1
|
Fauiod OG, Fadel M, El-Hussein A, Fadeel DA. Aluminum phthalocyanine tetrasulfonate conjugated to surface-modified Iron oxide nanoparticles as a magnetic targeting platform for photodynamic therapy of Ehrlich tumor-bearing mice. Photodiagnosis Photodyn Ther 2024; 50:104356. [PMID: 39368768 DOI: 10.1016/j.pdpdt.2024.104356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a targeted treatment option for cancers that are non-responding to ordinary anticancer therapies. It involves activating a photosensitizer with a light source of a specific wavelength to destroy targeted cells and their surrounding vasculature. Aluminum phthalocyanine tetra sulfonate (AlPcS4) has gained attention as a second-generation photosensitizer for its strong absorption in the red-light region. AlPcS4 can be conjugated to magnetic iron oxide nanoparticles (IONs) to provide targeted drug delivery to the tumor cells while reducing its undesired effect on healthy tissues in other body parts. METHODS Magnetic glutamine functionalized iron oxide nanocomposites loaded with AlPcS4 (IONs-NH2-AlPcS4) were synthesized via the co-precipitation method. The conjugate (IONs-NH2-AlPcS4) was characterized by TEM, Zeta potential, DLS, FTIR, and UV-VIS absorption spectroscopy. Furthermore, its photodynamic activity was investigated using albino mice with induced Ehrlich solid tumors. RESULTS AlPcS4 was successfully conjugated to IONs-NH2 with a high loading efficiency of 54±2%. The synthesized conjugate exhibited a spherical shape, with 7 ± 2 nm particle size. The In vivo experiment revealed that the albino mice with induced Ehrlich solid tumor that were treated by combined PDT and magnetic targeting conjugate exhibited significant tumor regression and notably higher levels of necrotic tissue compared to the animals in other groups. CONCLUSION PDT mediated by magnetic targeting significantly inhibited tumor growth with minimal adverse effects, indicating its great potential as a promising strategy for solid cancer treatment.
Collapse
Affiliation(s)
- Omnia G Fauiod
- Pharmaceutical Nanotechnology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Egypt
| | - Maha Fadel
- Pharmaceutical Nanotechnology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Egypt
| | - Ahmed El-Hussein
- Laser Applications in Metrology, Photochemistry and Agriculture unit, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt; Faculty of Science, Galala University, Egypt
| | - Doaa Abdel Fadeel
- Pharmaceutical Nanotechnology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Egypt.
| |
Collapse
|
2
|
Liu Y, Li Y, Shao C, Wang P, Wang X, Li R. Curcumin-based residue-free and reusable photodynamic inactivation system for liquid foods and its application in freshly squeezed orange juice. Food Chem 2024; 458:140316. [PMID: 38968711 DOI: 10.1016/j.foodchem.2024.140316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
To enhance curcumin's application in photodynamic inactivation (PDI) of liquid foods, a supramolecular complex of biotin-modified β-cyclodextrin and curcumin (Biotin-CD@Cur) was synthesized. This complex significantly improves curcumin's solubility, stability, and PDI efficiency. Following PDI, Biotin-CD@Cur can be magnetically separated from the liquid matrix using streptavidin-coated magnetic beads (SA-MBs). Leveraging the reversible binding between streptavidin and biotin, Biotin-CD@Cur and SA-MBs fully dissociate in ultrapure water at 70 °C, enabling reuse. Antibacterial tests in freshly squeezed orange juice demonstrated that a low dose of 1.5 J/cm2 from a 420 nm LED array and 10 μg/mL of Biotin-CD@Cur achieved log reductions of 3.287 ± 0.015 for Staphylococcus aureus and 2.961 ± 0.011 for Listeria monocytogenes, while preserving the juice's flavor and nutritional contents. The PDI system remained effective for at least four cycles. Ultra-performance liquid chromatography and atomic absorption spectroscopy confirmed no residues of system components in the juice after magnetic separation.
