1
|
Jaradat E, Meziane A, Lamprou DA. Paclitaxel-loaded elastic liposomes synthesised by microfluidics technique for enhance transdermal delivery. Drug Deliv Transl Res 2024:10.1007/s13346-024-01672-0. [PMID: 39020246 DOI: 10.1007/s13346-024-01672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
The inherent flexibility of elastic liposomes (EL) allows them to penetrate the small skin pores and reach the dermal region, making them an optimum candidate for topical drug delivery. Loading chemotherapy in ELs could improve chemotherapy's topical delivery and localise its effect on skin carcinogenic tissues. Chemotherapy-loaded EL can overcome the limitations of conventional administration of chemotherapies and control the distribution to specific areas of the skin. In the current studies, Paclitaxel was utilised to develop Paclitaxel-loaded EL. As an alternative to the conventional manufacturing methods of EL, this study is one of the novel investigations utilising microfluidic systems to examine the potential to enhance and optimise the quality of Els by the microfluidics method. The primary aim was to achieve EL with a size of < 200 nm, high homogeneity, high encapsulation efficiency, and good stability. A phospholipid (DOPC) combined with neutral and anionic edge activators (Tween 80 and sodium taurocholate hydrate) at various lipid-to-edge activator ratios, was used for the manufacturing of the ELs. A preliminary study was performed to study the size, polydispersity (PDI), and stability to determine the optimum microfluidic parameters and lipid-to-edge activator for paclitaxel encapsulation. Furthermore, physiochemical characterisation was performed on the optimised Paclitaxel-loaded EL using a variety of methods, including Dynamic Light Scattering, Fourier Transform Infrared Spectroscopy, Atomic force microscopy, elasticity, encapsulation efficiency, and In vitro release. The results reveal the microfluidics' significant impact in enhancing the EL characteristics of EL, especially small and controllable size, Low PDI, and high encapsulation efficiency. Moreover, the edge activator type and concentration highly affect the EL characteristics. The Tween 80 formulations with optimised concentration provide the most suitable size and higher encapsulation efficiency. The release profile of the formulations showed more immediate release from the EL with higher edge activator concentration and a higher % of the released dug from the Tween 80 formulations.
Collapse
Affiliation(s)
- Eman Jaradat
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
2
|
Shamaprasad P, Frame CO, Moore TC, Yang A, Iacovella CR, Bouwstra JA, Bunge AL, McCabe C. Using molecular simulation to understand the skin barrier. Prog Lipid Res 2022; 88:101184. [PMID: 35988796 PMCID: PMC10116345 DOI: 10.1016/j.plipres.2022.101184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022]
Abstract
Skin's effectiveness as a barrier to permeation of water and other chemicals rests almost entirely in the outermost layer of the epidermis, the stratum corneum (SC), which consists of layers of corneocytes surrounded by highly organized lipid lamellae. As the only continuous path through the SC, transdermal permeation necessarily involves diffusion through these lipid layers. The role of the SC as a protective barrier is supported by its exceptional lipid composition consisting of ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs) and the complete absence of phospholipids, which are present in most biological membranes. Molecular simulation, which provides molecular level detail of lipid configurations that can be connected with barrier function, has become a popular tool for studying SC lipid systems. We review this ever-increasing body of literature with the goals of (1) enabling the experimental skin community to understand, interpret and use the information generated from the simulations, (2) providing simulation experts with a solid background in the chemistry of SC lipids including the composition, structure and organization, and barrier function, and (3) presenting a state of the art picture of the field of SC lipid simulations, highlighting the difficulties and best practices for studying these systems, to encourage the generation of robust reproducible studies in the future. This review describes molecular simulation methodology and then critically examines results derived from simulations using atomistic and then coarse-grained models.
