1
|
Dyagala S, Halder S, Aggrawal R, Paul M, Aswal VK, Biswas S, Saha SK. ct-DNA compaction by nanoparticles formed by silica and gemini surfactants having hydroxyl group substituted spacers: In vitro, in vivo, and ex vivo gene uptake to cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113066. [PMID: 39556939 DOI: 10.1016/j.jphotobiol.2024.113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Hybrid nanoparticles formed by Silica (SiO2) coated with cationic gemini surfactants with variable hydroxyl group substituted spacers, 12-4(OH)-12,2Br- and 12-4(OH)2-12,2Br- have shown a great extent of compaction of calf thymus DNA (ct-DNA) compared to conventional counterpart cationic surfactant, dodecyl trimethylammonium bromide (DTAB). Study shows not only the hydrophobicity of the spacer but also the hydrogen bonding interactions between the hydroxyl group substituted spacer and DNA have a great role in DNA compaction. 12-4(OH)2-12,2Br- is more efficient in compacting ct-DNA compared to 12-4(OH)-12,2Br- due to the stronger binding of the former with ct-DNA than the latter. While 12-4(OH)-12,2Br- makes 50 % ct-DNA compaction at its 0.63 μM concentration in the presence of SiO2 nanoparticles, the same % of compaction can be achieved at a concentration as low as 0.25 μM of 12-4(OH)2-12,2Br-. However, DTAB makes 50 % ct-DNA compaction at a concentration as high as 7.00 μM under the same condition. Therefore, the present systems address the very common challenge, i.e., cytotoxicity due to cationic surfactants. The system of 12-4(OH)2-12,2Br- coated SiO2 nanoparticles displays the maximum cell viability (≥90 %), causing the least cell death in the mouse fibroblast cells (NIH3T3) cell lines compared to the cell viability of ≤80 % for DTAB. 12-4(OH)2-12,2Br- coated SiO2 nanoparticles system has presented excellent in vitro cellular uptake of genes on mouse mammary gland adenocarcinoma (4T1) cells after incubating for 3 h and 6 h. In vivo study shows that 12-4(OH)2-12,2Br- coated SiO2 nanoparticles system takes the highest amount of ct-DNA in cells and tumors in a time-dependent manner. The ex vivo studies using different organs of the mice demonstrate that the tumor sites in the breast of the mice are most affected by these formulations. Cytotoxicity assays and cellular uptake studies suggest that the present systems can be used for potential applications for gene delivery and oncological therapies.
Collapse
Affiliation(s)
- Shalini Dyagala
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400085, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| | - Subit Kumar Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| |
Collapse
|
2
|
Henderson RDE, Mei N, Xu Y, Gaikwad R, Wettig S, Leonenko Z. Nanoscale Structure of Lipid-Gemini Surfactant Mixed Monolayers Resolved with AFM and KPFM Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:572. [PMID: 38607107 PMCID: PMC11013119 DOI: 10.3390/nano14070572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Drug delivery vehicles composed of lipids and gemini surfactants (GS) are promising in gene therapy. Tuning the composition and properties of the delivery vehicle is important for the efficient load and delivery of DNA fragments (genes). In this paper, we studied novel gene delivery systems composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-3-phosphocholine (DPPC), and GS of the type N,N-bis(dimethylalkyl)-α,ω-alkanediammonium dibromide at different ratios. The nanoscale properties of the mixed DOPC-DPPC-GS monolayers on the surface of the gene delivery system were studied using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We demonstrate that lipid-GS mixed monolayers result in the formation of nanoscale domains that vary in size, height, and electrical surface potential. We show that the presence of GS can impart significant changes to the domain topography and electrical surface potential compared to monolayers composed of lipids alone.
