1
|
Zhang W, Zhang M, Song J, Zhang Y, Nian B, Hu Y. Spacer arm of ionic liquids facilitated laccase immobilization on magnetic graphene enhancing its stability and catalytic performance. CHEMOSPHERE 2024; 362:142735. [PMID: 38950743 DOI: 10.1016/j.chemosphere.2024.142735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
To fulfill the requirements of environmental protection, a magnetically recoverable immobilized laccase has been developed for water pollutant treatment. In order to accomplish this objective, we propose a polydopamine-coated magnetic graphene material that addresses the challenges associated with accumulation caused by electrostatic interactions between graphene and enzyme molecules, which can lead to protein denaturation and inactivation. To achieve this, we present a polydopamine-coated magnetic graphene material that binds to the enzyme molecule through flexible spacer arms formed by ionic liquids. The immobilized laccase exhibited a good protective effect on laccase and showed a high stability and recycling ability. Laccase-ILs-PDA-MGO has a wider pH and temperature range and retains about 80% of its initial activity even after incubation at 50 °C for 2 h, which is 2.2 times more active than free laccase. Furthermore, the laccase-ILs-PDA-MGO exhibited a remarkable removal efficiency of 97.0% and 83.9% toward 2,4-DCP and BPA within 12 h at room temperature. More importantly, laccase-ILs-PDA-MGO can be recovered from the effluent and used multiple times for organic pollutant removal, while maintaining a relative removal efficiency of 80.6% for 2,4-DCP and 81.4% for BPA after undergoing seven cycles. In this study, a strategy for laccase immobilization by utilizing ILs spacer arms to modify GO aims to provide valuable insights into the advancement of efficient enzyme immobilization techniques and the practical application of immobilized enzymes in wastewater treatment.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Jifei Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Rahman MU, Ullah MW, Shah JA, Sethupathy S, Bilal H, Abdikakharovich SA, Khan AU, Khan KA, Elboughdiri N, Zhu D. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170498. [PMID: 38307266 DOI: 10.1016/j.scitotenv.2024.170498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, PR China; Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hazart Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Zhang W, Zhang Y, Lu Z, Nian B, Yang S, Hu Y. Enhanced stability and catalytic performance of laccase immobilized on magnetic graphene oxide modified with ionic liquids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118975. [PMID: 37716172 DOI: 10.1016/j.jenvman.2023.118975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Graphite oxide (GO) is an excellent laccase immobilization material. However, the electrostatic interaction between graphene leads to the accumulation of GO, as well as the interaction with the surface of enzyme molecules causing protein denaturation and deactivation, which limits its further industrial application. In this study, the ionic liquids (ILs) modification strategy was proposed to improve the stability and catalytic performance of immobilized laccase. The laccase-ILs-MGO exhibited remarkable enzymatic properties, with significant enhancements in organic solvent tolerance, thermal and operational stability. The laccase-ILs-MGO system exhibited a remarkable removal efficiency of 95.5% towards 2,4-dichlorophenol (2,4-DCP) within 12 h and maintained over 70.0% removal efficiency after seven reaction cycles. In addition, the efficient elimination of other phenolic compounds and recalcitrant polycyclic aromatic hydrocarbons could also be accomplished. Molecular dynamics simulation and molecular docking studies demonstrated that immobilized laccase exhibited superior structural rigidity and stronger hydrogen bond interactions with substrates compared to free laccase, which was beneficial for the stability of both the laccase and substrate degradation efficiency. Therefore, this study proposed a simple and practical strategy for modifying GO with ILs, providing novel insights into developing efficient enzyme immobilization techniques.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Shipin Yang
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
4
|
Zhang W, Zhang Z, Ji L, Lu Z, Liu R, Nian B, Hu Y. Laccase immobilized on nanocomposites for wastewater pollutants degradation: current status and future prospects. Bioprocess Biosyst Eng 2023; 46:1513-1531. [PMID: 37458833 DOI: 10.1007/s00449-023-02907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 11/01/2023]
Abstract
The bio-enzyme degradation technology is a promising approach to sustainably remove pollution in the water and laccase is one of the most widely used enzymes in this area. Nevertheless, the further industrial application of laccase is limited by low stability, short service, low reusability and high price. The immobilization technology can significantly improve the stability and reusability of enzymes and thus promoting their industrial applications. Nanocomposite materials have been developed and applied in the efficient immobilization of laccase due to their superior physical, chemical, and biological performance. This paper presents a comprehensive review of various nanocomposite immobilization methods for laccase and the consequent changes in enzymatic properties post-immobilization. Additionally, a comprehensive analysis is conducted on the factors that impact laccase immobilization and its water removal efficiency. Furthermore, this review examines the effectiveness of common contaminants' removal mechanisms while summarizing and discussing issues related to laccase immobilization on nanocomposite carriers. This review aims to provide valuable guidance for enhancing laccase immobilization efficiency and enzymatic water pollutant removal.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Liran Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Runtang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
5
|
Jafari-Nodoushan H, Fazeli MR, Faramarzi MA, Samadi N. Hierarchically-structured laccase@Ni 3(PO 4) 2 hybrid nanoflowers for antibiotic degradation: Application in real wastewater effluent and toxicity evaluation. Int J Biol Macromol 2023; 234:123574. [PMID: 36764346 DOI: 10.1016/j.ijbiomac.2023.123574] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Laccase@Ni3(PO4)2 hybrid nanoflowers (HNFs) were prepared by the anisotropic growth of biomineralized nickel phosphate. The immobilization yield was 77.5 ± 3.6 %, and the immobilized enzyme retained 50 % of its initial activity after 18 reusability cycles. The immobilized and free enzymes lost 80 % of their activity after 18 and 6 h incubation in municipal wastewater effluent (MWWE), respectively. The increase in α-helix content (8 %) following immobilization led to a more rigid enzyme structure, potentially contributing to its improved stability. The removal of ciprofloxacin from MWWE by laccase@Ni3(PO4)2·HNFs/p-coumaric acid oxidation system was optimized using a Box-Behnken design. Under the optimized conditions [initial laccase activity (0.05 U mL-1), the concentration of p-coumaric acid (2.9 mM), and treatment time (4.9 h)], the biocatalyst removed 90 % of ciprofloxacin (10 mg L-1) from MWWE. The toxicity of ciprofloxacin against some G+ and G- bacteria was reduced by 35-70 %, depending on their strain. The EC50 of ciprofloxacin for the alga Raphidocelis subcapitata reduced from 3.08 to 1.07 mg L-1 (p-value <0.05) after the bioremoval. Also, the acute and chronic toxicity of identified biodegradation products was lower than ciprofloxacin at three trophic levels, as predicted by ECOSAR software.
