1
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
2
|
Li P, Lin B, Chen Z, Liu P, Liu J, Li W, Liu P, Guo Z, Chen C. Biodegradable hollow mesoporous organosilica nanotheranostics (HMONs) as a versatile platform for multimodal imaging and phototherapeutic-triggered endolysosomal disruption in ovarian cancer. Drug Deliv 2021; 29:161-173. [PMID: 34967262 PMCID: PMC8725973 DOI: 10.1080/10717544.2021.2021322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A major impediment in the development of nanoplatform-based ovarian cancer therapy is endo/lysosome entrapment. To solve this dilemma, a hollow mesoporous organosilica-based nanoplatform (HMON@CuS/Gd2O3) with a mild-temperature photothermal therapeutic effect and multimodal imaging abilities was successfully synthesized. HMON@CuS/Gd2O3 exhibited an appropriate size distribution, L-glutathione (GSH)-responsive degradable properties, and high singlet oxygen generation characteristics. In this study, the nanoplatform specifically entered SKOV-3 cells and was entrapped in endo/lysosomes. With a mild near infrared (NIR) power density (.5 W/cm2), the HMON@CuS/Gd2O3 nanoplatform caused lysosome vacuolation, disrupted the lysosomal membrane integrity, and exerted antitumour effects in ovarian cancer. Additionally, our in vivo experiments indicated that HMON@CuS/Gd2O3 has enhanced T1 MR imaging, fluorescence (FL) imaging (wrapping fluorescent agent), and infrared thermal (IRT) imaging capacities. Using FL/MRI/IRT imaging, HMON@CuS/Gd2O3 selectively caused mild phototherapy in the cancer region, efficiently inhibiting the growth of ovarian cancer without systemic toxicity in vivo. Taken together, the results showed that these well-synthesized nanoplatforms are likely promising anticancer agents to treat ovarian cancer and show great potential for biomedical applications.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhian Chen
- First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Pan Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weili Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaoze Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunlin Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Zhang Q, Dai X, Zhang H, Zeng Y, Luo K, Li W. Recent advances in development of nanomedicines for multiple sclerosis diagnosis. Biomed Mater 2021; 16:024101. [PMID: 33472182 DOI: 10.1088/1748-605x/abddf4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease with a high morbidity and disease burden. It is characterized by the loss of the myelin sheath, resulting in the disruption of neuron electrical signal transmissions and sensory and motor ability deficits. The diagnosis of MS is crucial to its management, but the diagnostic sensitivity and specificity are always a challenge. To overcome this challenge, nanomedicines have recently been employed to aid the diagnosis of MS with an improved diagnostic efficacy. Advances in nanomedicine-based contrast agents in magnetic resonance imaging scanning of MS lesions, and nanomedicine-derived sensors for detecting biomarkers in the cerebrospinal fluid biopsy, or analyzing the composition of exhaled breath gas, have demonstrated the potential of using nanomedicines in the accurate diagnosis of MS. This review aims to provide an overview of recent advances in the application of nanomedicines for the diagnosis of MS and concludes with perspectives of using nanomedicines for the development of safe and effective MS diagnostic nanotools.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Radiology, Department of Postgraduate Students, and Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China. West China School of Medicine, Sichuan University, Chengdu 610041, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
4
|
Guo W, Chen Z, Chen J, Feng X, Yang Y, Huang H, Liang Y, Shen G, Liang Y, Peng C, Li Y, Li G, Huang W, Zhao B, Hu Y. Biodegradable hollow mesoporous organosilica nanotheranostics (HMON) for multi-mode imaging and mild photo-therapeutic-induced mitochondrial damage on gastric cancer. J Nanobiotechnology 2020; 18:99. [PMID: 32690085 PMCID: PMC7370480 DOI: 10.1186/s12951-020-00653-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background CuS-modified hollow mesoporous organosilica nanoparticles (HMON@CuS) have been preferred as non-invasive treatment for cancer, as near infrared (NIR)-induced photo-thermal effect (PTT) and/or photo-dynamic effect (PDT) could increase cancer cells’ apoptosis. However, the certain role of HMON@CuS-produced-PTT&PDT inducing gastric cancer (GC) cells’ mitochondrial damage, remained unclear. Moreover, theranostic efficiency of HMON@CuS might be well improved by applying multi-modal imaging, which could offer an optimal therapeutic region and time window. Herein, new nanotheranostics agents were reported by Gd doped HMON decorated by CuS nanocrystals (called HMON@CuS/Gd). Results HMON@CuS/Gd exhibited appropriate size distribution, good biocompatibility, l-Glutathione (GSH) responsive degradable properties, high photo-thermal conversion efficiency (82.4%) and a simultaneous reactive oxygen species (ROS) generation effect. Meanwhile, HMON@CuS/Gd could efficiently enter GC cells, induce combined mild PTT (43–45 °C) and PDT under mild NIR power density (0.8 W/cm2). Surprisingly, it was found that PTT might not be the only factor of cell apoptosis, as ROS induced by PDT also seemed playing an essential role. The NIR-induced ROS could attack mitochondrial transmembrane potentials (MTPs), then promote mitochondrial reactive oxygen species (mitoROS) production. Meanwhile, mitochondrial damage dramatically changed the expression of anti-apoptotic protein (Bcl-2) and pro-apoptotic protein (Bax). Since that, mitochondrial permeability transition pore (mPTP) was opened, followed by inducing more cytochrome c (Cyto C) releasing from mitochondria into cytosol, and finally activated caspase-9/caspase-3-depended cell apoptosis pathway. Our in vivo data also showed that HMON@CuS/Gd exhibited good fluorescence (FL) imaging (wrapping fluorescent agent), enhanced T1 imaging under magnetic resonance imaging (MRI) and infrared thermal (IRT) imaging capacities. Guided by FL/MRI/IRT trimodal imaging, HMON@CuS/Gd could selectively cause mild photo-therapy at cancer region, efficiently inhibit the growth of GC cells without evident systemic toxicity in vivo. Conclusion HMON@CuS/Gd could serve as a promising multifunctional nanotheranostic platform and as a cancer photo-therapy agent through inducing mitochondrial dysfunction on GC.