Collapse
Affiliation(s)
- Yan Liu
- School of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Yujie Li
- Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Chen Shao
- School of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA
| | - Xiaoxuan Wang
- School of Food Engineering, Ludong University, Yantai 264025, Shandong, China; Bio-Nanotechnology Research Institute, Ludong University, Yantai 264025, Shandong, China
| | - Runhe Li
- School of Food Engineering, Ludong University, Yantai 264025, Shandong, China
| |
Collapse
|
3
|
Sun G, Huang S, Wang S, Li Y. Nanomaterial-based drug-delivery system as an aid to antimicrobial photodynamic therapy in treating oral biofilm. Future Microbiol 2024; 19:741-759. [PMID: 38683167 PMCID: PMC11259068 DOI: 10.2217/fmb-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 05/01/2024] Open
Abstract
Diverse microorganisms live as biofilm in the mouth accounts for oral diseases and treatment failure. For decades, the prevention and treatment of oral biofilm is a global challenge. Antimicrobial photodynamic therapy (aPDT) holds promise for oral biofilm elimination due to its several traits, including broad-spectrum antimicrobial capacity, lower possibility of resistance and low cytotoxicity. However, the physicochemical properties of photosensitizers and the biological barrier of oral biofilm have limited the efficiency of aPDT. Nanomaterials has been used to fabricate nanocarriers to improve photosensitizer properties and thus enhance antimicrobial effect. In this review, we have discussed the challenges of aPDT used in dentistry, categorized the nanomaterial-delivery system and listed the possible mechanisms involved in nanomaterials when enhancing aPDT effect.
Collapse
Affiliation(s)
- Guanwen Sun
- Department of stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Shan Huang
- Department of stomatology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Shaofeng Wang
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
- Xiamen Key Laboratory of Stomatological Disease Diagnosis & Treatment, Xiamen, China
| |
Collapse
|
4
|
Song Z, Guan C, Li T, Li C, Zhang N, Liu K, Yang C, Zhu Y, Xu Y. Vaporization phosphorization-mediated synthesis of phosphorus-doped TiO 2 nanocomposites for combined photodynamic and photothermal therapy of renal cell carcinoma. J Mater Chem B 2024; 12:4039-4052. [PMID: 38591157 DOI: 10.1039/d4tb00213j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a disease with high incidence and poor prognosis. The conventional treatment involves radiotherapy and chemotherapy, but chemotherapeutic agents are often associated with side effects, i.e., cytotoxicity to nontumor cells. Therefore, there is an urgent need for the development of novel therapeutic strategies for ccRCC. We synthesized spherical P/TiO2 nanoparticles (P/TiO2 NPs) by vaporization phosphorization (VP). X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) analyses confirmed that the anatase TiO2 surface was successfully doped with phosphorus and produced a large number of oxygen vacancies (OV). Serving as a photosensitizer, P/TiO2 NPs not only extended the photoresponse range to the near-infrared II region (NIR II) but also introduced a donor energy level lower than the TiO2 conduction band, narrowing the band gap, which could facilitate the migration of photogenerated charges and trigger the synergistic treatment of photodynamic therapy (PDT) and photothermal therapy (PTT). During NIR irradiation in vitro, the P/TiO2 NPs generated local heat and various oxygen radicals, including 1O2, ˙O2-, H2O2, and ˙OH, which damaged the ccRCC cells. In vivo, administration of the P/TiO2 NPs + NIR reduced the tumor volume by 80%, and had the potential to inhibit tumor metastasis by suppressing intratumor neoangiogenesis. The P/TiO2 NPs showed superior safety and efficacy relative to the conventional chemotherapeutic agent used in ccRCC treatment. This study introduced an innovative paradigm for renal cancer treatment, highlighting the potential of P/TiO2 NPs as safe and effective nanomaterials and presenting a compelling new option for clinical applications in anticancer therapy.