Collapse
Affiliation(s)
- Hossein Jafari-Nodoushan
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Mohammad Reza Fazeli
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran.
| | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran; Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Tocco D, Wisser D, Fischer M, Schwieger W, Salis A, Hartmann M. Immobilization of Aspergillus sp. laccase on hierarchical silica MFI zeolite with embedded macropores. Colloids Surf B Biointerfaces 2023; 226:113311. [PMID: 37060651 DOI: 10.1016/j.colsurfb.2023.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/31/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Laccase from Aspergillus sp. (LC) was immobilized on functionalized silica hierarchical (microporous-macroporous) MFI zeolite (ZMFI). The obtained immobilized biocatalyst (LC#ZMFI) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), N2 adsorption/desorption isotherms, solid-state NMR spectroscopy and thermogravimetric analysis (TGA) confirming the chemical anchoring of the enzyme to the zeolitic support. The optimal pH, kinetic parameters (KM and Vmax), specific activity, as well as both storage and operational stability of LC#ZMFI were determined. The LC#ZMFI KM and Vmax values amount to 10.3 µM and 0.74 µmol·mg-1 min-1, respectively. The dependence of specific activity on the pH for free and immobilized LC was investigated in the pH range of 2-7, The highest specific activity was obtained at pH = 3 for both free LC and LC#ZMFI. LC#ZMFI retained up to 50 % and 30 % of its original activity after storage of 21 and 30 days, respectively. Immobilization of laccase on hierarchical silica MFI zeolite allows to carry out the reaction under acidic pH values without affecting the support structure.
Collapse
Affiliation(s)
- Davide Tocco
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany; Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, SS 554 Bivio Sestu, 09042, Monserrato, CA, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via Della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Dorothea Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Marcus Fischer
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Wilhelm Schwieger
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, SS 554 Bivio Sestu, 09042, Monserrato, CA, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Via Della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
| |
Collapse
|
7
|
Zhang W, Liu R, Yang X, Nian B, Hu Y. Immobilization of laccase on organic—inorganic nanocomposites and its application in the removal of phenolic pollutants. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Wu X, Si P. Electrochemical detection of lignin from dietary fiber by laccases immobilized on nanocomposite of CNTs and ionic liquid. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
9
|
Dong CD, Tiwari A, Anisha GS, Chen CW, Singh A, Haldar D, Patel AK, Singhania RR. Laccase: A potential biocatalyst for pollutant degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120999. [PMID: 36608728 DOI: 10.1016/j.envpol.2023.120999] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In the continual march to a predominantly urbanized civilization, anthropogenic activities have increased scrupulously, industrialization have occurred, economic growth has increased, and natural resources are being exploited, causing huge waste management problems, disposal issues, and the evolution of several pollutants. In order to have a sustainable environment, these pollutants need to be removed and degraded. Bioremediation employing microorganisms or enzymes can be used to treat the pollutants by degrading and/or transforming the pollutants into different form which is less or non-toxic to the environment. Laccase is a diverse enzyme/biocatalyst belonging to the oxidoreductase group of enzymes produced by microorganisms. Due to its low substrate specificity and monoelectronic oxidation of substrates in a wide range of complexes, it is most commonly used to degrade chemical pollutants. For degradation of emerging pollutants, laccase can be efficiently employed; however, large-scale application needs reusability, thermostability, and operational stability which necessitated strategies like immobilization and engineering of robust laccase possessing desirable properties. Immobilization of laccase for bioremediation, and treatment of wastewater for degrading emerging pollutants have been focussed for sustainable development. Challenges of employing biocatalysts for these applications as well as engineering robust laccase have been highlighted in this study.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Ashutosh Tiwari
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, 695014, Kerala, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anusuiya Singh
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
10
|
Immobilization of horseradish peroxidase on hierarchically porous magnetic metal-organic frameworks for visual detection and efficient degradation of 2,4-dichlorophenol in simulated wastewater. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Magnetic Polyethyleneimine Nanoparticles Fabricated via Ionic Liquid as Bridging Agents for Laccase Immobilization and Its Application in Phenolic Pollutants Removal. Molecules 2022; 27:molecules27238522. [PMID: 36500612 PMCID: PMC9738685 DOI: 10.3390/molecules27238522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, polyethyleneimine was combined with magnetic Fe3O4 nanoparticles through the bridging of carboxyl-functionalized ionic liquid, and laccase was loaded onto the carrier by Cu2+ chelation to achieve laccase immobilization (MCIL-PEI-Cu-lac). The carrier was characterized by Fourier transform infrared spectroscopy, scanning electron microscope, thermogravimetric analysis, X-ray diffraction analysis, magnetic hysteresis loop and so on. MCIL-PEI-Cu-lac has good immobilization ability; its loading and activity retention could reach 52.19 mg/g and 91.65%, respectively. Compared with free laccase, its thermal stability and storage stability have been significantly improved, as well. After 6 h of storage at 60 °C, 51.45% of the laccase activity could still be retained, and 81.13% of the laccase activity remained after 1 month of storage at 3 °C. In the pollutants removal test, the removal rate of 2,4-dichlorophenol (10 mg/L) by MCIL-PEI-Cu-lac could reach 100% within 10 h, and the removal efficiency could still be maintained 60.21% after repeated use for 8 times. In addition, MCIL-PEI-Cu-lac also has a good removal effect on other phenolic pollutants (such as bisphenol A, phenol, 4-chlorophenol, etc.). Research results indicated that an efficient strategy for laccase immobilization to biodegrade phenolic pollutants was developed.