Collapse
Affiliation(s)
- Parashara Shamaprasad
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Chloe O Frame
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Timothy C Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Alexander Yang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Joke A Bouwstra
- Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, the Netherlands
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America; School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Shi Y, Sheng M, Zhou Q, Liao Y, Lv L, Yang J, Peng X, Cen S, Dai X, Shi X. Construction of the small intestine on molecular dynamics simulation and preliminary exploration of drug intestinal absorption prediction. Comput Biol Chem 2022; 99:107724. [PMID: 35816977 DOI: 10.1016/j.compbiolchem.2022.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
In this study, molecular dynamics simulation was applied to the construction of the small intestinal epithelial cell membrane and prediction of drug absorption. First, we constructed a system of a small intestinal epithelial cell membrane that was close to the real proportion and investigated the effects of temperature, water layer thickness, and ionic strength on membrane properties to optimize environmental parameters. Next, three drugs with different absorptivity, including Ephedrine (EPH), Quercetin (QUE), and Baicalin (BAI), were selected as model drugs to study the ability of drugs through the membrane by the free diffusion and umbrella sampling simulation, and the drug permeation ability was characterized by the free diffusion coefficient D and free energy barrier (△G) in the processes. The results showed that the free diffusion coefficient D and △G orders of the three drugs were consistent with the classical experimental absorption order, indicating that these two parameters could be used to jointly characterize the membrane permeability of the drugs.
Collapse
Affiliation(s)
- Yanshuang Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengke Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qing Zhou
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuyao Liao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lijing Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiaqi Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuai Cen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - XingXing Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 100029, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 100029, China.
| |
Collapse
|
4
|
Chen A, Luo Y, Xu J, Guan X, He H, Xuan X, Wu J. Latest on biomaterial-based therapies for topical treatment of psoriasis. J Mater Chem B 2022; 10:7397-7417. [PMID: 35770701 DOI: 10.1039/d2tb00614f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Psoriasis is an autoimmune inflammatory disease which is fundamentally different from dermatitis. Its treatments include topical medications and systemic drugs depending on different stages of the disease. However, these commonly used therapies are falling far short of clinical needs due to various drawbacks. More precise therapeutic strategies with minimized side effects and improved compliance are highly demanded. Recently, the rapid development of biomaterial-based therapies has made it possible and promising to attain topical psoriasis treatment. In this review, we briefly describe the significance and challenges of the topical treatment of psoriasis and emphatically overview the latest progress in novel biomaterial-based topical therapies for psoriasis including microneedles, nanoparticles, nanofibers, and hydrogels. Current clinical trials related to each biomaterial are also summarized and discussed.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuting Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Xu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xueran Guan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Xuan Xuan
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jiang Wu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
5
|
Hao DC, Wang F, Xiao PG. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Traditional Medicine-based anti-COVID-19 Drug Research. Curr Drug Metab 2022; 23:374-393. [PMID: 35440304 DOI: 10.2174/1389200223666220418110133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The representative anti-COVID-19 herbs, i.e. Poria cocos, Pogostemon, Prunus, and Glycyrrhiza plants, are commonly used in the prevention and treatment of COVID-19, a pandemic caused by SARS-CoV-2. Diverse medicinal compounds with favorable anti-COVID-19 activities are abundant in these plants, and their unique pharmacological/pharmacokinetic properties are being revealed. However, the current trends of drug metabolism/pharmacokinetic (DMPK) investigations of anti-COVID-19 herbs have not been systematically summarized. METHODS Here, the latest awareness, as well as the perception gaps of DMPK attributes, in the anti-COVID-19 drug development and clinical usage was elaborated and critically commented. RESULTS The extracts and compounds of P. cocos, Pogostemon, Prunus, and Glycyrrhiza plants show distinct and diverse absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. The complicated herb-herb interactions (HHIs) and herb-drug interactions (HDIs) of anti-COVID-19 Traditional Chinese Medicine (TCM) herb pair/formula dramatically influence the PK/pharmacodynamic (PD) performance of compounds thereof, which may inspire researchers to design innovative herbal/compound formulas for optimizing the therapeutic outcome of COVID-19 and related epidemic diseases. The ADME/T of some abundant compounds in anti-COVID-19 plants have been elucidated, but DMPK studies should be extended to more compounds of different medicinal parts, species and formulations, and would be facilitated by various omics platforms and computational analyses. CONCLUSION In the framework of systems pharmacology and pharmacophylogeny, the DMPK knowledge base would promote the translation of bench findings into the clinical practice of anti-COVID-19, and speed up the anti-COVID-19 drug discovery and development.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China.,Institute of Molecular Plant Science, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Fan Wang
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Shen Q, Tang T, Hu Q, Ying X, Shu G, Teng C, Du Y. Microwave hyperthermia-responsible flexible liposomal gel as a novel transdermal delivery of methotrexate for enhanced rheumatoid arthritis therapy. Biomater Sci 2021; 9:8386-8395. [PMID: 34787601 DOI: 10.1039/d1bm01438b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methotrexate (MTX) as an anti-inflammatory drug for the treatment of rheumatoid arthritis (RA) through oral and injectable administration is still problematic in the clinic. Herein, a MTX-loaded thermal-responsible flexible liposome (MTFL) incorporated within a carbomer-based gel was prepared as a novel transdermal agent (MTFL/Gel) for effective treatment of RA. It was found that MTFL had an average size of approximately 90 nm, which could rapidly release the drug under thermal conditions. The prepared MTFL/Gel could remarkably increase the MTX skin permeation as compared with free MTX, which was possibly due to the deformable membrane of flexible liposomes. Moreover, the results suggested MTFL/Gel could lead to a remarkably enhanced RA treatment when in combination with microwave hyperthermia. The superior ability of MTFL/Gel to alleviate RA response was attributed to the excellent skin permeation, thermal-responsible drug release, and synergistic anti-arthritic effect of MTX chemotherapy and microwave-induced hyperthermia therapy. Overall, the MTFL/Gel with dual deformable and thermal-responsible performances could be used as a novel promising transdermal agent for enhanced treatment of RA.