Collapse
Affiliation(s)
- Zhuo Song
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Chen Guan
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Tianyang Li
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Chenyu Li
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ningxin Zhang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Ke Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Chengyu Yang
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Yukun Zhu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yan Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
5
|
de Santana WMOS, Surur AK, Momesso VM, Lopes PM, Santilli CV, Fontana CR. Nanocarriers for photodynamic-gene therapy. Photodiagnosis Photodyn Ther 2023; 43:103644. [PMID: 37270046 DOI: 10.1016/j.pdpdt.2023.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
The use of nanotechnology in medicine has important potential applications, including in anticancer strategies. Nanomedicine has made it possible to overcome the limitations of conventional monotherapies, in addition to improving therapeutic results by means of synergistic or cumulative effects. A highlight is the combination of gene therapy (GT) and photodynamic therapy (PDT), which are alternative anticancer approaches that have attracted attention in the last decade. In this review, strategies involving the combination of PDT and GT will be discussed, together with the role of nanocarriers (nonviral vectors) in this synergistic therapeutic approach, including aspects related to the design of nanomaterials, responsiveness, the interaction of the nanomaterial with the biological environment, and anticancer performance in studies in vitro and in vivo.
Collapse
Affiliation(s)
| | - Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Vinícius Medeiros Momesso
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Pedro Monteiro Lopes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil
| | - Celso V Santilli
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, 14800-900, Brazil
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, 14800-903, Brazil.
| |
Collapse
|
6
|
Songca SP. Combinations of Photodynamic Therapy with Other Minimally Invasive Therapeutic Technologies against Cancer and Microbial Infections. Int J Mol Sci 2023; 24:10875. [PMID: 37446050 DOI: 10.3390/ijms241310875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The rapid rise in research and development following the discovery of photodynamic therapy to establish novel photosensitizers and overcome the limitations of the technology soon after its clinical translation has given rise to a few significant milestones. These include several novel generations of photosensitizers, the widening of the scope of applications, leveraging of the offerings of nanotechnology for greater efficacy, selectivity for the disease over host tissue and cells, the advent of combination therapies with other similarly minimally invasive therapeutic technologies, the use of stimulus-responsive delivery and disease targeting, and greater penetration depth of the activation energy. Brought together, all these milestones have contributed to the significant enhancement of what is still arguably a novel technology. Yet the major applications of photodynamic therapy still remain firmly located in neoplasms, from where most of the new innovations appear to launch to other areas, such as microbial, fungal, viral, acne, wet age-related macular degeneration, atherosclerosis, psoriasis, environmental sanitization, pest control, and dermatology. Three main value propositions of combinations of photodynamic therapy include the synergistic and additive enhancement of efficacy, the relatively low emergence of resistance and its rapid development as a targeted and high-precision therapy. Combinations with established methods such as chemotherapy and radiotherapy and demonstrated applications in mop-up surgery promise to enhance these top three clinical tools. From published in vitro and preclinical studies, clinical trials and applications, and postclinical case studies, seven combinations with photodynamic therapy have become prominent research interests because they are potentially easily applied, showing enhanced efficacy, and are rapidly translating to the clinic. These include combinations with chemotherapy, photothermal therapy, magnetic hyperthermia, cold plasma therapy, sonodynamic therapy, immunotherapy, and radiotherapy. Photochemical internalization is a critical mechanism for some combinations.
