1
|
Hou L, Wei J, Xiang C, Yang D, Yang Y. A colorimetric sensor for the sensitive and rapid detection of ampicillin based on CS-Cu,Fe/HS nanozyme. Mikrochim Acta 2024; 192:36. [PMID: 39729133 DOI: 10.1007/s00604-024-06895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2 to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe2+/Fe3+ and Cu2+/Cu+. Interestingly, the POD-like activity of CS-Cu,Fe/HS is inhibited with the introduction of ampicillin (AMP), which may be because the Cu and Fe ions in CS-Cu,Fe/HS form complexes with AMP, leading to changes in the structure or surface properties of the nanozyme, thereby reducing the number of active sites on the nanozyme. Drawing from this, a straightforward and reliable colorimetric sensor was constructed for AMP detection, featuring a linear range of 0.033 to 110 μg/mL and a detection limit as low as 11.6 ng/mL. The proposed detection method for AMP performed well in real samples, with recoveries ranging from 94.8% to 110.2%.
Collapse
Affiliation(s)
- Linqian Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Jinya Wei
- Yunnan High-Tech Enterprise Development Promotion Association, Kunming, 650021, People's Republic of China
| | - Chen Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
2
|
Wang Q, Meng S, Zhou G, Shi Q, Xu Z, Xie X. Polymer-enhanced peroxidase activity of ceria nanozyme for highly sensitive detection of alkaline phosphatase. Anal Bioanal Chem 2024; 416:6113-6124. [PMID: 38704473 DOI: 10.1007/s00216-024-05307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
Nanoceria have demonstrated a wide array of catalytic activity similar to natural enzymes, holding considerable significance in the colorimetric detection of alkaline phosphatase (ALP), which is a biomarker of various biological disorders. However, the issues of physiological stability and formation of protein corona, which are strongly related to their surface chemistry, limit their practical application. In this work, CeO2 nanoparticles characterized by enhanced dimensional uniformity and specific surface area were synthesized, followed by encapsulation with various polymers to further increase catalytic activity and physiological stability. Notably, the CeO2 nanoparticles encapsulated within each polymer exhibited improved catalytic characteristics, with PAA-capped CeO2 exhibiting the highest performance. We further demonstrated that the PAA-CeO2 obtained with enhanced catalytic activity was attributed to an increase in surface negative charge. PAA-CeO2 enabled the quantitative assessment of AA activity within a wide concentration range of 10 to 60 μM, with a detection limit of 0.111 μM. Similarly, it allowed for the evaluation of alkaline phosphatase activity throughout a broad range of 10 to 80 U/L, with a detection limit of 0.12 U/L. These detection limits provided adequate sensitivity for the practical detection of ALP in human serum.
Collapse
Affiliation(s)
- Qian Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Song Meng
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Gang Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Ziqiang Xu
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, College of Health Science and Engineering, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China.
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.
| |
Collapse
|
3
|
Bao W, Tian L, Wang H, Tang A, Yang H. Breaking through the pH Limitation of Fe 1-xS Nanozymes Using Component-Modulated Coupled Nanoclay. Inorg Chem 2024; 63:3366-3375. [PMID: 38323570 DOI: 10.1021/acs.inorgchem.3c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Overcoming the intrinsic low activity of most peroxidase mimics under neutral pH is crucial but still extremely challenging for the detection of disease markers in biological samples. Here, we chose nanoclay (i.e., montmorillonite K10, MK10) as a carrier to modulate the structure of Fe1-xS nanozyme components through an interfacial modulation strategy, aiming at breaking the neutral pH limitation of Fe1-xS. MK10 with abundant hydroxyl groups on its surface acts as a carrier to increase the ratio of Fe(II) and S(II-) content in surface Fe1-xS. We verify that Fe(II)-promoted surface hydroxyl radical generation and S(II-)-promoted regeneration of Fe(II) play key roles in endowing peroxidase-like activity to Fe1-xS at neutral pH. As expected, Fe1-xS/MK10 exhibited 11-fold higher Vmax and 52-fold higher catalytic efficiency than bare Fe1-xS. As a proof of concept, the sensor constructed based on Fe1-xS/MK10 achieved colorimetric detection of xanthine under neutral conditions with a linear range of 5-300 μM and a limit of detection of 2.49 μM. Finally, we achieved highly sensitive detection of xanthine in serum using the constructed biosensor. Our contribution is the novel use of a nanoclay-mediated interfacial modulation strategy for boosting the peroxidase-mimicking activity and breaking the pH limitation, which contributes to the in situ detection of disease markers by nanozymes under physiological conditions.
