1
|
Han C, Lu D, Yang S, Liu C, Guo F, Zhang K, Li P. Copper ion-doped multifunctional hydrogel with mild photothermal enhancement promotes vascularized bone regeneration. J Biomater Appl 2024; 39:332-342. [PMID: 39056481 DOI: 10.1177/08853282241268683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The design and construction of a new and excellent synthetic graft is of great significance in the field of bone defect repair and reconstruction. In this study, a dopamine modified chitosan hydrogel doped with Cu ions with a mild photothermal effect was designed to provide a better microenvironment to advance the bone repair via promote the angiogenesis and osteogenesis. Characterizations showed the successful synthesis of the material while it also presented excellent biocompatibility and mild photothermal effect under the irradiation of near-infrared light. Further, it could enhance the angiogenesis of HUVECs cells through promoting the ability of migration and tube formation and enhance the osteogenic differentiation of MC3T3-E1 cells via increasing the content of vital osteogenic factors including Runx2, Col-1, OPN, OCN, OSX, etc. The in vivo experiment also testified that it could promote the bone defect repair in rat models. These results indicate the multifunctional hydrogel is an ideal material for the treatment of bone defects and has good clinical application potential.
Collapse
Affiliation(s)
- Chao Han
- Department of Orthopaedics, Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Dingsong Lu
- Department of Orthopaedics, Xianyang Hospital of Yan'an University, Xianyang, China
| | - Suoping Yang
- Department of Orthopaedics, Xianyang Hospital of Yan'an University, Xianyang, China
| | - Chong Liu
- Department of Orthopaedics, Xianyang Hospital of Yan'an University, Xianyang, China
| | - Feng Guo
- Department of Orthopaedics, Xianyang Hospital of Yan'an University, Xianyang, China
| | - Kai Zhang
- Department of Orthopaedics, Xianyang Hospital of Yan'an University, Xianyang, China
| | - Peng Li
- Department of Orthopaedics, Xianyang Hospital of Yan'an University, Xianyang, China
| |
Collapse
|
2
|
Zhou S, Tu Z, Chen Z, Jiang D, Lv S, Cui H. Engineering Ga-doped mesoporous bioactive glass-integrated PEEK implants for immunomodulatory and enhanced osseointegration effects. Colloids Surf B Biointerfaces 2024; 245:114189. [PMID: 39232480 DOI: 10.1016/j.colsurfb.2024.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
With the increasing aging population, the demand for orthopedic implants is also growing. Polyether ether ketone (PEEK) is considered a promising material for orthopedic implants due to its excellent biocompatibility. However, the lack of bioactivity and excessive immune response post-implantation often impair bone integration. Therefore, it is urgent to bio-functionalize PEEK-based implants to promote bone integration. This study employs a simple, economical, and feasible method to coat Ga-ion doped bioactive glass nanoparticles (Ga-MBGs) onto sulfonated PEEK surfaces, constructing a multifunctional PEEK-based orthopedic implant. The resulting bio-functionalized PEEK implants promote macrophage M2 phenotype polarization, thus fostering an anti-inflammatory immune microenvironment. Moreover, the direct osteogenic effect of Ga ions and the immuno-osteogenic effect through promoting macrophage M2 polarization enhance osteogenic differentiation potential in vitro and bone integration in vivo. A sequence of in vivo and in vitro experiments substantiates the essential and intricate function of this innovative orthopedic implants. in regulating normal bone immunity and metabolism. Overall, the application of Ga-MBGs provides a simple, economical, and effective method for developing multifunctional orthopedic implants. This surface bio-functionalized PEEK implant, capable of modulating immunity and bone metabolism, holds significant clinical application potential as an orthopedic implant.