Collapse
Affiliation(s)
- Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg 3209, South Africa
| |
Collapse
|
7
|
Silva Junior ZS, Dos Santos LAD, Gonçalves MLL, Gallo JMAS, da Silva T, Motta LJ, Santos EM, Horliana ACRT, Fernandes KPS, Mesquita-Ferrari RA, Bussadori SK. Photodynamic therapy with acai (Euterpe oleracea) and blue light in oral cells: A spectroscopic and cytotoxicity analysis. JOURNAL OF BIOPHOTONICS 2023; 16:e202200259. [PMID: 36349809 DOI: 10.1002/jbio.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To evaluate the potential of photodynamic therapy (PDT) with blue light-emitting diode (LED) 460 nm at 25, 50 and 100 J/cm2 using three concentrations of acai extracts (100, 40, and 10 mg/ml), in the proliferation and viability of head and neck tumor lines (SCC9). METHODS Three groups of cells were analyzed for 3 days in an in vitro assay with MTT (3- (4,5-dimethylthiazol-2-yl) -2,5, -diphenyltetrazolium bromide) and crystal violet: cells in the absence of acai extract and PDT (control group); cells in the presence of acai extract and no light; and cells in the presence of acai extract and LED blue light (PDT groups). RESULTS When using acai as a PS combined with blue LED (460 nm, 0.7466 cm2 , 1000 mW/cm2 ) and irradiation at 25, 50, and 100 J/cm2 , after 72 h, cell viability (p < 0.0001 vs. control, p = 0.0027 vs. 100 mg/ml açai group, p = 0.0039 vs. 40 mg/ml açai group, p = 0.0135 vs. 10 mg/ml açai group; One-Way ANOVA/Tukey) and proliferation (p < 0.05, One-Way ANOVA/Tukey) decreased. CONCLUSION The acai in question is a potential photosensitizer (PS), with blue light absorbance and efficacy against head and neck tumor lines (SCC9).
Collapse
Affiliation(s)
- Zenildo Santos Silva Junior
- Post Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Lucas Andreo Dias Dos Santos
- Post Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| | | | | | - Tamiris da Silva
- Postgraduation Program in Rehabilitation Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Lara Jansiski Motta
- Post Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Elaine Marcílio Santos
- Postgraduation Program in Health and Environment, Universidade Metropolitana de Santos, Santos, SP, Brazil
| | | | | | | | - Sandra Kalil Bussadori
- Post Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Garapati C, HS. Boddu S, Jacob S, Ranch KM, Patel C, Jayachandra Babu R, Tiwari AK, Yasin H. Photodynamic Therapy: A Special Emphasis on Nanocarrier-mediated Delivery of Photosensitizers in Antimicrobial Therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
9
|
Alkahtany MF. Efficacy of curcumin-mediated photodynamic therapy for root canal therapy procedures: A systematic review. Photodiagnosis Photodyn Ther 2022; 41:103252. [PMID: 36563708 DOI: 10.1016/j.pdpdt.2022.103252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND This systematic review aimed to investigate the effectiveness of CUR-mediated PDT (Curcumin mediated PDT) as an adjunct to conventional chemo-mechanical debridement and/or standard PDT of the RC system with endodontic infections. METHODS The focused research question was: "Whether the application Curcumin mediated PDT as an adjunct is more effective than the traditional chemo-mechanical debridement and/or standard PDT of the RC system alone for improving antibacterial and/or mechanical features among subjects undergoing RCT?". An electronic literature search was performed in Scopus, PubMed, and Web of Science. In vitro reports utilizing Curcumin mediated PDT as an adjunct to conventional chemo-mechanical debridement considering permanent dentition assessing the antibacterial and/or mechanical effect were included. RESULTS Eighteen articles were included in the review, out of which 13 studies assessed the antibacterial activity, while 5 evaluated the mechanical properties. Most of the studies concluded that Curcumin mediated PDT had a significant antibacterial activity than the conventional chemo-mechanical debridement and/or standard PDT. Four of the five studies suggested that Curcumin mediated PDT had no impact on the push-out bond strength of root dentin. Furthermore, the significant heterogeneity in the data from the included studies did not permit the author to carry out a meta-analysis. CONCLUSION There is potential for application of Curcumin mediated PDT as an adjunct to the conventional chemo-mechanical debridement and/or standard PDT in reducing the bacterial load, however, Curcumin mediated PDT has minimal effect on enhancing the pushout bond strength of fiber posts to radicular dentin. Moreover, clinical studies are required to provide a more conclusive opinion on the efficacy of Curcumin mediated PDT for RCT procedures.