Collapse
Affiliation(s)
- Robert D. E. Henderson
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (R.D.E.H.); (N.M.); (Y.X.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Nanqin Mei
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (R.D.E.H.); (N.M.); (Y.X.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yue Xu
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (R.D.E.H.); (N.M.); (Y.X.)
| | - Ravi Gaikwad
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (R.D.E.H.); (N.M.); (Y.X.)
| | - Shawn Wettig
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- School of Pharmacy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zoya Leonenko
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (R.D.E.H.); (N.M.); (Y.X.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
3
|
Dahal H, Roy S, Dey J, Bose Dasgupta S. Impact of the Hydrocarbon Chain Length of Biodegradable Ester-Bonded Cationic Gemini Surfactants on Self-Assembly, In Vitro Gene Transfection, Cytotoxicity, and Antimicrobial Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2242-2253. [PMID: 38221732 DOI: 10.1021/acs.langmuir.3c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Gemini surfactants, due to their unique structural features and enhanced properties compared to conventional surfactants, are becoming more popular in the domain of colloid and interface science, drug delivery, and gene delivery science. This distinct class of surfactants forms a wide range of self-assembled aggregates depending on their chemical structure and environmental conditions. The present work aims to develop Gemini with three distinct chain lengths linked through the ester group and quaternary nitrogen head groups that can bind DNA molecules and ultimately serve as vectors for DNA transfection. Thus, we synthesized three distinct cationic Gemini with 12, 14, and 16 carbons in their tails and studied the effect of the hydrocarbon chain length on their physicochemical properties and biological applications. The self-assembly of these Geminis in aqueous solution was investigated by a number of techniques, including surface tension, electrical conductivity, fluorescence probe, calorimetry, dynamic light scattering, and atomic force microscopy. All three Gemini were extremely surface active and self-assembled above a very low critical micelle concentration. Calorimetric studies suggested the formation of thermodynamically favorable aggregates in an aqueous medium. Chain length dependence was observed in the size as well as the morphology of the aggregates. These Gemini ions were found to bind DNA strongly, as indicated by the high binding constant values. In vitro gene transfection studies using the RAW 264.7 cell line suggested that all three cationic Gemini had transfection efficiencies comparable to that of commercial standard turbofectamine. MTT assay was also performed for concentration selection while using these Gemini as transfection vectors. Overall, it was observed that Gemini had very little cytotoxicity within the investigated concentration range, highlighting the significance of the ester link within the structure. When compared with known antimicrobials such as kanamycin and ampicillin, all three Gemini furnished excellent antimicrobial activity in both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms.
Collapse
Affiliation(s)
- Homen Dahal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sadhana Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Somdeb Bose Dasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
4
|
Brycki B, Szulc A, Brycka J, Kowalczyk I. Properties and Applications of Quaternary Ammonium Gemini Surfactant 12-6-12: An Overview. Molecules 2023; 28:6336. [PMID: 37687165 PMCID: PMC10489655 DOI: 10.3390/molecules28176336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Surfactants are amphiphilic molecules and one of the most versatile products of the chemical industry. They can be absorbed at the air-water interface and can align themselves so that the hydrophobic part is in the air while the hydrophilic part is in water. This alignment lowers the surface or interfacial tension. Gemini surfactants are a modern variety of surfactants with unique properties and a very wide range of potential applications. Hexamethylene-1,6-bis(N-dodecyl-N,N-dimethylammonium bromide) is one such representative compound that is a better alternative to a single analogue. It shows excellent surface, antimicrobial, and anticorrosion properties. With a highly efficient synthetic method and a good ecological profile, it is a potential candidate for numerous applications, including biomedical applications.
Collapse
Affiliation(s)
- Bogumił Brycki
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | - Adrianna Szulc
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | | | - Iwona Kowalczyk
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (A.S.); (I.K.)