Collapse
Affiliation(s)
- Wenxin Bao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Luyuan Tian
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Shahanas T, Harichandran G. PEG mediated NiMn 2O 4 nanomaterials as a nano catalyst for peroxidase mimetic activity and photocatalytic degradation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123212. [PMID: 37523851 DOI: 10.1016/j.saa.2023.123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Artificial peroxidases have garnered a lot of attention owing to their tremendous superiority over their natural counterparts. Here, NiMn2O4 nanoparticles have been successfully prepared through PEG assisted hydrothermal method. The varied PEG concentrations significantly altered the morphology and particle size of the synthesizedmaterials. We demonstrate the improved peroxide-like assay of different NiMn2O4 nanoparticles for the first time. Among them, Ni4 nanoparticles exhibit good peroxidase-like activity by generating the oxidation of chromogenic substrate 3, 3', 5, 5'-tetramethylbenzidine (TMB) in the presence of H2O2 and a blue color charge transfer product with an absorption maximum is positioned at 652 nm. These observations led to the development of a method for assessingH2O2 that can be read visually and photometrically. The Ni4 nanoparticles show enhanced kinetics compared to the natural enzyme horse radish peroxidase (HRP) with a lower Km (0.168 mM) value. Additionally, this Ni4 nanosphere applies as a visible light photocatalyst for the degradation of methylene blue (MB) and rhodamine B (Rh B) dyes under visible-light irradiation. Under optimized conditions, the degradationrates of MB and Rh B are 68 and 80.7 %, respectively, after 210 min, and recyclable efficiency is about 99 % for Rh B photocatalytic degradation in the first test and 98 % for five cycles, and about 98 % for MB photocatalytic degradation in the first test and 97 % for five cycles.
Collapse
Affiliation(s)
- T Shahanas
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600 025, India
| | - G Harichandran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
5
|
Tan W, Xin R, Zhang J, Yang L, Jing M, Ma F, Yang J. Co(II)-Based Metal-Organic Framework Derived CA-CoNiMn-CLDHs with Peroxidase-like Activity for Colorimetric Detection of Phenol. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6212. [PMID: 37763490 PMCID: PMC10533054 DOI: 10.3390/ma16186212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Given the serious harm of toxic phenol to human health and the ecological environment, it is urgent to develop an efficient, low-cost and sensitive nanoenzyme-based method to monitor phenol. MOF-derived nanozyme has attracted wide interest due to its hollow polyhedra structure and porous micro-nano frameworks. However, it is still a great challenge to synthesize MOF-derived multimetal synergistic catalytic nanoenzymes in large quantities with low cost. Herein, we reported the synthetic strategy of porous hollow CA-CoNiMn-CLDHs with ZIF-67 as templates through a facile solvothermal reaction. The prepared trimetallic catalyst exhibits excellent peroxidase-like activity to trigger the oxidative coupling reaction of 4-AAP and phenol in the presence of H2O2. The visual detection platform for phenol based on CA-CoNiMn-CLDHs is constructed, and satisfactory results are obtained. The Km value for CA-CoNiMn-CLDHs (0.21 mM) is lower than that of HRP (0.43 mM) with TMB as the chromogenic substrate. Because of the synergistic effect of peroxidase-like activity and citric acid functionalization, the built colorimetric sensor displayed a good linear response to phenol from 1 to 100 μM with a detection limit of 0.163 μM (3σ/slope). Additionally, the CA-CoNiMn-CLDHs-based visual detection platform possesses high-chemical stability and excellent reusability, which can greatly improve economic benefits in practical applications.
Collapse
Affiliation(s)
- Wenjie Tan
- School of Material Science and Engineering, Shandong Jianzhu University, Jinan 250022, China (J.Z.)
| | - Rui Xin
- School of Material Science and Engineering, Shandong Jianzhu University, Jinan 250022, China (J.Z.)
| | - Jiarui Zhang
- School of Material Science and Engineering, Shandong Jianzhu University, Jinan 250022, China (J.Z.)
| | - Lilin Yang
- Shandong Jiazihu New Material Technology Co., Ltd., Jinan 250022, China
| | - Min Jing
- School of Material Science and Engineering, Shandong Jianzhu University, Jinan 250022, China (J.Z.)
| | - Fukun Ma
- School of Material Science and Engineering, Shandong Jianzhu University, Jinan 250022, China (J.Z.)
