1
|
Hinz A, Lewandowska-Łańcucka J, Werner E, Cierniak A, Stalińska K, Dyduch G, Szuwarzyński M, Bzowska M. The elasticity of silicone-stabilized liposomes has no impact on their in vivo behavior. J Nanobiotechnology 2024; 22:467. [PMID: 39103899 DOI: 10.1186/s12951-024-02698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND The elastomechanical properties of nanocarriers have recently been discussed as important for the efficient delivery of various therapeutics. Some data indicate that optimal nanocarriers' elasticity can modulate in vivo nanocarrier stability, interaction with phagocytes, and uptake by target cells. Here, we presented a study to extensively analyze the in vivo behavior of LIP-SS liposomes that were modified by forming the silicone network within the lipid bilayers to improve their elastomechanical properties. We verified liposome pharmacokinetic profiles and biodistribution, including retention in tumors on a mouse model of breast cancer, while biocompatibility was analyzed on healthy mice. RESULTS We showed that fluorescently labeled LIP-SS and control LIP-CAT liposomes had similar pharmacokinetic profiles, biodistribution, and retention in tumors, indicating that modified elasticity did not improve nanocarrier in vivo performance. Interestingly, biocompatibility studies revealed no changes in blood morphology, liver, spleen, and kidney function but indicated prolonged activation of immune response manifesting in increased concentration of proinflammatory cytokines in sera of animals exposed to all tested liposomes. CONCLUSION Incorporating the silicone layer into the liposome structure did not change nanocarriers' characteristics in vivo. Further modification of the LIP-SS surface, including decoration with hydrophilic stealth polymers, should be performed to improve their pharmacokinetics and retention in tumors significantly. Activation of the immune response by LIP-SS and LIP-CAT, resulting in elevated inflammatory cytokine production, requires detailed studies to elucidate its mechanism.
Collapse
Affiliation(s)
- Alicja Hinz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Joanna Lewandowska-Łańcucka
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30- 387, Poland
| | - Ewa Werner
- Animal Facility, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Agnieszka Cierniak
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzińskiego 1, Kraków, 30-705, Poland
| | - Krystyna Stalińska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Grzegorz Dyduch
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, Kraków, 33-332, Poland
| | - Michał Szuwarzyński
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Al. Mickiewicza 30, Krakow, 30-059, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland.
| |
Collapse
|
2
|
Liu S, Han Y, Kong L, Wang G, Ye Z. Atomic force microscopy in disease-related studies: Exploring tissue and cell mechanics. Microsc Res Tech 2024; 87:660-684. [PMID: 38063315 DOI: 10.1002/jemt.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Accepted: 11/26/2023] [Indexed: 03/02/2024]
Abstract
Despite significant progress in human medicine, certain diseases remain challenging to promptly diagnose and treat. Hence, the imperative lies in the development of more exhaustive criteria and tools. Tissue and cellular mechanics exhibit distinctive traits in both normal and pathological states, suggesting that "force" represents a promising and distinctive target for disease diagnosis and treatment. Atomic force microscopy (AFM) holds great promise as a prospective clinical medical device due to its capability to concurrently assess surface morphology and mechanical characteristics of biological specimens within a physiological setting. This review presents a comprehensive examination of the operational principles of AFM and diverse mechanical models, focusing on its applications in investigating tissue and cellular mechanics associated with prevalent diseases. The findings from these studies lay a solid groundwork for potential clinical implementations of AFM. RESEARCH HIGHLIGHTS: By examining the surface morphology and assessing tissue and cellular mechanics of biological specimens in a physiological setting, AFM shows promise as a clinical device to diagnose and treat challenging diseases.