Collapse
Affiliation(s)
- Mazen F Alkahtany
- Department of Restorative Dental Science, Division of Endodontics, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
10
|
Ferrisse TM, Dias LM, de Oliveira AB, Jordão CC, Mima EGDO, Pavarina AC. Efficacy of Antimicrobial Photodynamic Therapy Mediated by Photosensitizers Conjugated with Inorganic Nanoparticles: Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:2050. [PMID: 36297486 PMCID: PMC9612113 DOI: 10.3390/pharmaceutics14102050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) is a method that does not seem to promote antimicrobial resistance. Photosensitizers (PS) conjugated with inorganic nanoparticles for the drug-delivery system have the purpose of enhancing the efficacy of aPDT. The present study was to perform a systematic review and meta-analysis of the efficacy of aPDT mediated by PS conjugated with inorganic nanoparticles. The PubMed, Scopus, Web of Science, Science Direct, Cochrane Library, SciELO, and Lilacs databases were searched. OHAT Rob toll was used to assess the risk of bias. A random effect model with an odds ratio (OR) and effect measure was used. Fourteen articles were able to be included in the present review. The most frequent microorganisms evaluated were Staphylococcus aureus and Escherichia coli, and metallic and silica nanoparticles were the most common drug-delivery systems associated with PS. Articles showed biases related to blinding. Significant results were found in aPDT mediated by PS conjugated with inorganic nanoparticles for overall reduction of microorganism cultured in suspension (OR = 0.19 [0.07; 0.67]/p-value = 0.0019), E. coli (OR = 0.08 [0.01; 0.52]/p-value = 0.0081), and for Gram-negative bacteria (OR = 0.12 [0.02; 0.56/p-value = 0.0071). This association approach significantly improved the efficacy in the reduction of microbial cells. However, additional blinding studies evaluating the efficacy of this therapy over microorganisms cultured in biofilm are required.
Collapse
Affiliation(s)
- Túlio Morandin Ferrisse
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Luana Mendonça Dias
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Analú Barros de Oliveira
- Department of Morphology, Pediatric Dentistry and Orthodontic, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil
| | - Cláudia Carolina Jordão
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Universidade Estadual Paulista (UNESP), Araraquara 14801-903, SP, Brazil
| |
Collapse
|
11
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
12
|
Ferrisse TM, Dias LM, de Oliveira AB, Jordão CC, Mima EGDO, Pavarina AC. EFFICACY OF CURCUMIN-MEDIATED ANTIBACTERIAL PHOTODYNAMIC THERAPY FOR ORAL ANTISEPSIS: A SYSTEMATIC REVIEW AND NETWORK META-ANALYSIS OF RANDOMIZED CLINICAL TRIALS. Photodiagnosis Photodyn Ther 2022; 39:102876. [PMID: 35472640 DOI: 10.1016/j.pdpdt.2022.102876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/20/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND currently, the presence of oral microorganisms resistant to traditional treatment is increasing, thus search for new modalities of therapies is needed. In this context, antimicrobial photodynamic therapy (aPDT) is an alternative approach for the treatment of resistant or not resistant microorganisms. Therefore, the aim of the present study was to conduct a systematic review and meta-analysis of randomized clinical trials of aPDT for oral antisepsis against oral polymicrobial biofilms. METHODS PubMed, Science Direct, Scopus, SciELO, Lilacs, Cochrane Library and Embase databases were searched. In total, five articles were included for qualitative analysis and four articles were used for quantitative analyses. Bias assessment of the eligible articles was made using the RoB 2 criteria. Network meta-analysis was performed using the random-effect model. Subgroup's analysis was also conducted. The groups evaluated were aPDT, exposure to light only and no treatment at all (control group). The quality of evidence was accessed by CINeMA approach. RESULTS aPDT mediated by curcumin had significant results in the reducing bacterial load (0.31-0.49 log10 UFC/ I2=0%) when compared with the control group. The included articles were classified as low risk of bias, despite biases detected by allocation and blinding. Moreover, quantitative analysis between aPDT and control group and between light and control group were classified with low risk of confidence rating, while the results from aPDT versus light were classified as moderate risk of confidence rating. CONCLUSION aPDT has significant efficacy for oral antisepsis, however more randomized clinical trials will be needed to validate the present results.