Collapse
Affiliation(s)
- Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhian Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiajia Chen
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Xiaoli Feng
- Guangdong Provincial Stomatology Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yang Yang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Huilin Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanrui Liang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guodong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu Liang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Chao Peng
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yanbing Li
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, China.
| | - Bingxia Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Yang CT, Hattiholi A, Selvan ST, Yan SX, Fang WW, Chandrasekharan P, Koteswaraiah P, Herold CJ, Gulyás B, Aw SE, He T, Ng DCE, Padmanabhan P. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging. Acta Biomater 2020; 110:15-36. [PMID: 32335310 DOI: 10.1016/j.actbio.2020.03.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
Abstract
Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. STATEMENT OF SIGNIFICANCE: The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Aishwarya Hattiholi
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore; School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Subramanian Tamil Selvan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
| | | | - Podili Koteswaraiah
- School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Christian J Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna General Hospital, Austria
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore; Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
6
|
Zhao J, Guo X, He Q, Song Q, Wu F, Zhang C. Solvothermal synthesis of InNbO 4 cubes for efficient degradation of pefloxacin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118247. [PMID: 32179465 DOI: 10.1016/j.saa.2020.118247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
A novel solvothermal process for synthesizing InNbO4 nanomaterials was developed. In this manner, a series of InNbO4 samples was synthesized. It was shown that reaction temperature and precursor pH had strong influence on the attributes of InNbO4 samples. The X-ray diffraction patterns revealed that all the samples possessed monoclinic structure and the optimal reaction condition was found at 250 °C with a pH of 5. Scanning electron microscopy images of different InNbO4 samples showed various morphologies. Transmission electron microscopy verified the synthesized InNbO4-pH 5 was single-crystal cubes. X-ray photoelectron spectra verified the existence of In, Nb, and O in InNbO4-pH 5 sample. The band gap of InNbO4-pH 5 was calculated to be 2.51 eV. The photocurrent intensity of InNbO4-pH 5 was the highest among the prepared samples. The photocatalytic degradation of pefloxacin was investigated using these samples. The InNbO4-pH 5 exhibited best degradation efficiency among these samples. The removal efficiency of pefloxacin with InNbO4-pH 5 could reach 80.2% in 60 min. Based on free radical capture results, superoxide radicals and holes showed to be the dominant active species. In addition, UHPLC/MS/MS was used to identify the degradation intermediates. Five new pefloxacin degradation products were found and possible degradation pathways were suggested.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Applied Chemistry, Xi'an University of Technology, 5 Jinhua South Road, Xi'an, Shaanxi 710048, PR China.
| | - Xiao Guo
- Department of Applied Chemistry, Xi'an University of Technology, 5 Jinhua South Road, Xi'an, Shaanxi 710048, PR China.
| | - Qiang He
- Technical Center, Xi'an Customs District, Shaanxi 710068, PR China.
| | - Qiang Song
- Department of Applied Chemistry, Xi'an University of Technology, 5 Jinhua South Road, Xi'an, Shaanxi 710048, PR China.
| | - Fei Wu
- Department of Applied Chemistry, Xi'an University of Technology, 5 Jinhua South Road, Xi'an, Shaanxi 710048, PR China.
| | - Chenhui Zhang
- Department of Applied Chemistry, Xi'an University of Technology, 5 Jinhua South Road, Xi'an, Shaanxi 710048, PR China.
| |
Collapse
|