| | - Jie Yang
- Department of Pharmaceutical and Bioengineering, Zibo Vocational Institute, Zibo 255000, China
| |
Collapse
|
6
|
Su K, Xiang G, Cui C, Jiang X, Sun Y, Zhao W, He L. Smartphone-based colorimetric determination of glucose in food samples based on the intrinsic peroxidase-like activity of nitrogen-doped carbon dots obtained from locusts. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
7
|
Shi Y, Sun Y, Yue T, Yuan Y. Facile fabrication of metal‐organic frameworks with peroxidase‐like activity for the colorimetric detection of
Alicyclobacillus acidoterrestris. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Yiheng Shi
- School of Food Science and Engineering Shaanxi University of Science and Technology Xi'an China
| | - Yuhan Sun
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Tianli Yue
- College of Food Science and Technology Northwest University Xi'an China
| | - Yahong Yuan
- College of Food Science and Technology Northwest University Xi'an China
| |
Collapse
|
8
|
A Review on the Catalytic Remediation of Dyes by Tailored Carbon Dots. WATER 2022. [DOI: 10.3390/w14091456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water polluted with dyes has become a serious global concern during the twenty-first century, especially for developing countries. Such types of environmental contaminant pose a severe threat to biodiversity, ecosystems, and human health globally; therefore, its treatment is an utmost requirement. Advanced technologies including the use of nanomaterials represent a promising water treatment technology with high efficiencies, low production costs, and green synthesis. Among the nanomaterials, carbon dots, as a new class of carbon-based nanoparticles, have attracted attention due to their unique features and advantages over other nanomaterials, which include high water solubility, easy fabrication and surface functionalisation, excellent electron-donating ability, and low toxicity. Such properties make carbon dots potential nanocatalysts for the Fenton-like degradation of environmental pollutants in water. Although recent studies show that carbon dots can successfully catalyse the degradation of dyes, there are still limited and controversial studies on the ecotoxicity and fate of these nanoparticles in the environment. In this review, the authors aim to summarise the recent research advances in water remediation by technologies using carbon dots, discuss important properties and factors for optimised catalytic remediation, and provide critical analysis of ecotoxicity issues and the environmental fate of these nanoparticles.
Collapse
|
9
|
Ahuja V, Bhatt AK, Varjani S, Choi KY, Kim SH, Yang YH, Bhatia SK. Quantum dot synthesis from waste biomass and its applications in energy and bioremediation. CHEMOSPHERE 2022; 293:133564. [PMID: 35007612 DOI: 10.1016/j.chemosphere.2022.133564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Quantum dots (QDs) are getting special attention due to their commendable optical properties and applications. Conventional metal-based QDs have toxicity and non-biodegradability issues, thus it becomes necessary to search for renewable precursor molecules for QDs synthesis. In recent years, biomass-based carbon rich QDs (CQDs) have been introduced which are mainly synthesised via carbonization (pyrolysis and hydrothermal treatment). These CQDs offered higher photostability, biocompatibility, low-toxicity, and easy tunability for physicochemical properties. Exceptional optical properties become a point of attraction for its multifaceted applications in various sectors like fabrication of electrodes and solar cells, conversion of solar energy to electricity, detection of pollutants, designing biosensors, etc. In recent years, a lot of work has been done in this field. This article will summarize these advancements along in a special context to biomass-based QDs and their applications in energy and the environment.
Collapse
Affiliation(s)
- Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171005, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171005, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul, 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul, 05029, Republic of Korea.