Collapse
|
12
|
Cao M, Yu J, Zhang X, Lin Y, Huang H. Laccase-functionalized magnetic framework composite enabled chlorophenols degradation, a potential remediation for fungicides residues in leather. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Chlorophenols, used as the fungicides in leather, are strictly limited in leather products. In this work, a metal–organic framework material, zeolitic metal azolate framework-7 (MAF-7), was first used to encapsulate laccase (Lac) to prepare MAF-7/Lac bio-composites with 98.5% immobilization yield. Afterward, Lac/MNP@MOM was formed by introducing the magnetic nanoparticles (MNPs) into the Lac@MOM. MAF-7 with better hydrophilicity and stronger pH buffering ability, exhibits good compatibility with laccase, which can reserve the activity of laccase after immobilization. Moreover, the porous structure of MAF-7 is favorable for the sufficient contact between laccase and substrates. Lac/MNP@MOM exhibited excellent activity when exposed to high temperature, extreme pH, and organic solvents, which also simplified complex recovery steps. Furthermore, the degradation rate of 2,4-dichlorophenol (2,4-DCP) could reach as high as 97% within 24 h by immobilized laccase, and after nine consecutive cycles of operation, enzyme activity could remain over 80%, which gives it the potential for practical applications.
Graphical abstract
Collapse
|
13
|
Gong YZ, Niu QY, Liu YG, Dong J, Xia MM. Development of multifarious carrier materials and impact conditions of immobilised microbial technology for environmental remediation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120232. [PMID: 36155222 DOI: 10.1016/j.envpol.2022.120232] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Microbial technology is the most sustainable and eco-friendly method of environmental remediation. Immobilised microorganisms were introduced to further advance microbial technology. In immobilisation technology, carrier materials distribute a large number of microorganisms evenly on their surface or inside and protect them from external interference to better treat the targets, thus effectively improving their bioavailability. Although many carrier materials have been developed, there have been relatively few comprehensive reviews. Therefore, this paper summarises the types of carrier materials explored in the last ten years from the perspective of structure, microbial activity, and cost. Among these, carbon materials and biofilms, as environmentally friendly functional materials, have been widely applied for immobilisation because of their abundant sources and favorable growth conditions for microorganisms. The novel covalent organic framework (COF) could also be a new immobilisation material, due to its easy preparation and high performance. Different immobilisation methods were used to determine the relationship between carriers and microorganisms. Co-immobilisation is particularly important because it can compensate for the deficiencies of a single immobilisation method. This paper emphasises that impact conditions also affect the immobilisation effect and function. In addition to temperature and pH, the media conditions during the preparation and reaction of materials also play a role. Additionally, this study mainly reviews the applications and mechanisms of immobilised microorganisms in environmental remediation. Future development of immobilisation technology should focus on the discovery of novel and environmentally friendly carrier materials, as well as the establishment of optimal immobilisation conditions for microorganisms. This review intends to provide references for the development of immobilisation technology in environmental applications and to further the improve understanding of immobilisation technology.
Collapse
Affiliation(s)
- You-Zi Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Qiu-Ya Niu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Yun-Guo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Meng-Meng Xia
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
14
|
Liu R, Wang S, Han M, Zhang W, Xu H, Hu Y. Co-immobilization of electron mediator and laccase onto dialdehyde starch cross-linked magnetic chitosan nanomaterials for organic pollutants’ removal. Bioprocess Biosyst Eng 2022; 45:1955-1966. [PMID: 36355205 DOI: 10.1007/s00449-022-02799-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
In this study, an amino-functionalized ionic liquid-modified magnetic chitosan (MACS-NIL) containing 2,2-diamine-di-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) was used as a carrier, and dialdehyde starch (DAS) was used as a cross-linking agent to covalently immobilize laccase (MACS-NIL-DAS-lac), which realized the co-immobilization of laccase and ABTS. The carrier was characterized by Fourier infrared transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, X-ray diffraction analysis, electron paramagnetic resonance, etc. The immobilization efficiency and activity retention of MACS-NIL-DAS-lac could reach 76.7% and 69.8%, respectively. At the same time, its pH stability, thermal stability, and storage stability had been significantly improved. In the organic pollutant removal performance test, the removal rate of 2,4-dichlorophenol (10 mg/L) by MACS-NIL-DAS-lac (1 U) could reach 100% within 6 h, and the removal efficiency could still reach 88.6% after six catalytic runs. In addition, MACS-NIL-DAS-lac also showed excellent degradation ability for other conventional phenolic pollutants and polycyclic aromatic hydrocarbons. The research results showed that MACS-NIL-DAS fabricated by the combination inorganic material, organic biomacromolecules, ionic liquid, and electron mediator could be used as a novel carrier for laccase immobilization and the immobilized laccase showed excellent removal efficiency for organic pollutants.
