1
|
Wang C, Lv J, Yang M, Fu Y, Wang W, Li X, Yang Z, Lu J. Recent advances in surface functionalization of cardiovascular stents. Bioact Mater 2025; 44:389-410. [PMID: 39539518 PMCID: PMC11558551 DOI: 10.1016/j.bioactmat.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading global threat to human health. The clinical application of vascular stents improved the survival rates and quality of life for patients with cardiovascular diseases. However, despite the benefits stents bring to patients, there are still notable complications such as thrombosis and in-stent restenosis (ISR). Surface modification techniques represent an effective strategy to enhance the clinical efficacy of vascular stents and reduce complications. This paper reviews the development strategies of vascular stents based on surface functional coating technologies aimed at addressing the limitations in clinical application, including the inhibition of intimal hyperplasia, promotion of re-endothelialization. These strategies have improved endothelial repair and inhibited vascular remodeling, thereby promoting vascular healing post-stent implantation. However, the pathological microenvironment of target vessels and the lipid plaques are key pathological factors in the development of atherosclerosis (AS) and impaired vascular repair after percutaneous coronary intervention (PCI). Therefore, restoring normal physiological environment and removing the plaques are also treatment focuses after PCI for promoting vascular repair. Unfortunately, research in this area is limited. This paper reviews the advancements in vascular stents based on surface engineering technologies over the past decade, providing guidance for the development of stents.
Collapse
Affiliation(s)
- Chuanzhe Wang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Jie Lv
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Mengyi Yang
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yan Fu
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Wenxuan Wang
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, 610031, Chengdu, China
| | - Xin Li
- Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, 610072, Chengdu, Sichuan, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Jing Lu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Hasan ML, Lee JR, Rahaman KA, Yang DH, Joung YK. Versatile effects of galectin-1 protein-containing lipid bilayer coating for cardiovascular applications. Bioact Mater 2024; 42:207-225. [PMID: 39285911 PMCID: PMC11403261 DOI: 10.1016/j.bioactmat.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
Modulating inflammatory cells in an implantation site leads to severe complications and still unsolved challenges for blood-contacting medical devices. Inspired by the role of galectin-1 (Gal-1) in selective functions on multiple cells and immunomodulatory processes, we prepared a biologically target-specific surface coated with the lipid bilayer containing Gal-1 (Gal-1-SLB) and investigate the proof of the biological effects. First, lipoamido-dPEG-acid was deposited on a gold-coated substrate to form a self-assembled monolayer and then conjugated dioleoylphosphatidylethanolamine (DOPE) onto that to produce a lower leaflet of the supported lipid bilayer (SLB) before fusing membrane-derived vesicles extracted from B16-F10 cells. The Gal-1-SLB showed the expected anti-fouling activity by revealing the resistance to protein adsorption and bacterial adhesion. In vitro studies showed that the Gal-1-SLB can promote endothelial function and inhibit smooth muscle cell proliferation. Moreover, Gal-1- SLB presents potential function for endothelial cell migration and angiogenic activities. In vitro macrophage culture studies showed that the Gal-1-SLB attenuated the LPS-induced inflammation and the production of macrophage-secreted inflammatory cytokines. Finally, the implanted Gal-1-SLB reduced the infiltration of immune cells at the tissue-implant interface and increased markers for M2 polarization and blood vessel formation in vivo. This straightforward surface coating with Gal-1 can be a useful strategy for modulating the vascular and immune cells around a blood-contacting device.
