1
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
2
|
Naderi N, Lalebeigi F, Sadat Z, Eivazzadeh-Keihan R, Maleki A, Mahdavi M. Recent advances on hyperthermia therapy applications of carbon-based nanocomposites. Colloids Surf B Biointerfaces 2023; 228:113430. [PMID: 37418814 DOI: 10.1016/j.colsurfb.2023.113430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Generally, hyperthermia is referred to the composites capability to increase local temperature in such a way that the generated heat would lead to cancerous or bacteria cells destruction, with minimum damage to normal tissue cells. Many different materials have been utilized for hyperthermia application via different heat generating methods. Carbon-based nanomaterials consisting of graphene oxide (GO), carbon nanotube (CNT), carbon dot (CD) and carbon quantum dot (CQD), nanodiamond (ND), fullerene and carbon fiber (CF), have been studied significantly for different applications including hyperthermia due to their biocompatibility, biodegradability, chemical and physical stability, thermal and electrical conductivity and in some cases photothermal conversion. Therefore, in this comprehensive review, a structure-based view on carbon nanomaterials application in hyperthermia therapy of cancer and bacteria via various methods such as optical, magnetic, ultrasonic and radiofrequency-induced hyperthermia is presented.
Collapse
Affiliation(s)
- Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Liang X, Xu W, Li S, Kurboniyon MS, Huang K, Xu G, Wei W, Ning S, Zhang L, Wang C. Tailoring mSiO 2-SmCo x nanoplatforms for magnetic/photothermal effect-induced hyperthermia therapy. Front Bioeng Biotechnol 2023; 11:1249775. [PMID: 37576992 PMCID: PMC10413386 DOI: 10.3389/fbioe.2023.1249775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Hyperthermia therapy is a hotspot because of its minimally invasive treatment process and strong targeting effect. Herein, a synergistic magnetic and photothermal therapeutic nanoplatform is rationally constructed. The well-dispersive mSiO2-SmCox nanoparticles (NPs) were synthesized through a one-step procedure with the regulated theoretical molar ratio of Sm/Co among 1:1, 1:2, and 1:4 for controlling the dispersion and magnetism properties of SmCox NPs in situ growth in the pore structure of mesoporous SiO2 (mSiO2), where mSiO2 with diverse porous structures and high specific surface areas serving for locating the permanent magnetic SmCox NPs. The mSiO2-SmCox (Sm/Co = 1:2) NPs with highly dispersed and uniform morphology has an average diameter of ∼73.08 nm. The photothermal conversion efficiency of mSiO2-SmCox (Sm/Co = 1:2) NPs was determined to be nearly 41%. The further in vitro and in vivo anti-tumor evaluation of mSiO2-SmCox (Sm/Co = 1:2) NPs present promising potentials for hyperthermia-induced tumor therapy due to magnetic and photothermal effects.
Collapse
Affiliation(s)
- Xinqiang Liang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wenting Xu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Siyi Li
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, China
| | | | - Kunying Huang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guilan Xu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wene Wei
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shufang Ning
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Litu Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chen Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
4
|
Singh S, Rani H, Sharma N, Behl T, Zahoor I, Makeen HA, Albratty M, Alhazm HA, Aleya L. Targeting multifunctional magnetic nanowires for drug delivery in cancer cell death: an emerging paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57219-57235. [PMID: 37010687 DOI: 10.1007/s11356-023-26650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Apoptosis, often known as programmed cell death is a mechanism used by numerous species to maintain tissue homeostasis. The process leading to cell death is complicated because it requires the stimulation of caspases. According to several studies, nanowires have important medical benefits, can kill cells by adhering to cancer cells, destroying them, and killing the entire cell using a triple attack that integrates vibration, heat, and drug delivery to trigger apoptosis. The sewage effluents and industrial, fertilizer and organic wastes decomposition can produce elevated levels of chemicals in the environment which may interrupt the cell cycle and activate apoptosis. The purpose of this review is to give a thorough summary of the evidence that is currently available on apoptosis. Current review discussed topics like the morphological and biochemical alterations that occur during apoptosis, as well as the various mechanisms that cause cell death, including the intrinsic (or mitochondrial), extrinsic (or death receptor), and intrinsic endoplasmic reticulum pathway. The apoptosis reduction in cancer development is mediated by (i) an imbalance between pro- and anti-apoptotic proteins, such as members of the B-cell lymphoma-2 (BCL2) family of proteins, tumour protein 53 and inhibitor of apoptosis proteins, (ii) a reduction in caspase activity, and (iii) impaired death receptor signalling. This review does an excellent task of outlining the function of nanowires in both apoptosis induction and targeted drug delivery for cancer cells. A comprehensive summary of the relevance of nanowires synthesised for the purpose of inducing apoptosis in cancer cells has been compiled collectively.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hema Rani