Collapse
Affiliation(s)
- Runtang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Silin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Mengyao Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Huajin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Chen Z, Oh WD, Yap PS. Recent advances in the utilization of immobilized laccase for the degradation of phenolic compounds in aqueous solutions: A review. CHEMOSPHERE 2022; 307:135824. [PMID: 35944673 DOI: 10.1016/j.chemosphere.2022.135824] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds such as phenol, bisphenol A, 2,4-dichlorophenol, 2,4-dinitrophenol, 4-chlorophenol and 4-nitrophenol are well known to be highly detrimental to both human and living beings. Thus, it is of critical importance that suitable remediation technologies are developed to effectively remove phenolic compounds from aqueous solutions. Biodegradation utilizing enzymatic technologies is a promising biotechnological solution to sustainably address the pollution in the aquatic environment as caused by phenolic compounds under a defined environmentally optimized strategy and thus should be investigated in great detail. This review aims to present the latest developments in the employment of immobilized laccase for the degradation of phenolic compounds in water. The review first succinctly delineates the fundamentals of biological enzyme degradation along with a critical discussion on the myriad types of laccase immobilization techniques, which include physical adsorption, ionic adsorption, covalent binding, entrapment, and self-immobilization. Then, this review presents the major properties of immobilized laccase, namely pH stability, thermal stability, reusability, and storage stability, as well as the degradation efficiencies and associated kinetic parameters. In addition, the optimization of the immobilized enzyme, specifically on laccase immobilization methods and multi-enzyme system are critically discussed. Finally, pertinent future perspectives are elucidated in order to significantly advance the developments of this research field to a higher level.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
16
|
Immobilization of carbonic anhydrase in a hydrophobic poly(ionic liquid): A new functional solid for CO2 capture. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Bahri S, Homaei A, Mosaddegh E. Zinc sulfide-chitosan hybrid nanoparticles as a robust surface for immobilization of Sillago sihama α-amylase. Colloids Surf B Biointerfaces 2022; 218:112754. [PMID: 35963144 DOI: 10.1016/j.colsurfb.2022.112754] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
In the present study, zinc sulfide-chitosan hybrid nanoparticles synthesized by chemical deposition were used as a matrix for the immobilization of purified α-amylase extracted from Sillago sihama (Forsskal, 1775). In this regard, the size and morphological structure of zinc sulfide-chitosan hybrid nanoparticles before and after the stabilization process were evaluated using FT-IR, DLS methods, as well as SEM and TEM electron microscopy, and EDS analyses. Then, the efficiency of the immobilized enzyme was measured in terms of temperature, optimal pH, stability at the critical temperature, and pH values. Immobilization of α-amylase on zinc sulfide -chitosan hybrid nanoparticles increased the long-term stability, as well as its endurance to critical temperatures and pH values; however, the optimal temperature and pH values of the enzyme were not altered following the immobilization process. The kinetic parameters of the enzyme were also changed during immobilization. Enzyme immobilization increased the Km, whereas decreased the catalytic efficiency (Kcat / Km) of the immobilized enzyme compared with the free enzyme. These results are very important as, in most cases, enzyme immobilization reduces the activity and catalytic efficiency of enzymes. The nano-enzyme produced in this study, due to its high temperature, and pH stability, could be a good candidate for industrial applications, especially in the food industry.
Collapse
Affiliation(s)
- Sara Bahri
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Elaheh Mosaddegh
- Department of New Materials, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, PO Box 76315-117, Kerman, Iran
| |
Collapse
|
18
|
Roy S, Ahmaruzzaman M. Ionic liquid based composites: A versatile materials for remediation of aqueous environmental contaminants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115089. [PMID: 35525038 DOI: 10.1016/j.jenvman.2022.115089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most aggravated problems threatening the sustainability of human race and other life forms due to the rapid pace of civilization and industrialization. A long history exists of release of hazardous pollutants into the water bodies due to selfish human activities since the Industrial Revolution, but no effort has been completely successful in curbing the activities that result in the degradation of our environment. These pollutants are harmful, carcinogenic and have adverse health effects to all forms of life. Thus, remarkable efforts have been geared up to obtain clean water by exploiting science and technology. The application of Ionic liquids (ILs) as sustainable materials have received widespread attention since the last decade. Their interesting properties, simplicity in operation and satisfactory binding capacities in elimination of the contaminants makes them a valuable prospect to be utilized in wastewater treatment. Immobilizing and grafting the solid supports with ILs have fetched efficient results to exploit their potential in the adsorptive removal processes. This review provides an understanding of the recent developments and outlines the possible utility of IL based nano adsorbents in the removal of organic compounds, dyes and heavy metal ions from aqueous medium. Effect of several parameters such as sorbent dosage, pH and temperature on the removal efficiency has also been discussed. Moreover, the adsorption isotherms, thermodynamics and mechanism are comprehensively studied. It is envisioned that the literature gathered in this article will guide the budding scientists to put their interest in this area of research in the days to come.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
19
|
Wang S, Li S, Liu R, Zhang W, Xu H, Hu Y. Immobilization of Interfacial Activated Candida rugosa Lipase Onto Magnetic Chitosan Using Dialdehyde Cellulose as Cross-Linking Agent. Front Bioeng Biotechnol 2022; 10:946117. [PMID: 35923578 PMCID: PMC9340543 DOI: 10.3389/fbioe.2022.946117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Candidarugosa lipase (CRL) was activated with surfactants (sodium dodecyl sulfate [SDS]) and covalently immobilized onto a nanocomposite (Fe3O4-CS-DAC) fabricated by combining magnetic nanoparticles Fe3O4 with chitosan (CS) using polysaccharide macromolecule dialdehyde cellulose (DAC) as the cross-linking agent. Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, and X-ray diffraction characterizations confirmed that the organic–inorganic nanocomposite support modified by DAC was successfully prepared. Enzymology experiments confirmed that high enzyme loading (60.9 mg/g) and 1.7 times specific enzyme activity could be obtained under the optimal immobilization conditions. The stability and reusability of immobilized CRL (Fe3O4-CS-DAC-SDS-CRL) were significantly improved simultaneously. Circular dichroism analysis revealed that the active conformation of immobilized CRL was maintained well. Results demonstrated that the inorganic–organic nanocomposite modified by carbohydrate polymer derivatives could be used as an ideal support for enzyme immobilization.