Collapse
Affiliation(s)
- Md Lemon Hasan
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ju Ro Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Khandoker Asiqur Rahaman
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon, 34113, Republic of Korea
- KHU-KIST Department of Conversing Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Razdar S, Panahi Y, Mohammadi R, Khedmat L, Khedmat H. Evaluation of the efficacy and safety of an innovative flavonoid lotion in patients with haemorrhoid: a randomised clinical trial. BMJ Open Gastroenterol 2023; 10:e001158. [PMID: 37597875 PMCID: PMC10441054 DOI: 10.1136/bmjgast-2023-001158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/07/2023] [Indexed: 08/21/2023] Open
Abstract
OBJECTIVE Haemorrhoids are one of the most common gastrointestinal and anal diseases. In olive oil and honey propolis, flavonoids have beneficial effects on improving vascular function and decreasing vascular resistance. In this study, we aimed to produce a combination of these two substances in the form of lotions and assess their healing and side effects in comparison with routine treatment, anti-haemorrhoid ointment (containing hydrocortisone and lidocaine). DESIGN In this randomised clinical trial study, 86 patients with grade 2 or more haemorrhoid degrees, diagnosed by colonoscopy, were divided into two groups, the case (n=44) and control (n=42). The case group was treated with flavonoid lotion, and the control group was treated with anti-haemorrhoid ointment two times per day for 1 month. Patients were followed weekly with history and physical examination. The data of the two groups were collected before and after the intervention and statistically analysed. RESULTS Post-treatment reduction in haemorrhoid grade was significant in the case group (p=0.02). This ratio was insignificant in the control group (p=0.139). Flavonoid lotion (p<0.05) significantly reduced the signs and symptoms of haemorrhoids more than anti-haemorrhoid ointment. CONCLUSION According to the results, flavonoid lotion can be an excellent alternative to topical chemical drugs, such as anti-haemorrhoid ointment, in treating haemorrhoid disease. Besides its effectiveness and safety, it can be easily manufactured and widely available to patien.
Collapse
Affiliation(s)
- Sara Razdar
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | - Ramtin Mohammadi
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran (the Islamic Republic of)
| | - Leila Khedmat
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
| | - Hossein Khedmat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Lenzuni M, Bonfadini S, Criante L, Zorzi F, Summa M, Bertorelli R, Suarato G, Athanassiou A. Dynamic investigation of zein-based degradable and hemocompatible coatings for drug-eluting stents: a microfluidic approach. LAB ON A CHIP 2023; 23:1576-1592. [PMID: 36688523 DOI: 10.1039/d3lc00012e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biodegradable stent coatings have shown great potential in terms of delivering drugs to a damaged vessel wall, and their release profiles are key elements governing the overall performance of drug-eluting stents (DESs). However, release and degradation kinetics are usually not tested under simulated physiological conditions or in dynamic environments, both essential aspects in the design of novel DESs. To bridge this gap, fused silica-based microfluidic systems, with either round or square channel cross-sections, were designed to mimic the microenvironment of a stented vessel. In particular, we fabricated and characterized microfluidic chips based on customizable channels, which were spray-coated with a naturally-derived, rutin-loaded zein solution, to perform a comprehensive study under flow conditions. Dynamic assays after 6 hours showed how the degradation of the zein matrix was affected by the cross-sectional conformation (∼69% vs. ∼61%, square and round channel, respectively) and the simulated blood fluid components (∼55%, round channel with a more viscous solution). The released amount of rutin was ∼81% vs. ∼77% and ∼78% vs. ∼74% from the square and round channels, using the less and more viscous blood-simulated fluids, respectively. Fitting the drug release data to Korsmeyer-Peppas and first-order mathematical models provided further insight into the mechanism of rutin release and coating behavior under flowing conditions. More importantly, whole blood tests with our newly developed microfluidic platforms confirmed the hemocompatibility of our zein-based coating. In detail, in-flow and static studies on the blood cell behavior showed a significant reduction of platelet adhesion (∼73%) and activation (∼93%) compared to the stainless-steel substrate, confirming the benefits of using such naturally-derived coatings to avoid clogging. Overall, our microfluidic designs can provide a key practical tool for assessing polymer degradation and drug release from degradable matrices under flowing conditions, thus aiding future studies on the development of hemocompatible, controlled-release coatings for DESs.
Collapse
Affiliation(s)
- Martina Lenzuni
- Smart Materials Group, Istituto Italiano di Tecnologia, via Morego 30, Genoa, Italy.