| |
Collapse
|
10
|
Das S, Kaushik R, Goswami P. Multifaceted Interaction Studies between Carbon Dots and Proteins of Clinical Importance for Optical Sensing Signals. ACS APPLIED BIO MATERIALS 2022; 5:889-896. [PMID: 35112851 DOI: 10.1021/acsabm.1c01278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbon dots (CDs) are emerging as efficient optical probes. However, their application potential for clinical diagnosis has not been adequately explored. Herein, we examined the suitability of pyroglutamate CDs for detecting glucose, cholesterol, and alcohol in blood serum through their peroxidative activity in the respective enzyme-catalyzed reactions following fluorometric and colorimetric approaches. In buffer, the CD's fluorescence intensity (λex 354nm) enhanced over 115% after interaction with the enzyme proteins due to different lifetime components on its surface. The enhancement was also linked to FRET with the proteins (λex 274nm for TRP/TYR). The electrostatic interactions, as revealed from the zeta potential study, generated binding energy (ΔG, kcal/mol) in the range of -5.8 to -6.3 and greatly shifted the protein's secondary structure to β-strand contents. The CD's fluorescence in the blood serum medium was also enhanced where serum's particulate components contributed to the emission. All these subvert fluorescence emissions could be substantially cleaned for detection of peroxide generated in the enzymatic reaction by filtering the serum particulates and redox proteins prior to the addition of CDs to the reaction systems. The CD, however, could complement well in ABTS-based (absorbance at λmax 414nm) colorimetric reaction in blood serum without introducing protein or particle separation steps for sensitive detection of peroxide. The limit of detection, dynamic range, and sensitivity discerned for peroxide in the glucose oxidase-catalyzed reaction system were 183 μM, 0.02-0.10 mM (R2 = 0.98), and 0.2482 AU mM-1, respectively. Overall, these findings will guide clinical application of the peroxidatic CDs to detect various analytes in blood serum following fluorometric- and colorimetric-based principles.
Collapse
Affiliation(s)
- Smita Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Roshika Kaushik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
11
|
Ma M, Cao J, Fang A, Xu Z, Zhang T, Shi F. Detection and Difference Analysis of the Enzyme Activity of Colloidal Gold Nanoparticles With Negatively Charged Surfaces Prepared by Different Reducing Agents. Front Chem 2022; 9:812083. [PMID: 35096771 PMCID: PMC8795587 DOI: 10.3389/fchem.2021.812083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Nanozymes are particles with diameters in the range of 1–100 nm, which has been widely studied due to their biological enzyme-like properties and stability that natural enzymes do not have. In this study, several reducing agents with different structures (catechol (Cc), hydroquinone (Hq), resorcinol (Rs), vitamin C (Vc), pyrogallic acid (Ga), sodium citrate (Sc), sodium malate (Sm), and sodium tartrate (St)) were used to prepare colloidal gold with a negative charge and similar particle size by controlling the temperature and pH. The affinity analysis of the substrate H2O2 and TMB showed that the order of activities of colloidal gold Nanozymes prepared by different reducing agents was Cc, Hq, Rs, Vc, Ga, Sc, Sm, St. It was also found that the enzyme activity of colloidal gold reduced by benzene rings is higher than that of the colloidal gold enzyme reduced by linear chains. Finally, we discussed the activity of the colloidal gold peroxidase based on the number and position of isomers and functional groups; and demonstrated that the nanozymes activity is affected by the surface activity of colloidal gold, the elimination of hydroxyl radicals and the TMB binding efficiency.
Collapse
|
12
|
Beker SA, Khudur LS, Cole I, Ball AS. Catalytic degradation of methylene blue using iron and nitrogen-containing carbon dots as Fenton-like catalysts. NEW J CHEM 2022. [DOI: 10.1039/d1nj04761b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Carbon dots were modified with iron and nitrogen groups to produce specific surface groups and charge which demonstrated high efficiency for the Fenton-like degradation of methylene blue whilst markedly minimising its effluent toxicity.
Collapse
Affiliation(s)
- Sabrina A. Beker
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | - Leadin S. Khudur
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | - Ivan Cole
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Andrew S. Ball
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
13
|
Das S, Gogoi S, Singh NK, Goswami P. Analytical application of H
2
O
2
-induced chiroptical graphitic carbon dots. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac3389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Carbon dots (CDs) have emerged as efficient peroxidase mimics in recent years. However, to further increase its efficiency as peroxidase-mimic, it is also desirable to understand the modification of CD’s geometry during the catalytic reaction. Herein, we focused on the change in material property of the CDs upon their reaction with H2O2 during the peroxidase reaction. D-(+)-glucose was transformed into chiroptical CDs bearing peroxidase-like activity and can be used to detect H2O2 with a limit of detection of 630 μM. The addition of H2O2 to the CDs resulted in its increased molecular orderliness leading to the introduction of polycrystallinity without affecting its peroxidase-like activity.