Collapse
Affiliation(s)
| | | | | | | | - Huajin Xu
- *Correspondence: Huajin Xu, ; Yi Hu,
| | - Yi Hu
- *Correspondence: Huajin Xu, ; Yi Hu,
| |
Collapse
|
20
|
Gao Y, Shah K, Kwok I, Wang M, Rome LH, Mahendra S. Immobilized fungal enzymes: Innovations and potential applications in biodegradation and biosynthesis. Biotechnol Adv 2022; 57:107936. [PMID: 35276253 DOI: 10.1016/j.biotechadv.2022.107936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023]
Abstract
Microbial enzymes catalyze various reactions inside and outside living cells. Among the widely studied enzymes, fungal enzymes have been used for some of the most diverse purposes, especially in bioremediation, biosynthesis, and many nature-inspired commercial applications. To improve their stability and catalytic ability, fungal enzymes are often immobilized on assorted materials, conventional as well as nanoscale. Recent advances in fungal enzyme immobilization provide effective and sustainable approaches to achieve improved environmental and commercial outcomes. This review aims to provide a comprehensive overview of commonly studied fungal enzymes and immobilization technologies. It also summarizes recent advances involving immobilized fungal enzymes for the degradation or assembly of compounds used in the manufacture of products, such as detergents, food additives, and fossil fuel alternatives. Furthermore, challenges and future directions are highlighted to offer new perspectives on improving existing technologies and addressing unexplored fields of applications.
Collapse
Affiliation(s)
- Yifan Gao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Kshitjia Shah
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Ivy Kwok
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States
| | - Meng Wang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Leonard H Rome
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
21
|
Sharma A, Vázquez LAB, Hernández EOM, Becerril MYM, Oza G, Ahmed SSSJ, Ramalingam S, Iqbal HMN. Green remediation potential of immobilized oxidoreductases to treat halo-organic pollutants persist in wastewater and soil matrices - A way forward. CHEMOSPHERE 2022; 290:133305. [PMID: 34929272 DOI: 10.1016/j.chemosphere.2021.133305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 02/08/2023]
Abstract
The alarming presence of hazardous halo-organic pollutants in wastewater and soils generated by industrial growth, pharmaceutical and agricultural activities is a major environmental concern that has drawn the attention of scientists. Unfortunately, the application of conventional technologies within hazardous materials remediation processes has radically failed due to their high cost and ineffectiveness. Consequently, the design of innovative and sustainable techniques to remove halo-organic contaminants from wastewater and soils is crucial. Altogether, these aspects have led to the search for safe and efficient alternatives for the treatment of contaminated matrices. In fact, over the last decades, the efficacy of immobilized oxidoreductases has been explored to achieve the removal of halo-organic pollutants from diverse tainted media. Several reports have indicated that these enzymatic constructs possess unique properties, such as high removal rates, improved stability, and excellent reusability, making them promising candidates for green remediation processes. Hence, in this current review, we present an insight of green remediation approaches based on the use of immobilized constructs of phenoloxidases (e.g., laccase and tyrosinase) and peroxidases (e.g., horseradish peroxidase, chloroperoxidase, and manganese peroxidase) for sustainable decontamination of wastewater and soil matrices from halo-organic pollutants, including 2,4-dichlorophenol, 4-chlorophenol, diclofenac, 2-chlorophenol, 2,4,6-trichlorophenol, among others.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, 76130, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, 76130, Mexico
| | | | | | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Querétaro S/n, Sanfandila. Pedro Escobedo, Querétaro, 76703, Mexico
| | - Shiek S S J Ahmed
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
22
|
Yu HZ, Bencherif S, Pham-Truong TN, Ghilane J. Immobilization of molecule-based ionic liquids: a promising approach to improve elecrocatalyst performance towards the hydrogen evolution reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj04400a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids (ILs) have received continuous attention owing to their unique chemical and physical properties and to their successful integration in several applications.