Collapse
Affiliation(s)
- Qiying Shen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou, 310058, China. .,School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou, 311121, China
| | - Ting Tang
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou, 311121, China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou, 311121, China
| | - Xiaoying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou, 310058, China.
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, 323000, China.
| | - Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 32200, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Dai X, Chen L, Liao Y, Sheng M, Qu Q, Shi Y, Shi X. Formulation design and mechanism study of hydrogel based on computational pharmaceutics theories. J Mol Graph Model 2021; 110:108051. [PMID: 34715467 DOI: 10.1016/j.jmgm.2021.108051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022]
Abstract
Formulation design and mechanism study of the drug delivery system (DDS) is an important but difficult subject in pharmaceutical research. The study of formulation factors is the most time- and labor-consuming work of formulation design. In this paper, a multiscale computational pharmaceutics strategy was developed to guide the systematic study of formulation factors of a typical polymer-based DDS, hydrogel, and further to guide the formulation design. According to the strategy, the combination of solubility parameter (δ) and diffusion coefficient (D) calculated by the AA-MD simulation was suggested as the general evaluation method for the matrix screening of the hydrogels at the pre-formulation stage. At the formulation design stage, the CG-MD simulation method was suggested to predict the morphology and drug-releasing behavior of the hydrogels under different formulation factors. The influence mechanism can be explained by the combination of multiple parameters, such as the microstructure diagram, the radius of gyration (Rg), the radial distribution function (RDF), and the free diffusion volume (Vdiffusion). The simulation results are in good agreement with the in vitro release experiment, indicating that the strategy has good applicability.
Collapse
Affiliation(s)
- Xingxing Dai
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| | - Liping Chen
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| | - Yuyao Liao
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| | - Mengke Sheng
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| | - Qingsong Qu
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| | - Yanshuang Shi
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| | - Xinyuan Shi
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| |
Collapse
|
8
|
Ultradeformable vesicles: concepts and applications relating to the delivery of skin cosmetics. Ther Deliv 2021; 12:739-756. [PMID: 34519219 DOI: 10.4155/tde-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Skin aging is a phenomenon resulting in reduced self-confidence, thus becoming a major factor in social determinants of health. The use of active cosmetic ingredients can help prevent skin aging. Transfersomes are well known to be capable of deeply penetrating the dermis. This scoping review provides an insight into transfersomes and their prospective use in anti-aging cosmetics. Numerous reports exist highlighting the successful skin delivery of therapeutic agents such as high-molecular-weight, poorly water soluble and poorly permeable active ingredients by means of transfersomes. Moreover, in vitro and in vivo studies have indicated that transfersomes increase the deposition, penetration and efficacy of active ingredients. However, the use of transfersomes in the delivery of active cosmetic ingredients is limited. Considering their similar physicochemical properties, transfersomes should possess considerable potential as a delivery system for anti-aging cosmetics.