Collapse
|
14
|
Abstract
Enzymes have catalytic turnovers. The field of nanozyme endeavors to engineer nanomaterials as enzyme mimics. However, a discrepancy in the definition of "nanozyme concentration" has led to an unrealistic calculation of nanozyme catalytic turnovers. To date, most of the reported works have considered either the atomic concentration or nanoparticle (NP) concentration as nanozyme concentration. These assumptions can lead to a significant under- or overestimation of the catalytic activity of nanozymes. In this article, we review some classic nanozymes including Fe3O4, CeO2, and gold nanoparticles (AuNPs) with a focus on the reported catalytic activities. We argue that only the surface atoms should be considered as nanozyme active sites, and then the turnover numbers and rates were recalculated based on the surface atoms. According to the calculations, the catalytic turnover of peroxidase Fe3O4 NPs is validated. AuNPs are self-limited when performing glucose-oxidase like activity, but they are also true catalysts. For CeO2 NPs, a self-limited behavior is observed for both oxidase- and phosphatase-like activities due to the adsorption of reaction products. Moreover, the catalytic activity of single-atom nanozymes is discussed. Finally, a few suggestions for future research are proposed.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
15
|
Recent progress in carbon-dots-based nanozymes for chemosensing and biomedical applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Yin T, Zhou X, Shi J. Influence of amphiphilic molecules on the peroxidase-like behavior of nanoparticles in an aqueous solution. RSC Adv 2021; 11:23968-23974. [PMID: 35479042 PMCID: PMC9036758 DOI: 10.1039/d1ra03345j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
Carbon dots (CDs) have drawn considerable attention in recent decades due to their outstanding biocompatibility and environmental friendliness. In this study, we synthesized ionic liquid (1-aminopropyl-3-methyl-imidazolium bromide)-modified carbon dots (IL-CDs) showing good peroxidase-like activity. Furthermore, we investigated their enzymic behavior in the presence of two different amphiphilic molecules, namely tert-butanol (TBA, a typical hydrotrope) and sodium bis (2-ethylhexyl) sulfosuccinate (AOT, a typical anionic surfactant). In an aqueous solution of TBA, a microscopic heterogeneous structure was formed in a certain concentration range of TBA, which resulted in an anomaly in the reaction process. However, in the AOT aqueous solution, the situation became more complicated. IL-CDs formed vesicles or precipitation at different concentrations of AOT, which led to different enzymic activities of IL-CDs due to the variance in the structure and the surface electronic density.
Collapse
Affiliation(s)
- Tianxiang Yin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China +86 21 64250804 +86 21 64252012
| | - Xingnan Zhou
- The Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'an Huai'an 223002 China
| | - Jing Shi
- School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China +86 21 64250804 +86 21 64252012
| |
Collapse
|
17
|
Ye ML, Zhu Y, Lu Y, Gan L, Zhang Y, Zhao YG. Magnetic nanomaterials with unique nanozymes-like characteristics for colorimetric sensors: A review. Talanta 2021; 230:122299. [PMID: 33934768 DOI: 10.1016/j.talanta.2021.122299] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Colorimetric sensors for the rapid detection of numerous analytes have been widely applied in many fields such as biomedicine, food industry and environmental science due to their highly sensitive and selective response, easy operation and visual identification by naked eyes. In this review, the recent progress of the colorimetric sensors based on the magnetic nanomaterials with unique nanozymes-like catalytic activity (magnetic nanozyme) and their colorimetric sensing applications are presented. Emerging magnetic nanozyme-based colorimetric sensors, such as metal oxide/sulfides-based, metal-based, carbon-based, and aptamer-conjugated magnetic nanomaterials, offer many desirable features for target analytes detection. And due to the unique nanoscale physical-chemical properties, magnetic nanozymes have been used to mimic the catalytic activity of natural enzymes such as peroxidases, oxidases and catalases. This review also highlights the catalytic mechanisms of enzyme-like reactions, and promising colorimetric sensing system for the detection of chemical compounds like H2O2, pesticide, ascorbic acid, dopamine, tetracyclines, perfluorooctane sulfonate, phenolic compounds, heavy metal ion and sulfite have been deeply discussed. In addition, the remaining challenges and future directions in utilizing magnetic nanozyme for colorimetric sensors are addressed.