| |
Collapse
|
5
|
Lamch Ł, Szczęsna W, Balicki SJ, Bartman M, Szyk-Warszyńska L, Warszyński P, Wilk KA. Multiheaded Cationic Surfactants with Dedicated Functionalities: Design, Synthetic Strategies, Self-Assembly and Performance. Molecules 2023; 28:5806. [PMID: 37570776 PMCID: PMC10421305 DOI: 10.3390/molecules28155806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Contemporary research concerning surfactant science and technology comprises a variety of requirements relating to the design of surfactant structures with widely varying architectures to achieve physicochemical properties and dedicated functionality. Such approaches are necessary to make them applicable to modern technologies, such as nanostructure engineering, surface structurization or fine chemicals, e.g., magnetic surfactants, biocidal agents, capping and stabilizing reagents or reactive agents at interfaces. Even slight modifications of a surfactant's molecular structure with respect to the conventional single-head-single-tail design allow for various custom-designed products. Among them, multicharge structures are the most intriguing. Their preparation requires specific synthetic routes that enable both main amphiphilic compound synthesis using appropriate step-by-step reaction strategies or coupling approaches as well as further derivatization toward specific features such as magnetic properties. Some of the most challenging aspects of multicharge cationic surfactants relate to their use at different interfaces for stable nanostructures formation, applying capping effects or complexation with polyelectrolytes. Multiheaded cationic surfactants exhibit strong antimicrobial and antiviral activity, allowing them to be implemented in various biomedical fields, especially biofilm prevention and eradication. Therefore, recent advances in synthetic strategies for multiheaded cationic surfactants, their self-aggregation and performance are scrutinized in this up-to-date review, emphasizing their applications in different fields such as building blocks in nanostructure engineering and their use as fine chemicals.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Weronika Szczęsna
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Sebastian J. Balicki
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Marcin Bartman
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Liliana Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| |
Collapse
|
6
|
Sęk A, Perczyk P, Szcześ A, Machatschek R, Wydro P. Studies on the interactions of tiny amounts of common ionic surfactants with unsaturated phosphocholine lipid model membranes. Chem Phys Lipids 2022; 248:105236. [PMID: 36007625 DOI: 10.1016/j.chemphyslip.2022.105236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/25/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023]
Abstract
In order to provide the fundamental information about the interactions of common anionic surfactants with the basic unsaturated phospholipids the influence of three cationic (dodecyltrimethylammonium bromide, DTAB; tetradecyltrimethylammonium bromide, TTAB and hexadecyltrimethylamonium bromide, CTAB) and one anionic (sodium dodecylsulfate, SDS) surfactants on the properties of the 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) layers was investigated. The studies proved that a tiny amount of the ionic surfactant added to the already synthesized liposome suspension is sufficient to change the zeta potential of the POPC and DOPC liposomes significantly. This impact increases with the surfactant concentration, the alkyl chain length of the surfactant and the degree of lipid saturation. Moreover, this effect is greater for the anionic surfactant than for the cationic one of the same alkyl chain length. The observed findings were confirmed in the course of the research carried out with the use of the corresponding Langmuir monolayers where the surface pressure - mean area isotherms, the compressibility modulus - surface pressure dependences, the monolayer penetration tests, the surface potential - mean molecular area isotherms and Brewster angle microscopy were discussed. It was found that the presence of the surfactants shifts the isotherms towards larger molecular area, to the higher extent for the SDS than DTAB. This effect increases with the increasing surfactant concentration in the subphase. Moreover, the investigated surfactants remain in the monolayer even at high surface pressure. Nevertheless, no effect on the morphology of the POPC and DOPC monolayers was detected from the BAM images. The surface potential and surface charge of the liposomes calculated on the basis of the zeta potential results reflected the interactions between the surfactant and the lipid layers.
Collapse
Affiliation(s)
- Alicja Sęk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie-Skłodowska 3, Lublin 20-031, Poland
| | - Paulina Perczyk
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Aleksandra Szcześ
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie-Skłodowska 3, Lublin 20-031, Poland.