Collapse
Affiliation(s)
- Hao-Zheng Yu
- Université de Paris, CNRS, ITODYS-UMR 7086, Paris, F-75013, France
| | - Selma Bencherif
- Université de Paris, CNRS, ITODYS-UMR 7086, Paris, F-75013, France
| | | | - Jalal Ghilane
- Université de Paris, CNRS, ITODYS-UMR 7086, Paris, F-75013, France
| |
Collapse
|
23
|
Si J, Wu Y, Ma HF, Cao YJ, Sun YF, Cui BK. Selection of a pH- and temperature-stable laccase from Ganoderma australe and its application for bioremediation of textile dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113619. [PMID: 34467865 DOI: 10.1016/j.jenvman.2021.113619] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
By virtue of screening, purification, and properties characterization, this study captures a new pH- and temperature-stable laccase, designated Galacc-F, from Ganoderma australe for dye bioremediating applications. The enzyme was purified to homogeneity by salt precipitation, ionic exchange, and size exclusion chromatography with a final specific activity of 22.214 U mg-1, yielding a purification fold of 23.989 and recovery of 38.44%. Its molecular weight was estimated to be 48.0 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymography, Sephadex G-100 column, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, which confirmed its monomeric nature. Galacc-F exhibited high levels of activity and stability over wide ranges of pH (5.0-8.0) and temperature (10-60 °C), which are highly valuable properties in industrial processes. Broad substrate specificity was observed, wherein a better affinity was found for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) with a low value of Km (164.137 μM) and higher kcat/Km ratio (1.663 s-1 μM-1). Activity was stimulated by Cu2+ and β-mercaptoethanol but inhibited by ethylenediaminetetraacetic acid, diethylpyrocarbonate, iodoacetic acid, phenylmethylsulfonyl fluoride, and Hg2+, indicating that Galacc-F is a metalloprotease containing a typical histidine-cysteine-serine catalytic triad. It had high tolerance to surfactants, oxidants, and salts. Additionally, a fabricated protocol for native Galacc-F immobilization onto Fe3O4@Chitosan composite nanoparticles using glutaraldehyde as a crosslinker was developed. Most importantly, the enzyme was determined to be ideal for use in efficient treatment of dye effluents as compared with the laccases requiring redox mediators.
Collapse
Affiliation(s)
- Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yi Wu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Hong-Fei Ma
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yong-Jia Cao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yi-Fei Sun
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
24
|
Lin CX, Hsu HH, Chang YH, Chen SH, Lin SB, Lou SN, Chen HH. Expanding the Applicability of an Innovative Laccase TTI in Intelligent Packaging by Adding an Enzyme Inhibitor to Change Its Coloration Kinetics. Polymers (Basel) 2021; 13:polym13213646. [PMID: 34771203 PMCID: PMC8587941 DOI: 10.3390/polym13213646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
Enzymatic time–temperature indicators (TTIs) usually suffer from instability and inefficiency in practical use as food quality indicator during storage. The aim of this study was to address the aforementioned problem by immobilizing laccase on electrospun chitosan fibers to increase the stability and minimize the usage of laccase. The addition of NaN3, as and enzyme inhibitor, was intended to extend this laccase TTI coloration rate and activation energy (Ea) range, so as to expand the application range of TTIs for evaluating changes in the quality of foods during storage. A two-component time–temperature indicator was prepared by immobilizing laccase on electrospun chitosan fibers as a TTI film, and by using guaiacol solution as a coloration substrate. The color difference of the innovative laccase TTI was discovered to be <3, and visually indistinguishable when OD500 reached 3.2; the response reaction time was regarded as the TTI’s coloration endpoint. Enzyme immobilization and the addition of NaN3 increased coloration Km and reduced coloration Vmax. The coloration Vmax decreased to 64% when 0.1 mM NaN3 was added to the TTI, which exhibited noncompetitive inhibition and a slower coloration rate. Coloration hysteresis appeared in the TTI with NaN3, particularly at low temperatures. For TTI coloration, the Ea increased to 29.92–66.39 kJ/mol when 15–25 μg/cm2 of laccase was immobilized, and the endpoint increased to 11.0–199.5 h when 0–0.10 mM NaN3 was added. These modifications expanded the applicability of laccase TTIs in intelligent food packaging.
Collapse
Affiliation(s)
- Cheng-Xuan Lin
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan; (C.-X.L.); (H.-H.H.); (Y.-H.C.); (S.-B.L.); (S.-N.L.)
| | - Hao-Hsin Hsu
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan; (C.-X.L.); (H.-H.H.); (Y.-H.C.); (S.-B.L.); (S.-N.L.)
| | - Yu-Hsuan Chang
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan; (C.-X.L.); (H.-H.H.); (Y.-H.C.); (S.-B.L.); (S.-N.L.)
| | - Shih-Hsin Chen
- Institute of Food Science and Technology, National Taiwan University, Roosevelt Road, Taipei City 10617, Taiwan;
| | - Shih-Bin Lin
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan; (C.-X.L.); (H.-H.H.); (Y.-H.C.); (S.-B.L.); (S.-N.L.)
| | - Shyi-Neng Lou
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan; (C.-X.L.); (H.-H.H.); (Y.-H.C.); (S.-B.L.); (S.-N.L.)
| | - Hui-Huang Chen
- Department of Food Science, National Ilan University, Shennong Road, Yilan City 26047, Taiwan; (C.-X.L.); (H.-H.H.); (Y.-H.C.); (S.-B.L.); (S.-N.L.)
- Correspondence: ; Tel.: +886-3-931-7764
| |
Collapse
|
25
|
Moradi O, Sharma G. Emerging novel polymeric adsorbents for removing dyes from wastewater: A comprehensive review and comparison with other adsorbents. ENVIRONMENTAL RESEARCH 2021; 201:111534. [PMID: 34146528 DOI: 10.1016/j.envres.2021.111534] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Dye molecules are one of the most hazardous compounds for human and animal health and the excess intake of these materials can create toxic impacts. Several studies show the practicality of the adsorption process for dye uptake from wastewaters. In recent years, various adsorbents were used to be efficient in this process. Among all, polymeric adsorbents demonstrate great applicability in different environmental conditions and attract many researchers to work on them, although there is not enough reliable and precise information regarding these adsorbents. This study aims to investigate some influential parameters such as their type, physical properties, experimental conditions, their capacity, and further modeling along with a comparison with non-polymeric adsorbents. The influence of the main factors of adsorption capacity was studied and the dominant mechanism is explained extensively.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; School of Life and Allied Health Sciences, Glocal University, Saharanpur, India.