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, 141104, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, 248007, Dehradun, India
| | - Ishrat Zahoor
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazm
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
5
|
Ma Y, Lin W, Ruan Y, Lu H, Fan S, Chen D, Huang Y, Zhang T, Pi J, Xu JF. Advances of Cobalt Nanomaterials as Anti-Infection Agents, Drug Carriers, and Immunomodulators for Potential Infectious Disease Treatment. Pharmaceutics 2022; 14:pharmaceutics14112351. [PMID: 36365168 PMCID: PMC9696703 DOI: 10.3390/pharmaceutics14112351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Infectious diseases remain the most serious public health issue, which requires the development of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted increasing attention worldwide due to its wide application in different areas, including medicine. Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely developed for their attractive biomedical applications. With advantages such as low costs in preparation, hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials have been proven to show promising potential in anticancer and anti-infection treatment. In this review, we summarize the characters of cobalt nanomaterials, followed by the advances in their biological functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.
Collapse
Affiliation(s)
- Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
6
|
Shi J, Shu R, Shi X, Li Y, Li J, Deng Y, Yang W. Multi-activity cobalt ferrite/MXene nanoenzymes for drug-free phototherapy in bacterial infection treatment. RSC Adv 2022; 12:11090-11099. [PMID: 35425054 PMCID: PMC8992228 DOI: 10.1039/d2ra01133f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023] Open
Abstract
Drug-free antibacterial strategies are of great significance for pathogenic bacterial infection treatment in clinical practice. Phototherapy with antibacterial function plays a vital role in mainstream germicidal research. However, phototherapy could lead to residual heat and excess reactive oxygen species (ROS), which are the main side-effects during antibacterial treatment. Unique CoFe2O4/MXene (CM) nanoenzymes, which were fabricated with electrostatic interactions, have been designed to conquer those challenges caused by side-effects of phototherapy in our research. The CM nanoenzymes possess many promising properties including photothermal and photodynamic induced phototherapy and mimic peroxidase (POD), glutathione oxidase (GSHOx), and catalase (CAT). Upon treatment with near-infrared (NIR) light, CM nanoenzymes can create a local high-temperature circumstance as well as raise bacterial membrane permeability. Furthermore, the photodynamic process and multi-enzyme-mimicking activities of CM enzymes boost the interbacterial ROS level. Herein, bacteria can hardly survive in synergistic phototherapy and multi-enzyme-mimicking catalytic therapy in vitro and in vivo. Meanwhile, the CM nanoenzymes exhibit excellent biocompatibility in vitro and in vivo. Overall, this research establishes a strong foundation for effectively employing nanoenzymes, leading to a new way to cure bacterial infections.
Collapse
Affiliation(s)
- Jiacheng Shi
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Xiuyuan Shi
- Department of Materials, Imperial College London SW7 2AZ London UK
| | - Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York New York USA
| | - Jiangge Li
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
7
|
Yang Z, Fu X, Ma D, Wang Y, Peng L, Shi J, Sun J, Gan X, Deng Y, Yang W. Growth Factor-Decorated Ti 3 C 2 MXene/MoS 2 2D Bio-Heterojunctions with Quad-Channel Photonic Disinfection for Effective Regeneration of Bacteria-Invaded Cutaneous Tissue. SMALL 2021; 17:e2103993. [PMID: 34713567 DOI: 10.1002/smll.202103993] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Indexed: 02/05/2023]
Abstract
Phototherapy has recently emerged as a competent alternative for combating bacterial infection without antibiotic-resistance risk. However, owing to the bacterial endogenous antioxidative glutathione (GSH), the exogenous reactive oxygen species (ROS) generated by phototherapy can hardly behave desired antibacterial effect. To address the daunting issue, a quad-channel synergistic antibacterial nano-platform of Ti3 C2 MXene/MoS2 (MM) 2D bio-heterojunctions (2D bio-HJs) are devised and fabricated, which possess photothermal, photodynamic, peroxidase-like (POD-like), and glutathione oxidase-like properties. Under near-infrared (NIR) laser exposure, the 2D bio-HJs both yield localized heating and raise extracellular ROS level, leading to bacterial inactivation. Synchronously, Mo4+ ions can easily invade into ruptured bacterial membrane, arouse intracellular ROS, and deplete intracellular GSH. Squeezed between the "ROS hurricane" from both internal and external sides, the bacteria are hugely slaughtered. After being further loaded with fibroblast growth factor-21 (FGF21), the 2D bio-HJs exhibit benign cytocompatibility and boost cell migration in vitro. Notably, the in vivo evaluations employing a mouse-infected wound model demonstrate the excellent photonic disinfection towards bacterial infection and accelerated wound healing. Overall, this work provides a powerful nano-platform for the effective regeneration of bacteria-invaded cutaneous tissue using 2D bio-HJs.