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, via Opera Pia 13, Genoa, Italy
| | - Silvio Bonfadini
- Center for Nano Science and Technology @ PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, Milan, Italy
| | - Luigino Criante
- Center for Nano Science and Technology @ PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, Milan, Italy
| | - Filippo Zorzi
- Center for Nano Science and Technology @ PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, Milan, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, via Morego 30, Genoa, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, via Morego 30, Genoa, Italy
| | - Giulia Suarato
- Smart Materials Group, Istituto Italiano di Tecnologia, via Morego 30, Genoa, Italy.
- Translational Pharmacology, Istituto Italiano di Tecnologia, via Morego 30, Genoa, Italy
| | | |
Collapse
|
5
|
Baek SW, Song DH, Lee HI, Kim DS, Heo Y, Kim JH, Park CG, Han DK. Poly(L-Lactic Acid) Composite with Surface-Modified Magnesium Hydroxide Nanoparticles by Biodegradable Oligomer for Augmented Mechanical and Biological Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5869. [PMID: 34640265 PMCID: PMC8510474 DOI: 10.3390/ma14195869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022]
Abstract
Poly(L-lactic acid) (PLLA) has attracted a great deal of attention for its use in biomedical materials such as biodegradable vascular scaffolds due to its high biocompatibility. However, its inherent brittleness and inflammatory responses by acidic by-products of PLLA limit its application in biomedical materials. Magnesium hydroxide (MH) has drawn attention as a potential additive since it has a neutralizing effect. Despite the advantages of MH, the MH can be easily agglomerated, resulting in poor dispersion in the polymer matrix. To overcome this problem, oligo-L-lactide-ε-caprolactone (OLCL) as a flexible character was grafted onto the surface of MH nanoparticles due to its acid-neutralizing effect and was added to the PLLA to obtain PLLA/MH composites. The pH neutralization effect of MH was maintained after surface modification. In an in vitro cell experiment, the PLLA/MH composites including OLCL-grafted MH exhibited lower platelet adhesion, cytotoxicity, and inflammatory responses better than those of the control group. Taken together, these results prove that PLLA/MH composites including OLCL-grafted MH show excellent augmented mechanical and biological properties. This technology can be applied to biomedical materials for vascular devices such as biodegradable vascular scaffolds.
Collapse
Affiliation(s)
- Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Korea;
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Korea
| | - Duck Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
| | - Ho In Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Yun Heo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
| | - Jun Hyuk Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Korea;
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
| |
Collapse
|
6
|
Lee HI, Heo Y, Baek SW, Kim DS, Song DH, Han DK. Multifunctional Biodegradable Vascular PLLA Scaffold with Improved X-ray Opacity, Anti-Inflammation, and Re-Endothelization. Polymers (Basel) 2021; 13:polym13121979. [PMID: 34208677 PMCID: PMC8234203 DOI: 10.3390/polym13121979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(L-lactic acid) (PLLA) has been used as a biodegradable vascular scaffold (BVS) material due to high mechanical property, biodegradability, and biocompatibility. However, acidic byproducts from hydrolysis of PLLA reduce the pH after the surrounding implanted area and cause inflammatory responses. As a result, severe inflammation, thrombosis, and in-stent restenosis can occur after implantation by using BVS. Additionally, polymers such as PLLA could not find on X-ray computed tomography (CT) because of low radiopacity. To this end, here, we fabricated PLLA films as the surface of BVS and divided PLLA films into two coating layers. At the first layer, PLLA film was coated by 2,3,5-triiodobenzoic acid (TIBA) and magnesium hydroxide (MH) with poly(D,L-lactic acid) (PDLLA) for radiopaque and neutralization of acidic environment, respectively. The second layer of coated PLLA films is composed of polydopamine (PDA) and then cystamine (Cys) for the generation of nitric oxide (NO) release, which is needed for suppression of smooth muscle cells (SMCs) and proliferation of endothelial cells (ECs). The characterization of the film surface was conducted via various analyses. Through the surface modification of PLLA films, they have multifunctional abilities to overcome problems of BVS effectively such as X-ray penetrability, inflammation, thrombosis, and neointimal hyperplasia. These results suggest that the modification of biodegradable PLLA using TIBA, MH, PDA, and Cys will have important potential in implant applications.