Collapse
Affiliation(s)
- Túlio Morandin Ferrisse
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Luana Mendonça Dias
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Analú Barros de Oliveira
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry São Paulo State University (Unesp), School of Dentistry, Araraquara, SP, Brazil
| | - Claudia Carolina Jordão
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Ana Cláudia Pavarina
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil.
| |
Collapse
|
13
|
Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms. Int J Mol Sci 2022; 23:ijms23063209. [PMID: 35328629 PMCID: PMC8953781 DOI: 10.3390/ijms23063209] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial photodynamic therapy and allied photodynamic antimicrobial chemotherapy have shown remarkable activity against bacterial pathogens in both planktonic and biofilm forms. There has been little or no resistance development against antimicrobial photodynamic therapy. Furthermore, recent developments in therapies that involve antimicrobial photodynamic therapy in combination with photothermal hyperthermia therapy, magnetic hyperthermia therapy, antibiotic chemotherapy and cold atmospheric pressure plasma therapy have shown additive and synergistic enhancement of its efficacy. This paper reviews applications of antimicrobial photodynamic therapy and non-invasive combination therapies often used with it, including sonodynamic therapy and nanozyme enhanced photodynamic therapy. The antimicrobial and antibiofilm mechanisms are discussed. This review proposes that these technologies have a great potential to overcome the bacterial resistance associated with bacterial biofilm formation.
Collapse
|
14
|
Abdelmonem AM, Zámbó D, Rusch P, Schlosser A, Klepzig LF, Bigall NC. Versatile Route for Multifunctional Aerogels Including Flaxseed Mucilage and Nanocrystals. Macromol Rapid Commun 2022; 43:e2100794. [PMID: 35085414 DOI: 10.1002/marc.202100794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Indexed: 11/05/2022]
Abstract
Preparation of low density monolithic and free-standing organic-inorganic hybrid aerogels of various properties is demonstrated using green chemistry from a biosafe natural source (flaxseed mucilage) and freeze-casting and subsequent freeze drying. Bio-aerogels, luminescent aerogels and magneto-responsive aerogels were obtained by combination of the flaxseed mucilage with different types of nanoparticles. Moreover, the aerogels are investigated as possible drug release system using curcumin as a model. Various characterization techniques like thermogravimetric analysis, nitrogen physisorption, electron microscopy, UV/Vis absorption and emission spectroscopy, bulk density and mechanical measurements as well as in vitro release profile measurements are employed to investigate the obtained materials. The flaxseed-inspired organic-inorganic hybrid aerogels exhibit ultra-low densities of as low as 5.6 mg/cm3 for 0.5% (w/v) mucilage polymer, a specific surface area of 4 to 20 m2 /g, high oil absorption capacity (23 g/g) and prominent compressibility. The natural biopolymer technique leads to low cost and biocompatible functional lightweight materials with tunable properties (physicochemical and mechanical) and significant potential for applications as supporting or stimuli responsive materials, carriers, reactors, microwave, and electromagnetic radiation protective (absorbing) material as well as in drug delivery and oil absorption. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Abuelmagd M Abdelmonem
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany.,Food Technology Research Institute, Agricultural Research Center, 9 Cairo University St., Giza, 12619, Egypt
| | - Dániel Zámbó
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany.,Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. str. 29-33, Budapest, H-1121, Hungary
| | - Pascal Rusch
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany
| | - Anja Schlosser
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany
| | - Lars F Klepzig
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany.,Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Leibniz Universität Hannover, Hannover, 30167, Germany
| |
Collapse
|
15
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
16
|
Kosmulski M. The pH dependent surface charging and points of zero charge. IX. Update. Adv Colloid Interface Sci 2021; 296:102519. [PMID: 34496320 DOI: 10.1016/j.cis.2021.102519] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023]
Abstract
of the points of zero charge (PZC) and isoelectric points (IEP) of various materials published in the recent literature and of older results overlooked in the previous compilations. The roles of experimental conditions, especially of the temperature, of the nature and concentration of supporting electrolyte, and of the type of apparatus are emphasized. The newest results are compared with the zero points reported in previous reviews. Most recent studies were carried out with materials whose pH dependent surface charging is already well-documented, and the newest results are consistent with the older literature. Isoelectric points of Gd(OH)3, Sm(OH)3, and TeO2 have been reported for the first time in the recent literature.