| |
Collapse
|
26
|
Zhang H, Zhang X, Wang B, Zeng X, Guo H, Ren B, Yang X. Immobilization of laccase onto functionalized ionic liquid-modified mesoporous silica SBA-15. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1984431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hong Zhang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, People’s Republic of China
| | - Xin Zhang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, People’s Republic of China
- Institute of Petrochemistry Heilongjiang Academy of Sciences, Harbin, People’s Republic of China
| | - Bo Wang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, People’s Republic of China
| | - Xu Zeng
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, People’s Republic of China
| | - Haizhao Guo
- Office of Academic Affairs of Jilin University, Changchun, People’s Republic of China
| | - Bo Ren
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, People’s Republic of China
| | - Xiaodong Yang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, People’s Republic of China
| |
Collapse
|
27
|
Qiu X, Wang S, Miao S, Suo H, Xu H, Hu Y. Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123353. [PMID: 32652421 DOI: 10.1016/j.jhazmat.2020.123353] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/28/2020] [Indexed: 05/23/2023]
Abstract
This work aims to achieve the co-immobilization of laccase and 2,2-binamine-di-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) to improve removal capability of the biocatalyst for pollutants while avoiding potential pollution caused by ABTS. The laccase was immobilized on magnetic chitosan nanoparticles modified with amino-functionalized ionic liquid containing ABTS (MACS-NIL) based on Cu ion chelation (MACS-NIL-Cu-lac). The carrier was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, x-ray diffraction and etc., and electron paramagnetic resonance confirmed the mediator molecule ABTS on the carrier could also play the role of electron transmission. MACS-NIL-Cu-lac presented relatively high immobilization capacity, enhanced activity (1.7-fold that of free laccase), improved pH and temperature adaptability, and increased thermal and storage stability. The removal performance assay found that MACS-NIL-Cu-lac had a good removal efficiency with 100.0 % for 2,4-dichlorophenol in water at 25 °C, even when the concentration reached 50 mg/L. Reusability study showed that after six catalytic runs, the removal efficiency of 2,4-dichlorophenol by MACS-NIL-Cu-lac could still reach 93.2 %. Additionally, MACS-NIL-Cu-lac exhibited higher catalytic efficiencies with 100.0 %, 70.5 % and 93.3 % for bisphenol A, indole, and anthracene, respectively. The high catalytic performance in pure water system obtained by the novel biocatalyst co-immobilizing laccase and electron mediator ABTS showed greater practical application value.
Collapse
Affiliation(s)
- Xiang Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Shushu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Shanshan Miao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Hongbo Suo
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Huajin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
28
|
Bilal M, Ashraf SS, Cui J, Lou WY, Franco M, Mulla SI, Iqbal HMN. Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases-A review. Int J Biol Macromol 2021; 166:352-373. [PMID: 33129906 DOI: 10.1016/j.ijbiomac.2020.10.195] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/24/2020] [Indexed: 02/08/2023]
Abstract
In the recent past, numerous new types of nanostructured carriers, as support matrices, have been engineered to advance the traditional enzyme immobilization strategies. The current research aimed to develop a robust enzyme-based biocatalytic platform and its effective deployment in the industrial biotechnology sectors at large and catalysis area, in particular, as low-cost biocatalytic systems. Suitable coordination between the target enzyme molecules and surface pendent multifunctional entities of nanostructured carriers has led an effective and significant contribution in myriad novel industrial, biotechnological, and biomedical applications. As compared to the immobilization on planar two-dimensional (2-D) surface, the unique physicochemical, structural and functional attributes of nano-engineered matrices, such as high surface-to-volume ratio, surface area, robust chemical and mechanical stability, surface pendant functional groups, outstanding optical, thermal, and electrical characteristics, resulted in the concentration of the immobilized entity being substantially higher, which is highly requisite from applied bio-catalysis perspective. Besides inherited features, nanostructured materials-based enzyme immobilization aided additional features, such as (1) ease in the preparation or green synthesis route, (2) no or minimal use of surfactants and harsh reagents, (3) homogeneous and well-defined core-shell nanostructures with thick enzyme shell, and (4) nano-size can be conveniently tailored within utility limits, as compared to the conventional enzyme immobilization. Moreover, the growing catalytic needs can be fulfilled by multi-enzymes co-immobilization on these nanostructured materials-based support matrices. This review spotlights the unique structural and functional attributes of several nanostructured materials, including carbon nanotubes, graphene, and its derivate constructs, nanoparticles, nanoflowers, and metal-organic frameworks as robust matrices for laccase immobilization. The later half of the review focuses on the applied perspective of immobilized laccases for the degradation of emergent contaminants, biosensing cues, and lignin deconstruction and high-value products.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - S Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, 45654-370 Ilhéus, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560064, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
29
|
Xue P, Liu X, Gu Y, Zhang W, Ma L, Li R. Laccase-mediator system assembling co-immobilized onto functionalized calcium alginate beads and its high-efficiency catalytic degradation for acridine. Colloids Surf B Biointerfaces 2020; 196:111348. [DOI: 10.1016/j.colsurfb.2020.111348] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 01/02/2023]
|
30
|
Make proper surfaces for immobilization of enzymes: Immobilization of lipase and α-amylase on modified Na-sepiolite. Int J Biol Macromol 2020; 164:1-12. [DOI: 10.1016/j.ijbiomac.2020.07.103] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022]
|
31
|
Liu J, Shen X, Zheng Z, Li M, Zhu X, Cao H, Cui C. Immobilization of laccase by 3D bioprinting and its application in the biodegradation of phenolic compounds. Int J Biol Macromol 2020; 164:518-525. [DOI: 10.1016/j.ijbiomac.2020.07.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
|
32
|
A Novel Cysteine-Functionalized MxOy Material as Support for Laccase Immobilization and a Potential Application in Decolorization of Alizarin Red S. Processes (Basel) 2020. [DOI: 10.3390/pr8080885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immobilization process improves the enzyme properties, like stability, activity, selectivity or specificity. In the study, a novel cysteine-functionalized MxOy (ZrO2, SiO2) material was used as a support for the immobilization of laccase from Trametes versicolor. The proposed matrix was prepared using a simple sol-gel method. The cysteine was introduced during the synthesis of a sample. Additionally, the obtained supports were modified with glutaraldehyde. The basic properties of the prepared cysteine functionalized ZrO2 and SiO2 were determined using spectroscopic, thermal, porous, electrostatic and elemental analysis. Furthermore, the obtained biocatalytic systems were used as catalysts in the oxidation of sulfonic acid. Catalytic and kinetic parameters were determined based on the proposed model reaction. Next, laccase immobilized on ZrO2- and SiO2-based materials were, for the first time, utilized in the decolorization of Alizarin Red S. In that process, the influence of duration, pH and temperature on the efficiency of decolorization was evaluated. The results show that the proposed biocatalytic systems offer good specific activity (ca. 19 U/mg) and activity retention (ca. 77%). Importantly, they can be successfully used in the decolorization of Alizarin Red S with high efficiency (above 95%).