| | - Rainhard Machatschek
- Institute of Active Polymers, Helmholtz-Zentrum Geesthacht and Berlin-Brandenburg Center for Regenerative Therapies, Kantstraße 55, Teltow 14513, Germany
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| |
Collapse
|
7
|
Pourhosseini PS, Ghasemitabesh R, Pirhaghi M, Fayazzadeh S, Saboury AA, Najafi F. Urethane-containing cationic gemini surfactants with amphiphilic tails: novel near-neutral protein carriers with minor effects on insulin structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Gan C, Cheng R, Cai K, Wang X, Xie C, Xu T, Yuan C. Interaction of calf thymus DNA and glucose-based gemini cationic surfactants with different spacer length: A spectroscopy and DLS study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120606. [PMID: 34802935 DOI: 10.1016/j.saa.2021.120606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The interactions between calf thymus DNA and a series of glucose-based cationic gemini surfactants 1a-1c with different spacer length, n = 4, 6 and 8, were studied by UV absorption, fluorescence spectroscopy, circular dichroism, FT-IR, dynamic light scattering and zeta potential measurements. The results showed that all the surfactants could interact with DNA efficiently. On addition of increasing concentration of the surfactants, UV absorption hypochromicity with insignificant blue shift were observed, until the DNA signal disappeared. The surfactant 1c was more efficient in the reduction of absorption intensity of DNA. According to the fluorescence quenching experiments by ethidium bromide exclusion, 1c exhibited the highest binding properties, with the binding constant at 3.25 × 108 L·mol-1. The spectroscopy study indicated that the surfactants bound with the DNA by a non-intercalative mode, mainly electrostatic interaction between the positively charged headgroups of the surfactants and negatively charged phosphate groups of DNA at low concentration, and the hydrophobic interaction among the alkyl chains at high concentration. The conformation of DNA during the interaction process could be kept B-form of DNA. For 1c, the DNA molecules can be compacted to about 103 nm in hydrodynamic diameter at 0.2 mM, while the minimum sizes of DNA were 140 nm and 133 nm, respectively, in the presence of 1a and 1b. The impact of the cationic gemini surfactants on the DNA compaction and condensation would shed light on their potential applications in gene delivery.
Collapse
Affiliation(s)
- Changsheng Gan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Rong Cheng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Kunliang Cai
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xiaonan Wang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Chenkun Xie
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Tiantian Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Chuanxun Yuan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| |
Collapse
|
9
|
Akram M, Lal H, Kabir-Ud-Din. Exploring the binding mode of ester-based cationic gemini surfactants with calf thymus DNA: A detailed physicochemical, spectroscopic and theoretical study. Bioorg Chem 2021; 119:105555. [PMID: 34923244 DOI: 10.1016/j.bioorg.2021.105555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022]
Abstract
Gene therapy is a transfectant method for the treatment of hereditary disease, which transfers the gene mutation into the cells. In the view of the high prospects of utilization of cationic gemini surfactants as a non-viral vector for the gene transfection, we have made a comprehensive study on the interactions between a recently synthesized series of ester-functionalized cationic Cm-E2O-Cm gemini surfactants (m = 12, 14 and 16) with calf thymus deoxyribonucleic acid (ctDNA) utilizing various techniques. The micellization behavior of gemini surfactants has been altered in the presence of ctDNA. A series of measurements (fluorescence, UV-vis and time-resolved fluorescence) show that the quenching of ctDNA proceeds by a static mechanism. The competitive displacement studies (EB, AO and HO), KI quenching analysis, CD studies and viscosity measurements suggested intercalative binding mode in a stoichiometry ratio of 1:1 with the Kb (binding constant) order being: C16-E2O-C16 > C14-E2O-C14 > C12-E2O-C12. The thermodynamic parameters show that the geminis interacted with ctDNA spontaneously through ionic/electrostatic interactions. Furthermore, the theoretical approaches offer accurate insights about the binding of gemini surfactants with DNA, and are in consistence with the experimental results.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
| | - Hira Lal
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Kabir-Ud-Din
- Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
10
|