Collapse
Affiliation(s)
- Marek Kosmulski
- Lublin University of Technology, Nadbystrzycka 38, PL-20618 Lublin, Poland.
| |
Collapse
|
17
|
Lai D, Zhou A, Tan BK, Tang Y, Sarah Hamzah S, Zhang Z, Lin S, Hu J. Preparation and photodynamic bactericidal effects of curcumin-β-cyclodextrin complex. Food Chem 2021; 361:130117. [PMID: 34058659 DOI: 10.1016/j.foodchem.2021.130117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
To overcome the poor water solubility of curcumin, a curcumin-β-cyclodextrin (Cur-β-CD) complex was prepared as a novel photosensitizer. Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to verify the formation of Cur-β-CD. Furthermore, the ROS generation capacity and photodynamic bactericidal effect were measured to confirm this Cur-β-CD complex kept photodynamic activity of curcumin. The result showed Cur-β-CD could effectively generate ROS upon blue-light irradiation. The plate count assay demonstrated Cur-β-CD complex possess desirable photodynamic antibacterial effect against food-borne pathogens including Staphylococcus aureus, Listeria monocytogenes and Escherichia coli. The cell morphology determined by scanning electron microscope (SEM) and transmission electron microscope (TEM) showed Cur-β-CD could cause cell deformation, surface collapse and cell structure damage of the bacteria, resulting in the leakage of cytoplasmic; while agarose gel electrophoresis and SDS-PAGE further illustrated the inactivation mechanisms by Cur-β-CD involve bacterial DNA damage and protein degradation.
Collapse
Affiliation(s)
- Danning Lai
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Arong Zhou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Bee K Tan
- Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Yibin Tang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Siti Sarah Hamzah
- Institute for Medical Research, Ministry of Health Malaysia, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 361100, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Superparamagnetic α-Fe 2O 3/Fe 3O 4 Heterogeneous Nanoparticles with Enhanced Biocompatibility. NANOMATERIALS 2021; 11:nano11040834. [PMID: 33805140 PMCID: PMC8064077 DOI: 10.3390/nano11040834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023]
Abstract
A novel type of magnetic α-Fe2O3/Fe3O4 heterogeneous nanoparticles was prepared via a facile solution combustion process with ferric nitrate and urea as raw materials, and they were characterized by XRD, SEM, TEM, and VSM techniques. The effects of the calcination temperature, the calcination time, the ratio of ferric nitrate and urea, and the heating rate on the relative content of Fe3O4 in the heterogeneous nanoparticles were investigated. The toxicity of α-Fe2O3/Fe3O4 heterogeneous nanoparticles to human hepatocytes L-02, the blood routine, and the histopathological section observation of mice were explored. The results showed that the ratio of ferric nitrate and urea was a key factor to affect the relative content of Fe3O4 in the heterogeneous nanoparticles. The calcination temperature and the calcination time had similar influences, and the corresponding calcination temperature and the calcination time were selected according to their own needs. The CCK8 results initially revealed that α-Fe2O3/Fe3O4 heterogeneous nanoparticles had no effect on cell viability when the concentration of the heterogeneous nanoparticles was less than 100 ng/mL, which suggested their excellent biocompatibility. At the same time, the tail vein administration concentration of 0.9 mg/kg had good biological safety.
Collapse
|