Collapse
Affiliation(s)
- Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
3
|
Krajcer A, Grzywna E, Lewandowska-Łańcucka J. Strategies increasing the effectiveness of temozolomide at various levels of anti-GBL therapy. Biomed Pharmacother 2023; 165:115174. [PMID: 37459661 DOI: 10.1016/j.biopha.2023.115174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Glioblastoma (GBL) is the most common (60-70% of primary brain tumours) and the most malignant of the glial tumours. Although current therapies remain palliative, they have been proven to prolong overall survival. Within an optimal treatment regimen (incl. surgical resection, radiation therapy, and chemotherapy) temozolomide as the current anti-GBL first-line chemotherapeutic has increased the median overall survival to 14-15 months, and the percentage of patients alive at two years has been reported to rise from 10.4% to 26.5%. Though, the effectiveness of temozolomide chemotherapy is limited by the serious systemic, dose-related side effects. Therefore, the ponderation regarding novel treatment methods along with innovative formulations is crucial to emerging the therapeutic potential of the widely used drug simultaneously reducing the drawbacks of its use. Herein the complex temozolomide application restrictions present at different levels of therapy as well as, the currently proposed strategies aimed at reducing those limitations are demonstrated. Approaches increasing the efficacy of anti-GBL treatment are addressed. Our paper is focused on the most recent developments in the field of nano/biomaterials-based systems for temozolomide delivery and their functionalization towards more effective blood-brain-barrier crossing and/or tumour targeting. Appropriate designing accounting for the physical and chemical features of formulations along with distinct routes of administration is also discussed. In addition, considering the multiple resistance mechanisms, the molecular heterogeneity and the evolution of tumour the purposely selected delivery methods, the combined therapeutic approaches and specifically focused on GBL cells therapies are reviewed.
Collapse
Affiliation(s)
- Aleksandra Krajcer
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Ewelina Grzywna
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Św. Anny 12, 31-008 Kraków, Poland
| | | |
Collapse
|
4
|
Klara J, Lewandowska-Łańcucka J. How Efficient are Alendronate-Nano/Biomaterial Combinations for Anti-Osteoporosis Therapy? An Evidence-Based Review of the Literature. Int J Nanomedicine 2022; 17:6065-6094. [PMID: 36510618 PMCID: PMC9738991 DOI: 10.2147/ijn.s388430] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Because of the systemic nature of osteoporosis, the associated escalation in fracture risk affects virtually all skeletal sites. The problem is serious since it is estimated that more than 23 million men and women are at high risk of osteoporotic-like breakages in the European Union. Alendronate (ALN) is the most commonly prescribed oral nitrogen-containing bisphosphonate (BP) for the prevention and the therapy of osteoporosis. This is also one of the most intensely studied drugs in this field. However, ALN is characterized by restricted oral absorption and bioavailability and simultaneously its administration has serious side-effects (jaw osteonecrosis, irritation of the gastrointestinal system, nausea, musculoskeletal pain, and cardiovascular risks). Therefore, delivery systems enabling controlled release and local action of this drug are of great interest, being widely researched and presented in the literature. In this review, we discuss the current trends in the design of various types of alendronate carriers. Our paper is focused on the most recent developments in the field of nano/biomaterials-based systems for ALN delivery, including nano/microformulations, synthetic/natural polymeric and inorganic materials, hydrogel-based materials, scaffolds, coated-like structures, as well as organic-inorganic hybrids. Topics related to the treatment of complex bone diseases including osteoporosis have been covered in several more general reviews; however, the systems for this particular drug have not yet been discussed in detail.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Kraków, 30-387, Poland
| | | |
Collapse
|
5
|
Sounouvou HT, Lechanteur A, Piel G, Evrard B. Silicones in dermatological topical drug formulation: Overview and advances. Int J Pharm 2022; 625:122111. [PMID: 35973590 DOI: 10.1016/j.ijpharm.2022.122111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/23/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Silicones, more specifically those of the polydimethylsiloxane type, have been widely used in the pharmaceutical industry for decades, particularly in topical applications. In the dermatological field, in addition to provide undeniable textural and sensory benefits, they can play important functions in the physicochemical properties, stability and biopharmaceutical behavior of these formulations. However, despite the notable advances that can be attributed to the family of silicones, the reputation of these compounds is quite bad. Indeed, silicones, even if they derive from sand, are synthetic compounds. Moreover, they are not biodegradable. They flow into our wastewater and oceans, accumulating in the fauna and flora. This obviously raises many concerns in the common imagination. Do silicones represent a danger for our environment? Should the human species worry about long term toxic effects? Are the claimed benefits really that important? After exploring the various applications of silicone excipients in topical dermatological formulations with a special focus on recent advances which open breathtaking prospects for dermatological applications, this paper shed light on the specific challenges involved in preparation of silicone-based drug as well as, the in vivo behavior of these polymers, the toxicological and environmental risks associated with their application.
Collapse
Affiliation(s)
- Hope T Sounouvou
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, 4000 Liège, Belgium; Medicinal Organic Chemistry Laboratory (MOCL), School of Pharmacy, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Campus du Champ de Foire, Cotonou, Benin.
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, 4000 Liège, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, 4000 Liège, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
6
|
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309:102757. [DOI: 10.1016/j.cis.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
|