Collapse
Affiliation(s)
- Ho In Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (H.I.L.); (Y.H.); (S.-W.B.); (D.-S.K.); (D.H.S.)
| | - Yun Heo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (H.I.L.); (Y.H.); (S.-W.B.); (D.-S.K.); (D.H.S.)
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (H.I.L.); (Y.H.); (S.-W.B.); (D.-S.K.); (D.H.S.)
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (H.I.L.); (Y.H.); (S.-W.B.); (D.-S.K.); (D.H.S.)
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Duck Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (H.I.L.); (Y.H.); (S.-W.B.); (D.-S.K.); (D.H.S.)
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (H.I.L.); (Y.H.); (S.-W.B.); (D.-S.K.); (D.H.S.)
- Correspondence:
| |
Collapse
|
7
|
Han G, Bedair TM, Kim DH, Park KH, Park W, Han DK. Improved mechanical and biological properties of biodegradable thinner poly(l-lactic acid) tubes by bi-directional drawing. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
9
|
Ko KW, Yoo YI, Kim JY, Choi B, Park SB, Park W, Rhim WK, Han DK. Attenuation of Tumor Necrosis Factor-α Induced Inflammation by Umbilical Cord-Mesenchymal Stem Cell Derived Exosome-Mimetic Nanovesicles in Endothelial Cells. Tissue Eng Regen Med 2020; 17:155-163. [PMID: 32026314 DOI: 10.1007/s13770-019-00234-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inflammation induces dysfunction of endothelial cells via inflammatory cell adhesion, and this phenomenon and reactive oxygen species accumulation are pivotal triggers for atherosclerosis-related vascular disease. Although exosomes are excellent candidate as an inhibitor in the inflammation pathway, it is necessary to develop exosome-mimetic nanovesicles (NVs) due to limitations of extremely low release rate and difficult isolation of natural exosomes. NVs are produced in much larger quantities than natural exosomes, but due to the low flexibility of the cell membranes, the high loss caused by hanging on the filter membranes during extrusion remains a challenge to overcome. Therefore, by making cell membranes more flexible, more efficient production of NVs can be expected. METHODS To increase the flexibility of the cell membranes, the suspension of umbilical cord-mesenchymal stem cells (UC-MSCs) was subjected to 5 freeze and thaw cycles (FT) before serial extrusion. After serial extrusion through membranes with three different pore sizes, FT/NVs were isolated using a tangential flow filtration (TFF) system. NVs or FT/NVs were pretreated to the human coronary artery endothelial cells (HCAECs), and then inflammation was induced using tumor necrosis factor-α (TNF-α). RESULTS With the freeze and thaw process, the production yield of exosome-mimetic nanovesicles (FT/NVs) was about 3 times higher than the conventional production method. The FT/NVs have similar biological properties as NVs for attenuating TNF-α induced inflammation. CONCLUSION We proposed the efficient protocol for the production of NVs with UC-MSCs using the combination of freeze and thaw process with a TFF system. The FT/NVs successfully attenuated the TNF-α induced inflammation in HCAECs.