Collapse
Affiliation(s)
- Shiran Zhou
- Department of Orthopedics, Haian People's Hospital, No. 17 Zhongba Middle Road, Haian City, Jiangsu Province 226600, China
| | - Zubo Tu
- Department of Orthopedics, Haian People's Hospital, No. 17 Zhongba Middle Road, Haian City, Jiangsu Province 226600, China
| | - Zhigang Chen
- Department of Orthopedics, Haian People's Hospital, No. 17 Zhongba Middle Road, Haian City, Jiangsu Province 226600, China
| | - Dong Jiang
- Department of Orthopedics, Haian People's Hospital, No. 17 Zhongba Middle Road, Haian City, Jiangsu Province 226600, China
| | - Shujun Lv
- Department of Orthopedics, Haian People's Hospital, No. 17 Zhongba Middle Road, Haian City, Jiangsu Province 226600, China.
| | - Haidong Cui
- Department of Orthopedics, Haian People's Hospital, No. 17 Zhongba Middle Road, Haian City, Jiangsu Province 226600, China.
| |
Collapse
|
3
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
4
|
Zhang J, Ma T, Liu X, Zhang X, Meng W, Wu J. Multifunctional surface of the nano-morphic PEEK implant with enhanced angiogenic, osteogenic and antibacterial properties. Regen Biomater 2024; 11:rbae067. [PMID: 38974666 PMCID: PMC11226884 DOI: 10.1093/rb/rbae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 07/09/2024] Open
Abstract
Polyetheretherketone (PEEK) is a high-performance polymer suitable for use in biomedical coatings. The implants based on PEEK have been extensively studied in dental and orthopedic fields. However, their inherent inert surfaces and poor osteogenic properties limit their broader clinical applications. Thus, there is a pressing need to produce a multifunctional PEEK implant to address this issue. In response, we developed sulfonated PEEK (sPEEK)-Cobalt-parathyroid hormone (PTH) materials featuring multifunctional nanostructures. This involved loading cobalt (Co) ions and PTH (1-34) protein onto the PEEK implant to tackle this challenge. The findings revealed that the controlled release of Co2+ notably enhanced the vascular formation and the expression of angiogenic-related genes, and offered antimicrobial capabilities for sPEEK-Co-PTH materials. Additionally, the sPEEK-Co-PTH group exhibited improved cell compatibility and bone regeneration capacity in terms of cell activity, alkaline phosphatase (ALP) staining, matrix mineralization and osteogenic gene expression. It surpassed solely sulfonated and other functionalized sPEEK groups, demonstrating comparable efficacy even when compared to the titanium (Ti) group. Crucially, animal experiments also corroborated the significant enhancement of osteogenesis due to the dual loading of cobalt ions and PTH (1-34). This study demonstrated the potential of bioactive Co2+ and PTH (1-34) for bone replacement, optimizing the bone integration of PEEK implants in clinical applications.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Tongtong Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Xueye Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Xiaoran Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Wenqing Meng
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Junling Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| |
Collapse
|
5
|
Huang H, Liu X, Wang J, Suo M, Zhang J, Sun T, Wang H, Liu C, Li Z. Strategies to improve the performance of polyetheretherketone (PEEK) as orthopedic implants: from surface modification to addition of bioactive materials. J Mater Chem B 2024; 12:4533-4552. [PMID: 38477504 DOI: 10.1039/d3tb02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Polyetheretherketone (PEEK), as a high-performance polymer, is widely used for bone defect repair due to its homogeneous modulus of elasticity of human bone, good biocompatibility, excellent chemical stability and projectability. However, the highly hydrophobic surface of PEEK is biologically inert, which makes it difficult for cells and proteins to attach, and is accompanied by the development of infections that ultimately lead to failure of PEEK implants. In order to further enhance the potential of PEEK as an orthopedic implant, researchers have explored modification methods such as surface modification by physical and chemical means and the addition of bioactive substances to PEEK-based materials to enhance the mechanical properties, osteogenic activity and antimicrobial properties of PEEK. However, these current modification methods still have obvious shortcomings in terms of cost, maneuverability, stability and cytotoxicity, which still need to be explored by researchers. This paper reviews some of the modification methods that have been used to improve the performance of PEEK over the last three years in anticipation of the need for researchers to design PEEK orthopedic implants that better meet clinical needs.
Collapse
Affiliation(s)
- Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chengde Liu
- Department of Polymer Science & Materials, Dalian University of Technology, Dalian, People's Republic of China.