Collapse
|
9
|
Investigation on drug entrapment location in liposomes and transfersomes based on molecular dynamics simulation. J Mol Model 2021; 27:111. [PMID: 33745026 DOI: 10.1007/s00894-021-04722-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/01/2021] [Indexed: 01/11/2023]
Abstract
In this study, liposome and transfersome were successfully constructed using molecular dynamics simulation. Three drugs with different polarity, including 5-fluorouracil, ligustrazine, and osthole, were selected as model drugs to study the distribution of drugs in lipid vesicles by calculating the radial distribution function and the potential of mean force. The solubility parameters between drugs and different regions in lipid vesicles were calculated to characterize the compatibility of drugs in different regions in lipid vesicles, which provided the basis for the conclusion of this paper. It showed that the radial distribution function and the potential of mean force were consistent in the characterization of drug distribution in vesicles, and the drug distribution in vesicles was closely related to the compatibility between drugs and vesicles. Therefore, the radial distribution function and the potential of mean force can be used to characterize the distribution of drugs in vesicles, and molecular simulation technology has a great potential in studying the characteristics of vesicles. Graphical abstract.
Collapse
|
10
|
Trivedi R, Umekar M, Kotagale N, Bonde S, Taksande J. Design, evaluation and in vivo pharmacokinetic study of a cationic flexible liposomes for enhanced transdermal delivery of pramipexole. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Vanaja K, S S, Murthy SN, Shivakumar HN. Iontophoretic Mediated Intraarticular Delivery of Deformable Liposomes of Diclofenac Sodium. Curr Drug Deliv 2020; 18:421-432. [PMID: 33059549 DOI: 10.2174/1567201817666201014144708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/13/2020] [Accepted: 08/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Topical therapy is ineffective in the case of Musculoskeletal Disorders (MSD) as it is not able to maintain therapeutic levels of the drug in the affected joint due to its inability to surpass the dermal circulation and penetrate into deeper tissues. One of the approaches to enhance deep tissue penetration of drugs is to increase drug delivery much above the dermal clearance. The objective of the present work was to formulate negatively charged Deformable Liposomes (DL) of Diclofenac Sodium (DS) using biosurfactants and target the same to the synovial fluid by application of iontophoresis. METHODS Deformable liposomes loaded with diclofenac sodium were formulated and characterized for surface morphology, particle size distribution, zeta potential and entrapment efficiency. In vitro permeation of the diclofenac from aqueous solution, conventional liposomes, and deformable liposomes under iontophoresis was performed using Franz diffusion cells and compared to passive control. Intraarticular microdialysis was carried out to determine the time course of drug concentration in the synovial fluid at the knee-joint region of the hind limb in Sprague Dawley rats. RESULTS The vesicles were found to display a high entrapment (> 60%) and possess a negative zeta potential lower than -30 mV. The size of the vesicles was varied from 112.41 ± 1.42 nm and 154.6 ± 3.22 nm, demonstrated good stability on the application of iontophoresis. The iontophoretic flux values for the DS aqueous solution, conventional liposomes and deformable liposomal formulation were found to be 7.55 ± 0.42, 16.75±1.77and 44.01 ± 3.47 μg/ cm2 h-1, respectively. Deformable liposomes were found to display an enhancement of 5.83 fold compared to passive control. Iontophoresis was found to enhance the availability of DS deformable liposomes (0.56 ± 0.08 μg.h/ml) in the synovial fluid by nearly 2-fold over passive delivery (0.29 ± 0.05 μg.h/ml). CONCLUSION Results obtained indicate that iontophoretic mediated transport of deformable liposomes could improve the regional bioavailability of diclofenac sodium to the synovial joints, an efficient mode for treating MSD in the elderly.
Collapse
Affiliation(s)
- Kenchappa Vanaja
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - Salwa S
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | | | - H N Shivakumar
- Institute for Drug Delivery and Biomedical Research, Bangalore, India
| |
Collapse
|
12
|
Gu Y, Gu Q, Yang Q, Yang M, Wang S, Liu J. Finite Element Analysis for Predicting Skin Pharmacokinetics of Nano Transdermal Drug Delivery System Based on the Multilayer Geometry Model. Int J Nanomedicine 2020; 15:6007-6018. [PMID: 32884260 PMCID: PMC7439786 DOI: 10.2147/ijn.s261386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/30/2020] [Indexed: 11/23/2022] Open
Abstract
Background Skin pharmacokinetics is an indispensable indication for studying the drug fate after administration of transdermal drug delivery systems (TDDS). However, the heterogeneity and complex skin structured with stratum corneum, viable epidermis, dermis, and subcutaneous tissue inevitably leads the drug diffusion coefficient (Kp) to vary depending on the skin depth, which seriously limits the development of TDDS pharmacokinetics in full thickness skin. Methods A multilayer geometry skin model was established and the Kp of drug in SC, viable epidermis, and dermis was obtained using the technologies of molecular dynamics simulation, in vitro permeation experiments, and in vivo microdialysis, respectively. Besides, finite element analysis (FEA) based on drug Kps in different skin layers was applied to simulate the paeonol nanoemulsion (PAE-NEs) percutaneous dynamic penetration process in two and three dimensions. In addition, PAE-NEs skin pharmacokinetics profile obtained by the simulation was verified by in vivo experiment. Results Coarse-grained modeling of molecular dynamic simulation was successfully established and the Kp of PAE in SC was 2.00×10−6 cm2/h. The Kp of PAE-NE in viable epidermis and in dermis detected using penetration test and microdialysis probe technology, was 1.58×10−5 cm2/h and 3.20×10−5 cm2/h, respectively. In addition, the results of verification indicated that PAE-NEs skin pharmacokinetics profile obtained by the simulation was consistent with that by in vivo experiment. Discussion This study demonstrated that the FEA combined with the established multilayer geometry skin model could accurately predict the skin pharmacokinetics of TDDS.