Collapse
Affiliation(s)
- Kyoung-Won Ko
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Yong-In Yoo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Bogyu Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Sung-Bin Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Wooram Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
10
|
Bedair TM, Lee CK, Kim DS, Baek SW, Bedair HM, Joshi HP, Choi UY, Park KH, Park W, Han I, Han DK. Magnesium hydroxide-incorporated PLGA composite attenuates inflammation and promotes BMP2-induced bone formation in spinal fusion. J Tissue Eng 2020; 11:2041731420967591. [PMID: 33178410 PMCID: PMC7592173 DOI: 10.1177/2041731420967591] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 01/09/2023] Open
Abstract
Spinal fusion has become a common surgical technique to join two or more vertebrae to stabilize a damaged spine; however, the rate of pseudarthrosis (failure of fusion) is still high. To minimize pseudarthrosis, bone morphogenetic protein-2 (BMP2) has been approved for use in humans. In this study, we developed a poly(lactide-co-glycolide) (PLGA) composite incorporated with magnesium hydroxide (MH) nanoparticles for the delivery of BMP2. This study aimed to evaluate the effects of released BMP2 from BMP2-immobilized PLGA/MH composite scaffold in an in vitro test and an in vivo mice spinal fusion model. The PLGA/MH composite films were fabricated via solvent casting technique. The surface of the PLGA/MH composite scaffold was modified with polydopamine (PDA) to effectively immobilize BMP2 on the PLGA/MH composite scaffold. Analyzes of the scaffold revealed that using PLGA/MH-PDA improved hydrophilicity, degradation performance, neutralization effects, and increased BMP2 loading efficiency. In addition, releasing BMP2 from the PLGA/MH scaffold significantly promoted the proliferation and osteogenic differentiation of MC3T3-E1 cells. Furthermore, the pH neutralization effect significantly increased in MC3T3-E1 cells cultured on the BMP2-immobilized PLGA/MH scaffold. In our animal study, the PLGA/MH scaffold as a BMP2 carrier attenuates inflammatory responses and promotes BMP2-induced bone formation in posterolateral spinal fusion model. These results collectively demonstrate that the BMP2-immobilized PLGA/MH scaffold offers great potential in effectively inducing bone formation in spinal fusion surgery.
Collapse
Affiliation(s)
- Tarek M. Bedair
- Department of Biomedical Science, CHA
University, Seongnam-si, Gyeonggi-do, Republic of Korea
- Chemistry Department, Faculty of
Science, Minia University, El-Minia, Egypt
| | - Chang Kyu Lee
- Department of Neurosurgery, Keimyung
University Dongsan Medical Center, Daegu, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA
University, Seongnam-si, Gyeonggi-do, Republic of Korea
- School of Integrative Engineering,
Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA
University, Seongnam-si, Gyeonggi-do, Republic of Korea
- Department of Biomedical Engineering,
Sungkyunkwan University, Jangan-gu, Gyeonggi-do, Republic of Korea
| | - Hanan M. Bedair
- Department of Clinical Pathology,
National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Hari Prasad Joshi
- Department of Neurosurgery, CHA
University School of Medicine, CHA Bungdang Medical Center, Seongnam-si,
Gyeonggi-do, Republic of Korea
| | - Un Yong Choi
- Department of Neurosurgery, CHA
University School of Medicine, CHA Bungdang Medical Center, Seongnam-si,
Gyeonggi-do, Republic of Korea
| | - Keun-Hong Park
- Department of Biomedical Science, CHA
University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical
Engineering, The Catholic University of Korea, Bucheon-Si, Gyeonggi-do, Republic of
Korea
| | - InBo Han
- Department of Neurosurgery, CHA
University School of Medicine, CHA Bungdang Medical Center, Seongnam-si,
Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA
University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Wang D, Wang X, Li X, Jiang L, Chang Z, Li Q. Biologically responsive, long-term release nanocoating on an electrospun scaffold for vascular endothelialization and anticoagulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110212. [PMID: 31761208 DOI: 10.1016/j.msec.2019.110212] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023]
Abstract
A critical challenge to the development of tissue engineering small-diameter vascular grafts is to achieve rapid endothelialization and long-term anticoagulation. It is necessary to graft both adhesion and antithrombus factors onto the surface of polycaprolactone without burst release to promote endothelial cell affinity and antithrombogenicity. A bionic structure with a nanocoating that allows a biologically responsive, long-term release was employed in this work to enable the grafting of various bioactive molecules such as gelatin, polylysine, and heparin. This approach involved orienting the biomimetic vascular structures; the self-assembly grafting of gelatin, polylysine, and heparin nanoparticles; and genipin crosslinking to form a multiphase crosslinked nanocoating. In this biologically inspired design, vascular endothelialization and long-term anticoagulation were successfully induced through a matrix metallopeptidase 2 regulative mechanism by delivering both adhesion and antithrombus factors with a responsive, long-term release without burst release. The method provided a simple and effective approach for delivering dual factors for tissue engineering small-diameter vascular grafts.
Collapse
Affiliation(s)
- Dongfang Wang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Xiaofeng Wang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Xuyan Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Lin Jiang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Zhonghua Chang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|