Kaur A, Sandhu RK, Khullar P, Singh K, Ahluwalia GK, Bakshi MS. Colloidal Stabilization of Sodium Dilauraminocystine for Selective Nanoparticle-Nanoparticle Interactions: Their Screening and Extraction by Iron Oxide Magnetic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6588-6599. [PMID: 34015225 DOI: 10.1021/acs.langmuir.1c00956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanoparticle-nanoparticle (NP-NP) interactions between Au and Ag NPs were studied by using sodium dilauraminocystine (SDLC)- and Gemini surfactant-stabilized NPs to demonstrate the unique NP surface adsorption behavior of SDLC in controlling and mimicking such interactions in complex mixtures. They were significantly affected by the spacer as well as the polymeric nature of the head group of Gemini surfactants. A longer spacer impeded while a polymeric head group facilitated the interactions. The Au-Ag NPs interactions in an aqueous phase were also controlled by placing surface-active magnetic NPs at an aqueous-air interface, which interacted with either or both kinds of interacting NPs in an aqueous phase and reduced their ability to interact with each other. On the other hand, water-soluble zwitterionic magnetic NPs proved to be excellent extractants of both Au and Ag NPs from the aqueous phase. Extraction efficiency depended on the strength of interactions between the water-soluble magnetic NPs and aqueous-solubilized Au and/or Ag NPs.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Chemistry, B.B.K. D.A.V. College for Women, Amritsar 143005, Punjab, India
| | - Ravneet Kaur Sandhu
- Department of Chemistry, B.B.K. D.A.V. College for Women, Amritsar 143005, Punjab, India
| | - Poonam Khullar
- Department of Chemistry, B.B.K. D.A.V. College for Women, Amritsar 143005, Punjab, India
| | - Kultar Singh
- Department of Chemistry, Khalsa College, G. T. Road, Amritsar, Punjab 143002, India
| | - Gurinder Kaur Ahluwalia
- Nanotechnology Research Laboratory, College of North Atlantic, Labrador City, NL A2V 2K7, Canada
| | - Mandeep Singh Bakshi
- Department of Chemistry, Natural and Applied Sciences, University of Wisconsin - Green Bay, 2420 Nicolet Drive, Green Bay, Wisconsin 54311-7001, United States
| |
Collapse
|
11
|
Effective cytocompatible nanovectors based on serine-derived gemini surfactants and monoolein for small interfering RNA delivery. J Colloid Interface Sci 2021; 584:34-44. [PMID: 33039681 DOI: 10.1016/j.jcis.2020.09.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/19/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Non-viral gene therapy based on gene silencing with small interfering RNA (siRNA) has attracted great interest over recent years. Among various types of cationic complexation agents, amino acid-based surfactants have been recently explored for nucleic acid delivery due to their low toxicity and high biocompatibility. Monoolein (MO), in turn, has been used as helper lipid in liposomal systems due to its ability to form inverted nonbilayer structures that enhance fusogenicity, thus contributing to higher transfection efficiency. In this work, we focused on the development of nanovectors for siRNA delivery based on three gemini amino acid-based surfactants derived from serine - (12Ser)2N12, amine derivative; (12Ser)2COO12, ester derivative; and (12Ser)2CON12, amide derivative - individually combined with MO as helper lipid. The inclusion of MO in the cationic surfactant system influences the morphology and size of the mixed aggregates. Furthermore, the gemini surfactant:MO systems showed the ability to efficiently complex siRNA, forming stable lipoplexes, in some cases clearly depending on the MO content, without inducing significant levels of cytotoxicity. High levels of gene silencing were achieved in comparison with a commercially available standard indicating that these gemini:MO systems are promising candidates as lipofection vectors for RNA interference (RNAi)-based therapies.
Collapse
|
12
|
Liposomes embedded in layer by layer constructs as simplistic extracellular vesicles transfer model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111813. [PMID: 33579457 DOI: 10.1016/j.msec.2020.111813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are particles originating from the exfoliation of the cellular membrane. They are involved in cell-to-cell and cell-to-matrix signaling, exchange of bioactive molecules, tumorigenesis and metastasis, among others. To mitigate the limited understanding of EVs transfer phenomena, we developed a simplistic model that mimics EVs and their interactions with cells and the extracellular matrix. The proposed model is a layer by layer (LbL) film built from the polycationic poly-l-lysine (PLL) and the glycosaminoglycan hyaluronic acid (HA) to provide ECM mimicry. Positively charged 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and N1,N1,N14,N14-tetramethyl-N1,N14-ditetradecyltetradecane-1,14-diaminium dibromide (GS14) liposomes were embedded in this construct to act as EVs analogs. To simulate EVs carrying substances, Nile Red was loaded as a model of lipophilic cargo molecules. The integration of each component was followed by quartz crystal microbalance measurements, which confirmed the immobilization of intact liposomes on the underlying (PLL/HA)3 soft film. The release of Nile Red from liposomes either embedded in the LbL construct or exposed at its surface revealed a fast first order release. This system was validated as a model for EV/cell interactions by incubation with breast cancer cells MDA-MB-231. We observed higher internalization for embedded liposomes when compared with surface-exposed ones, showcasing that the ECM mimic layers do not constitute a barrier to liposome/cell interactions but favor them.
Collapse
|