Collapse
Affiliation(s)
- Zhaopu Yang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinliang Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Daichuan Ma
- Analytical & Testing Center, Sichuan University, Chengdu, 610065, China
| | - Yulin Wang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Liming Peng
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiacheng Shi
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiyu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.,Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Weizhong Yang
- College of Biomedical Engineering, West China School of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Wang X, Hu C, Gu Z, Dai L. Understanding of catalytic ROS generation from defect-rich graphene quantum-dots for therapeutic effects in tumor microenvironment. J Nanobiotechnology 2021; 19:340. [PMID: 34702276 PMCID: PMC8547047 DOI: 10.1186/s12951-021-01053-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Owing to their low cost, high catalytic efficiency and biocompatibility, carbon-based metal-free catalysts (C-MFCs) have attracted intense interest for various applications, ranging from energy through environmental to biomedical technologies. While considerable effort and progress have been made in mechanistic understanding of C-MFCs for non-biomedical applications, their catalytic mechanism for therapeutic effects has rarely been investigated. In this study, defect-rich graphene quantum dots (GQDs) were developed as C-MFCs for efficient ROS generation, specifically in the H2O2-rich tumor microenvironment to cause multi-level damages of subcellular components (even in nuclei). While a desirable anti-cancer performance was achieved, the catalytic performance was found to strongly depend on the defect density. It is for the first time that the defect-induced catalytic generation of ROS by C-MFCs in the tumor microenvironment was demonstrated and the associated catalytic mechanism was elucidated. This work opens a new avenue for the development of safe and efficient catalytic nanomedicine.
Collapse
Affiliation(s)
- Xichu Wang
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuangang Hu
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zi Gu
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
9
|
Cell membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell internalization and anticancer efficacy. J Control Release 2021; 335:130-157. [PMID: 34015400 DOI: 10.1016/j.jconrel.2021.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/13/2023]
Abstract
Despite enormous advancements in the field of oncology, the innocuous and effectual treatment of various types of malignancies remained a colossal challenge. The conventional modalities such as chemotherapy, radiotherapy, and surgery have been remained the most viable options for cancer treatment, but lacking of target-specificity, optimum safety and efficacy, and pharmacokinetic disparities are their impliable shortcomings. Though, in recent decades, numerous encroachments in the field of onco-targeted drug delivery have been adapted but several limitations (i.e., short plasma half-life, early clearance by reticuloendothelial system, immunogenicity, inadequate internalization and localization into the onco-tissues, chemoresistance, and deficient therapeutic efficacy) associated with these onco-targeted delivery systems limits their clinical viability. To abolish the aforementioned inadequacies, a promising approach has been emerged in which stealthing of synthetic nanocarriers has been attained by cloaking them into the natural cell membranes. These biomimetic nanomedicines not only retain characteristics features of the synthetic nanocarriers but also inherit the cell-membrane intrinsic functionalities. In this review, we have summarized preparation methods, mechanism of cloaking, and pharmaceutical and therapeutic superiority of cell-membrane camouflaged nanomedicines in improving the bio-imaging and immunotherapy against various types of malignancies. These pliable adaptations have revolutionized the current drug delivery strategies by optimizing the plasma circulation time, improving the permeation into the cancerous microenvironment, escaping the immune evasion and rapid clearance from the systemic circulation, minimizing the immunogenicity, and enabling the cell-cell communication via cell membrane markers of biomimetic nanomedicines. Moreover, the preeminence of cell-membrane cloaked nanomedicines in improving the bio-imaging and theranostic applications, alone or in combination with phototherapy or radiotherapy, have also been pondered.