Collapse
Affiliation(s)
- Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Qing Gu
- Department of Pharmacy, Jingan District Zhabei Central Hospital, Shanghai 200070, People's Republic of China
| | - Qing Yang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Meng Yang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Shengzhang Wang
- Institute of Biomechanics, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, People's Republic of China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
13
|
Wang W, Shu GF, Lu KJ, Xu XL, Sun MC, Qi J, Huang QL, Tan WQ, Du YZ. Flexible liposomal gel dual-loaded with all-trans retinoic acid and betamethasone for enhanced therapeutic efficiency of psoriasis. J Nanobiotechnology 2020; 18:80. [PMID: 32448273 PMCID: PMC7245867 DOI: 10.1186/s12951-020-00635-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Background Psoriasis is a chronic immune-mediated inflammatory skin disease without effective treatment. The utilization of all trans-retinoic acid (TRA) and betamethasone (BT) for the treatment of psoriasis is still facing difficulties, due to their relatively poor stability, limited skin permeation, and systemic side effects. Flexible liposomes are excellent in deeper skin permeation and reducing the side effects of drugs, which is promising for effective treatment of skin disorders. This work aimed to establish dual-loaded flexible liposomal gel for enhanced therapeutic efficiency of psoriasis based on TRA and BT. Results Flexible liposomes co-loaded with TRA and BT were successfully prepared in our study. The characterization examination revealed that flexible liposomes featured nano-sized particles (around 70 nm), high drug encapsulation efficiency (> 98%) and sustained drug release behaviors. Flexible liposomes remarkably increased the drug skin permeation and retention as compared with free drugs. Results on HaCaT cells suggested that flexible liposomes were nontoxic, and its cellular uptake has a time-dependent manner. In vivo studies suggested the topical application of TRA and BT dual-loaded liposomal gel had the best ability to reduce the thickness of epidermal and the level of cytokines (TNF-α and IL-6), largely alleviating the symptoms of psoriasis. Conclusions Flexible liposomal gel dual-loaded with TRA and BT exerted a synergistic effect, which is a promising topical therapeutic for the treatment of psoriasis.![]()
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacy, The Third People's Hospital of Hangzhou, 38 West Lake Avenue, Hangzhou, 310009, China
| | - Gao-Feng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kong-Jun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Min-Cheng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qiao-Ling Huang
- Department of Pharmacy, The Third People's Hospital of Hangzhou, 38 West Lake Avenue, Hangzhou, 310009, China.
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Topical Delivery of Meloxicam using Liposome and Microemulsion Formulation Approaches. Pharmaceutics 2020; 12:pharmaceutics12030282. [PMID: 32245190 PMCID: PMC7151031 DOI: 10.3390/pharmaceutics12030282] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 01/29/2023] Open
Abstract
The aim of this study is to develop, characterize and compare conventional liposome, deformable liposome (transfersome) and microemulsion formulations as potential topical delivery systems for meloxicam. Liposomes were characterized in terms of vesicle size, zeta potential and entrapment efficiency. For microemulsions, particle size, electrical conductivity and viscosity studies were performed to assess the structure of the investigated systems. An ex vivo skin permeation study has been conducted to compare these formulations. The dermal and transdermal delivery of meloxicam using these formulations can be a promising alternative to conventional oral delivery of non-steroidal anti-inflammatory drugs (NSAIDs) with enhanced local and systemic onset of action and reduced side effects.
Collapse
|