Collapse
|
33
|
|
34
|
Mtibaà R, Ezzanad A, Aranda E, Pozo C, Ghariani B, Moraga J, Nasri M, Manuel Cantoral J, Garrido C, Mechichi T. Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp HJ22: Identification of fungal metabolites and proposal of a putative pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135129. [PMID: 31806325 DOI: 10.1016/j.scitotenv.2019.135129] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Research on the biodegradation of emerging pollutants is gained great focus regarding their detrimental effects on the environment and humans. The objective of the present study was to evaluate the ability of the ascomycetes Thielavia sp HJ22 to remove the phenolic xenobiotics nonylphenol (NP), 4-tert-octylphenol (4-tert-OP) and 2,4-dichlorophenol (2,4-DCP). The strain showed efficient degradation of NP and 4-tert-OP with 95% and 100% removal within 8 h of incubation, respectively. A removal rate of 80% was observed with 2,4-DCP within the same time. Under experimental conditions, the degradation of the tested pollutants concomitantly increased with the laccase production and cytochrome P450 monooxygenases inhibition. This study showed the involvement of laccase in pollutants removal together with biosorption mechanisms. Additionally, results demonstrated the participation of cytochrome P450 monooxygenase in the elimination of 2,4-DCP. Liquid chromatography-mass spectrometry analysis revealed several intermediates, mainly hydroxylated and oxidized compounds with less harmful effects compared to the parent compounds. A decrease in the toxicity of the identified metabolites was observed using Aliivibrio fischeri as bioindicator. The metabolic pathways of degradation were proposed based on the identified metabolites. The results point out the potential of Thielavia strains in the degradation and detoxification of phenolic xenobiotics.
Collapse
Affiliation(s)
- Rim Mtibaà
- Laboratory of Enzyme Engineering and Microbiology, Department of Biology, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia.
| | - Abdellah Ezzanad
- Department of Organic Chemistry, University of Sciences, University of Cádiz, Polígono Rio San Pedro 11510, Puerto Real, Cádiz, Spain
| | - Elisabet Aranda
- Institute of Water Research, Department of Microbiology, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Clementina Pozo
- Institute of Water Research, Department of Microbiology, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Bouthaina Ghariani
- Laboratory of Enzyme Engineering and Microbiology, Department of Biology, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia
| | - Javier Moraga
- Department of Organic Chemistry, University of Sciences, University of Cádiz, Polígono Rio San Pedro 11510, Puerto Real, Cádiz, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, Department of Biology, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia
| | - Jesús Manuel Cantoral
- Department of Biomedicine, Biotechnology and Public Health, Facultad de Ciencias del Mar y Ambientales, University of Cádiz, Polígono Rio San Pedro 11510 Puerto Real, Cádiz, Spain
| | - Carlos Garrido
- Department of Biomedicine, Biotechnology and Public Health, Facultad de Ciencias del Mar y Ambientales, University of Cádiz, Polígono Rio San Pedro 11510 Puerto Real, Cádiz, Spain
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP «1173», 3038 Sfax, Tunisia
| |
Collapse
|
35
|
Shakerian F, Zhao J, Li SP. Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants - A review. CHEMOSPHERE 2020; 239:124716. [PMID: 31521938 DOI: 10.1016/j.chemosphere.2019.124716] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 05/05/2023]
Abstract
During the past several years, abundant progresses has been made in the development of immobilized oxidative enzymes with focus on finding new support materials, improving the immobilization methods and their applications. Nowadays, immobilized oxidative enzymes are broadly accepted as a green way to face the challenge of high amounts of micropollutants in nature. Among all oxidative enzymes, laccases and horseradish peroxidase were used frequently in recent years as they are general oxidative enzymes with ability to oxidize various types of compounds. Immobilized laccase or horseradish peroxidase are showed better stability, and reusability as well as easy separation from reaction mixture that make them more favorable and economic in compared to free enzymes. However, additional improvements are still essential such as: development of the new materials for immobilization with higher capacity, easy preparation, and cheaper price. Moreover, immobilization methods are still need improving to become more efficient and avoid enzyme wasting during immobilization and enzyme leakage through working cycles.
Collapse
Affiliation(s)
- Farid Shakerian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|