Collapse
|
10
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
11
|
Two-dimensional MXene/cobalt nanowire heterojunction for controlled drug delivery and chemo-photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111212. [DOI: 10.1016/j.msec.2020.111212] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/26/2022]
|
12
|
Demir E. A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials. J Appl Toxicol 2020; 41:118-147. [PMID: 33111384 DOI: 10.1002/jat.4061] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Nanomaterials (NMs) generally display fascinating physical and chemical properties that are not always present in bulk materials; therefore, any modification to their size, shape, or coating tends to cause significant changes in their chemical/physical and biological characteristics. The dramatic increase in efforts to use NMs renders the risk assessment of their toxicity highly crucial due to the possible health perils of this relatively uncharted territory. The different sizes and shapes of the nanoparticles are known to have an impact on organisms and an important place in clinical applications. The shape of nanoparticles, namely, whether they are rods, wires, or spheres, is a particularly critical parameter to affect cell uptake and site-specific drug delivery, representing a significant factor in determining the potency and magnitude of the effect. This review, therefore, intends to offer a picture of research into the toxicity of different shapes (nanorods, nanowires, and nanospheres) of NMs to in vitro and in vivo models, presenting an in-depth analysis of health risks associated with exposure to such nanostructures and benefits achieved by using certain model organisms in genotoxicity testing. Nanotoxicity experiments use various models and tests, such as cell cultures, cores, shells, and coating materials. This review article also attempts to raise awareness about practical applications of NMs in different shapes in biology, to evaluate their potential genotoxicity, and to suggest approaches to explain underlying mechanisms of their toxicity and genotoxicity depending on nanoparticle shape.
Collapse
Affiliation(s)
- Eşref Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Dosemealti, Antalya, Turkey
| |
Collapse
|
13
|
Zhao J, Liu Y, Sun J, Zhu H, Chen Y, Dong T, Sang R, Gao X, Yang W, Deng Y. Magnetic targeting cobalt nanowire-based multifunctional therapeutic system for anticancer treatment and angiogenesis. Colloids Surf B Biointerfaces 2020; 194:111217. [PMID: 32622255 DOI: 10.1016/j.colsurfb.2020.111217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 12/09/2022]
Abstract
In order to improve the anticancer therapeutic efficacy and postoperative recovery efficacy, the novel anticancer therapeutic system should have the ability to promote angiogenesis after anticancer therapy besides the excellent anticancer therapeutic efficacy. We present herein a magnetic targeting multifunctional anticancer therapeutic system based on cobalt nanowires (CoNWs) for anticancer therapy and angiogenesis. Magnetic characterization shows that the CoNWs can be concentrated in desired locations under the external magnetic field, which is favorable for anticancer target therapy. Besides, drug loading/release characterization reveals that the CoNWs interact with doxorubicin (DOX) by electrostatic interaction, and accordingly form a composite which can release DOX with temperature increase under near-infrared light (NIR) treatment. And anticancer test reveals that the nanowires loaded with the DOX (CoNWs-DOX) can produce an effective chemo-photothermal synergistic therapeutic effect against murine breast cancer cell lines (4T1) and human osteosarcoma cell lines (MG63) under NIR treatment. Furthermore, angiogenesis assessment reveals that the released cobalt ion from the nanowires can significantly enhance the angiogenesis efficacy after cancer treatment. These results suggest that the constructed anticancer therapeutic system provides a promising multifunctional platform for cancer treatment and postoperative recovery.
