Ferulic acid (FA) belongs to the family of phenolic acids and exhibits a wide variety of biological activities. However, the bioavailability of FA is not optimal, owing to its limited aqueous solubility. Several methods have been developed to increase FA bioavailability and enhance its cytoprotective effects. Complexing FA with cyclodextrins (CDs) may provide an alternative method to approach these goals. In this study, we prepared an FA-2-hydroxypropyl-β-CD (FA-HP-β-CD) complex, at a 1:1 M ratio of FA to HP-β-CD, which was characterized by 1H NMR, two-dimensional rotating frame spectroscopy and differential scanning calorimetry. Aqueous solubility of FA was improved after complexing with HP-β-CD. Furthermore, in vitro and in vivo experimental results indicated that the FA-HP-β-CD complex had greater bioactivity than FA alone. Therefore, we can conclude that the limitations of FA usage due to low aqueous solubility and bioavailability can be overcome by creating an HP-β-CD inclusion complex with the hydrophobic FA.
Collapse
Affiliation(s)
- Chin-Mu Hsu
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Song-Cu Yu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Medical Genetics, Pediatrics and Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yuhsin Tsai
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan.
| |
Collapse
|
21
|
Characterization, solubility and antibacterial activity of inclusion complex of questin with hydroxypropyl-β-cyclodextrin. 3 Biotech 2019; 9:123. [PMID: 30863702 DOI: 10.1007/s13205-019-1663-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
To increase the water solubility of questin and broaden its application in preventing and treating Vibrio diseases in aquaculture, an inclusion complex of questin with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was prepared by stirring and coevaporation strategy. The results of thin-layer chromatography and nuclear magnetic resonance spectrum confirmed the inclusion of questin into HP-β-CD. The aqueous solubility of questin in the inclusion complex reached (62.63 ± 1.21) µg/mL, which was 110 times of questin's original solubility. The preliminary agar diffusion method indicated that questin-HP-β-CD inclusion complex showed enhanced antibacterial activity against Vibrio harveyi compared with free questin. This finding provided a reliable basis for the further application of questin as aquatic antibacterial agent.
Collapse
|
22
|
Yu SC, Chen TC, Hou YT, Wan L, Tsai FJ, Tsai Y. β-Sitosterol-2-hydroxypropyl-β-cyclodextrin inclusion complex: Characterization and inhibitory effect on adipogenesis in 3T3-L1 pre-adipocytes. Steroids 2018; 140:196-201. [PMID: 30176257 DOI: 10.1016/j.steroids.2018.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/14/2018] [Accepted: 08/28/2018] [Indexed: 01/17/2023]
Abstract
β-Sitosterol (Sit) has been used as a functional food additive. Among its many beneficial effects, this phytosterol plays a role in controlling obesity by inhibiting the adipogenesis process of pre-adipocytes. However, the highly lipophilic character of Sit limits its bioavailability. In the present study, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was used to form a complex with Sit, namely the Sit-HP-β-CD inclusion complex, and the inhibitory effect of this complex on adipogenesis in the 3T3-L1 pre-adipocyte cell line was investigated. The results of DSC, TLC, 1H NMR spectroscopy, and 2D ROESY showed that the Sit-HP-β-CD inclusion complex was successfully synthesized. In addition, the inhibitory effect of the Sit-HP-β-CD inclusion complex on adipogenesis was evaluated using the Oil Red O staining method and western blot analysis after a 14-day adipogenesis induction in 3T3-L1 pre-adipocytes. The results showed that the Sit-HP-β-CD inclusion complex had a higher efficiency than Sit in reducing intracellular lipid accumulation and the expression levels of PPARγ and FAS in 3T3-L1 cells, suggesting that the inhibitory effect on adipogenesis was improved by the formation of the Sit and HP-β-CD complex.
Collapse
Affiliation(s)
- Song-Cu Yu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ta Chen Chen
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Ting Hou
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lei Wan
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Medical Genetics, Pediatrics and Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yuhsin Tsai
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|