Collapse
Affiliation(s)
- Ming-Li Ye
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China; Department of Environmental Engineering, Wuchang University of Technology, Wuhan, 430223, China
| | - Yan Zhu
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, 430223, China
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lu Gan
- Zhejiang University Hospital, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yun Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.
| | - Yong-Gang Zhao
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, 315010, China.
| |
Collapse
|
18
|
Das S, Ngashangva L, Goswami P. Carbon Dots: An Emerging Smart Material for Analytical Applications. MICROMACHINES 2021; 12:84. [PMID: 33467583 PMCID: PMC7829846 DOI: 10.3390/mi12010084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) are optically active carbon-based nanomaterials. These nanomaterials can change their light emission properties in response to various external stimuli such as pH, temperature, pressure, and light. The CD's remarkable stimuli-responsive smart material properties have recently stimulated massive research interest for their exploitation to develop various sensor platforms. Herein, an effort has been made to review the major advances made on CDs, focusing mainly on its smart material attributes and linked applications. Since the CD's material properties are largely linked to their synthesis approaches, various synthesis methods, including surface passivation and functionalization of CDs and the mechanisms reported so far in their photophysical properties, are also delineated in this review. Finally, the challenges of using CDs and the scope for their further improvement as an optical signal transducer to expand their application horizon for developing analytical platforms have been discussed.
Collapse
Affiliation(s)
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; (S.D.); (L.N.)
| |
Collapse
|
19
|
Hassanvand Z, Jalali F, Nazari M, Parnianchi F, Santoro C. Carbon Nanodots in Electrochemical Sensors and Biosensors: A Review. ChemElectroChem 2020. [DOI: 10.1002/celc.202001229] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Maryam Nazari
- Faculty of Chemistry Razi University Kermanshah Iran
| | | | - Carlo Santoro
- Department of Chemical Engineering and Analytical Science The University of Manchester The Mill Sackville Street Manchester M13PAL UK
| |
Collapse
|
20
|
Wang L, Ling Y, Han L, Zhou J, Sun Z, Li NB, Luo HQ. Catalase active metal-organic framework synthesized by ligand regulation for the dual detection of glucose and cysteine. Anal Chim Acta 2020; 1131:118-125. [PMID: 32928472 DOI: 10.1016/j.aca.2020.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Mimic enzymes greatly improve the inherent insufficiencies of natural enzymes. Therefore, mimic enzyme sensors attract increasing research interest. Metal-organic framework (MOF) is emerging in the field of mimic enzyme catalysis due to its remarkable structural properties. In this paper, a colorimetric method is designed for rapid and sensitive detection of glucose and cysteine levels. The MOF Eu-pydc (pydc-2,5-pyridinedicarboxylic acid) is synthesized by a new strategy which is regulated by ligands at room temperature and found to have peroxidase activity. Then, the MOF is used as a mimic enzyme to catalyze chromogenic substrate (3,3',5,5'-tetramethylbenzidine, TMB) for colorimetric sensing of glucose. The developed method can accurately detect glucose in the range of 10 μM-1 mM (R2 = 0.9958) with a relatively low detection limit about 6.9 μM. Moreover, a cysteine sensor with a detection limit of 0.28 μM is also established based on the disappearance of the color of oxTMB. Additionally, the proposed glucose sensor exhibits excellent selectivity and is successfully applied to blood glucose detection. At the same time, the detection of cysteine is also highly sensitive. In short, the dual sensor is fast, low cost, and convenient, and has great application potential in the diagnosis of disease.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu Ling
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lei Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiao Zhou
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhe Sun
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
21
|
Controlled formation of porous CuCo2O4 nanorods with enhanced oxidase and catalase catalytic activities using bimetal-organic frameworks as templates. Colloids Surf B Biointerfaces 2020; 188:110764. [DOI: 10.1016/j.colsurfb.2019.110764] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 01/08/2023]
|
22
|
Nanozymes: created by learning from nature. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1183-1200. [DOI: 10.1007/s11427-019-1570-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
|
23
|
Du J, Qi S, Chen J, Yang Y, Fan T, Zhang P, Zhuo S, Zhu C. Fabrication of highly active phosphatase-like fluorescent cerium-doped carbon dots for in situ monitoring the hydrolysis of phosphate diesters. RSC Adv 2020; 10:41551-41559. [PMID: 35516543 PMCID: PMC9057792 DOI: 10.1039/d0ra07429b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
The hydrolytic cleavage of BNPP was catalyzed and monitored by the fluorescent CeCDs.
Collapse
Affiliation(s)
- Jinyan Du
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shuangqing Qi
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Juan Chen
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ying Yang
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Tingting Fan
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ping Zhang
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shujuan Zhuo
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Changqing Zhu
- Anhui Key Laboratory of Chemo-Biosensing
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
24
|
Preparation of palladium/carbon dot composites as efficient peroxidase mimics for H2O2 and glucose assay. Anal Bioanal Chem 2019; 412:963-972. [DOI: 10.1007/s00216-019-02320-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 02/01/2023]
|