Collapse
Affiliation(s)
- Jiankui Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yunxiu Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiamin Sun
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huang Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Taosheng Dong
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Sang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiangyu Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Weizhong Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
14
|
Arsalan N, Hassan Kashi E, Hasan A, Edalat Doost M, Rasti B, Ahamad Paray B, Zahed Nakhjiri M, Sari S, Sharifi M, Shahpasand K, Akhtari K, Haghighat S, Falahati M. Exploring the Interaction of Cobalt Oxide Nanoparticles with Albumin, Leukemia Cancer Cells and Pathogenic Bacteria by Multispectroscopic, Docking, Cellular and Antibacterial Approaches. Int J Nanomedicine 2020; 15:4607-4623. [PMID: 32636621 PMCID: PMC7328876 DOI: 10.2147/ijn.s257711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Aim The interaction of NPs with biological systems may reveal useful details about their pharmacodynamic, anticancer and antibacterial effects. Methods Herein, the interaction of as-synthesized Co3O4 NPs with HSA was explored by different kinds of fluorescence and CD spectroscopic methods, as well as molecular docking studies. Also, the anticancer effect of Co3O4 NPs against leukemia K562 cells was investigated by MTT, LDH, caspase, real-time PCR, ROS, cell cycle, and apoptosis assays. Afterwards, the antibacterial effects of Co3O4 NPs against three pathogenic bacteria were disclosed by antibacterial assays. Results Different characterization methods such as TEM, DLS, zeta potential and XRD studies proved that fabricated Co3O4 NPs by sol-gel method have a diameter of around 50 nm, hydrodynamic radius of 177 nm with a charge distribution of −33.04 mV and a well-defined crystalline phase. Intrinsic, extrinsic, and synchronous fluorescence as well as CD studies, respectively, showed that the HSA undergoes some fluorescence quenching, minor conformational changes, microenvironmental changes as well as no structural changes in the secondary structure, after interaction with Co3O4 NPs. Molecular docking results also verified that the spherical clusters with a dimension of 1.5 nm exhibit the most binding energy with HSA molecules. Anticancer assays demonstrated that Co3O4 NPs can selectively lead to the reduction of K562 cell viability through the cell membrane damage, activation of caspase-9, -8 and -3, elevation of Bax/Bcl-2 mRNA ratio, ROS production, cell cycle arrest, and apoptosis. Finally, antibacterial assays disclosed that Co3O4 NPs can stimulate a promising antibacterial effect against pathogenic bacteria. Conclusion In general, these observations can provide useful information for the early stages of nanomaterial applications in therapeutic platforms.
Collapse
Affiliation(s)
- Niloofar Arsalan
- Department of Biology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Elahe Hassan Kashi
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.,Biomedical Research Centre, Qatar University, Doha 2713, Qatar
| | - Mona Edalat Doost
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mona Zahed Nakhjiri
- Department of Biology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Liu Y, Zhang T, Li G, Li S, Li J, Zhao Q, Wu Q, Xu D, Hu X, Zhang L, Li Q, Zhang H, Liu B. Radiosensitivity enhancement by Co-NMS-mediated mitochondrial impairment in glioblastoma. J Cell Physiol 2020; 235:9623-9634. [PMID: 32394470 DOI: 10.1002/jcp.29774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
We investigated the radiosensitizing effects of Co-NMS, a derivative of nimesulide based on a cobalt carbonyl complex, on malignant glioma cells. In the zebrafish exposed to Co-NMS ranging from 5 to 20 μM, cell death and heat shock protein 70 expression in the brain and neurobehavioral performance were evaluated. Our data showed that Co-NMS at 5 μM did not cause the appreciable neurotoxicity, and thereby was given as a novel radiation sensitizer in further study. In the U251 cells, Co-NMS combined with irradiation treatment resulted in significant inhibition of cell growth and clonogenic capability as well as remarkable increases of G2/M arrest and apoptotic cell population compared to the irradiation alone treatment. This demonstrated that the Co-NMS administration exerted a strong potential of sensitizing effect on the irradiated cells. With regard to the tumor radiosensitization of Co-NMS, it could be primarily attributed to the Co-NMS-derived mitochondrial impairment, reflected by the loss of mitochondrial membrane potential, the disruption of mitochondrial fusion and fission balance as well as redox homeostasis. Furthermore, the energy metabolism of the U251 cells was obviously suppressed by cotreatment with Co-NMS and irradiation through repressing mitochondrial function. Taken together, our findings suggested that Co-NMS could be a desirable drug to enhance the radiotherapeutic effects in glioblastoma patients.
Collapse
Affiliation(s)
- Yang Liu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Taofeng Zhang
- Institute of Radiochemistry, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Guo Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Sirui Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jili Li
- Institute of Medicinal Chemistry, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Quanyi Zhao
- Institute of Medicinal Chemistry, School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qingfen Wu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Xu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Hu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Luwei Zhang
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Li
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China.,School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Leitão MM, Alves CG, de Melo-Diogo D, Lima-Sousa R, Moreira AF, Correia IJ. Sulfobetaine methacrylate-functionalized graphene oxide-IR780 nanohybrids aimed at improving breast cancer phototherapy. RSC Adv 2020; 10:38621-38630. [PMID: 35517523 PMCID: PMC9057306 DOI: 10.1039/d0ra07508f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 01/23/2023] Open
Abstract
The application of Graphene Oxide (GO) in cancer photothermal therapy is hindered by its lack of colloidal stability in biologically relevant media and modest Near Infrared (NIR) absorption. In this regard, the colloidal stability of GO has been improved by functionalizing its surface with poly(ethylene glycol) (PEG), which may not be optimal due to the recent reports on PEG immunogenicity. On the other hand, the chemical reduction of GO using hydrazine hydrate has been applied to enhance its photothermal capacity, despite decreasing its cytocompatibility. In this work GO was functionalized with an amphiphilic polymer containing [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) brushes and was loaded with IR780, for the first time, aiming to improve its colloidal stability and phototherapeutic capacity. The attained results revealed that the SBMA-functionalized GO displays a suitable size distribution, neutral surface charge and adequate cytocompatibility. Furthermore, the SBMA-functionalized GO exhibited an improved colloidal stability in biologically relevant media, while its non-SBMA functionalized equivalent promptly precipitated under the same conditions. By loading IR780 into the SBMA-functionalized GO, its NIR absorption increased by 2.7-fold, leading to a 1.2 times higher photothermal heating. In in vitro cell studies, the combination of SBMA-functionalized GO with NIR light only reduced breast cancer cells' viability to 73%. In stark contrast, by combining IR780 loaded SBMA-functionalized GO and NIR radiation, the cancer cells' viability decreased to 20%, hence confirming the potential of this nanomaterial for cancer photothermal therapy. IR780 loaded SBMA-coated GO displayed an improved colloidal stability in biologically relevant media and an enhanced photothermal capacity.![]()
Collapse
Affiliation(s)
- Miguel M. Leitão
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Cátia G. Alves
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Rita Lima-Sousa
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - André F. Moreira
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Ilídio J. Correia
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
- CIEPQPF – Departamento de Engenharia Química
| |
Collapse
|
17
|
Nana ABA, Marimuthu T, Kondiah PPD, Choonara YE, Du Toit LC, Pillay V. Multifunctional Magnetic Nanowires: Design, Fabrication, and Future Prospects as Cancer Therapeutics. Cancers (Basel) 2019; 11:E1956. [PMID: 31817598 PMCID: PMC6966456 DOI: 10.3390/cancers11121956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022] Open
Abstract
Traditional cancer therapeutics are limited by factors such as multi-drug resistance and a plethora of adverse effect. These limitations need to be overcome for the progression of cancer treatment. In order to overcome these limitations, multifunctional nanosystems have recently been introduced into the market. The employment of multifunctional nanosystems provide for the enhancement of treatment efficacy and therapeutic effect as well as a decrease in drug toxicity. However, in addition to these effects, magnetic nanowires bring specific advantages over traditional nanoparticles in multifunctional systems in terms of the formulation and application into a therapeutic system. The most significant of which is its larger surface area, larger net magnetic moment compared to nanoparticles, and interaction under a magnetic field. This results in magnetic nanowires producing a greater drug delivery and therapeutic platform with specific regard to magnetic drug targeting, magnetic hyperthermia, and magnetic actuation. This, in turn, increases the potential of magnetic nanowires for decreasing adverse effects and improving patient therapeutic outcomes. This review focuses on the design, fabrication, and future potential of multifunctional magnetic nanowire systems with the emphasis on improving patient chemotherapeutic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (A.B.A.N.); (T.M.); (P.P.D.K.); (Y.E.C.); (L.C.D.T.)
| |
Collapse
|
18
|
Xiao Y, Chen L, Chen X, Xiao B. Current strategies to enhance the targeting of polydopamine-based platforms for cancer therapeutics. J Drug Target 2019; 28:142-153. [PMID: 31305176 DOI: 10.1080/1061186x.2019.1644650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yin Xiao
- Haikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Lin Chen
- Haikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Xiaoliang Chen
- Haikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bin Xiao
- Laboratory of Clinical Pharmacy, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, Inner Mongolia Autonomous region, China
| |
Collapse
|