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, People's Republic of China
| |
Collapse
|
6
|
Bai Z, Zhao Y, Cui C, Yan J, Qin D, Tong J, Peng H, Liu Y, Sun L, Wu X, Li B, Li X. Multifaceted Materials for Enhanced Osteogenesis and Antimicrobial Properties on Bioplastic Polyetheretherketone Surfaces: A Review. ACS OMEGA 2024; 9:17784-17807. [PMID: 38680314 PMCID: PMC11044237 DOI: 10.1021/acsomega.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Implant-associated infections and the increasing number of bone implants loosening and falling off after implantation have become urgent global challenges, hence the need for intelligent alternative solutions to combat implant loosening and falling off. The application of polyetheretherketone (PEEK) in biomedical and medical therapy has aroused great interest, especially because its elastic modulus close to bone provides an effective alternative to titanium implants, thereby preventing the possibility of bone implants loosening and falling off due to the mismatch of elastic modulus. In this Review, we provide a comprehensive overview of recent advances in surface modifications to prevent bone binding deficiency and bacterial infection after implantation of bone implants, starting with inorganics for surface modification, followed by organics that can effectively promote bone integration and antimicrobial action. In addition, surface modifications derived from cells and related products of biological activity have been proposed, and there is increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies against medical associated poor osseointegration and infection are discussed, with promising prospects for developing novel osseointegration and antimicrobial PEEK materials.
Collapse
Affiliation(s)
- Ziyang Bai
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yifan Zhao
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Chenying Cui
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jingyu Yan
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Danlei Qin
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jiahui Tong
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Hongyi Peng
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Lingxiang Sun
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xiuping Wu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Bing Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xia Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| |
Collapse
|
7
|
An J, Shi X, Zhang J, Qi L, Xue W, Nie X, Yun Z, Zhang P, Liu Q. Dual aldehyde cross-linked hyaluronic acid hydrogels loaded with PRP and NGF biofunctionalized PEEK interfaces to enhance osteogenesis and vascularization. Mater Today Bio 2024; 24:100928. [PMID: 38179432 PMCID: PMC10765491 DOI: 10.1016/j.mtbio.2023.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Polyetheretherketone (PEEK) material has become a potential bone replacement material due to its elastic modulus, which is close to that of human bone, and stable chemical properties. However, its biological inertness has hindered its clinical application. To improve the biological inertia of PEEK material, a hyaluronic acid (HA) hydrogel coating loaded with platelet-rich plasma (PRP) and nerve growth factor (NGF) was constructed on the surface of PEEK material in this study. After the hybrid hydrogel coating was constructed, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), degradation tests, and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate its characteristics and biological properties. The osteogenic and angiogenic potentials were also investigated in vitro and in vivo. Our results showed that the HA hydrogel loaded with RPP and NGF on the PEEK surface degraded slowly and could sustainably release various growth factors, including NGF. The results of in vitro tests showed that the hybrid hydrogel on the surface of PEEK effectively promoted osteogenesis and angiogenesis. The in vivo experiment also confirmed that the PEEK surface hydrogel could promote osseointegration of the implant and the integration of new bone and neovascularization. Our results suggest that the cross-linked hyaluronic acid hydrogel loaded with PRP and NGF can significantly improve the biological inertia of PEEK material, endowing PEEK material with good osteogenic and angiogenic ability.
Collapse
Affiliation(s)
- Junyan An
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
- The Third Hospital of Jilin University, Department of Neurosurgery, Changchun, 130031, China
| | - Xiaotong Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- The First Hospital of Jilin University, Department of Orthopedics, Changchun, 130021, China
| | - Jun Zhang
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Le Qi
- The Yunlong Orthopedic Hospital of Baotou, Department of Orthopedics, Baotou, 014010, China
| | - Wu Xue
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Xinyu Nie
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Zhihe Yun
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qinyi Liu
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| |
Collapse
|
8
|
Zheng W, Wu D, Zhang Y, Luo Y, Yang L, Xu X, Luo F. Multifunctional modifications of polyetheretherketone implants for bone repair: A comprehensive review. BIOMATERIALS ADVANCES 2023; 154:213607. [PMID: 37651963 DOI: 10.1016/j.bioadv.2023.213607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Polyetheretherketone (PEEK) has emerged as a highly promising orthopedic implantation material due to its elastic modulus which is comparable to that of natural bone. This polymer exhibits impressive properties for bone implantation such as corrosion resistance, fatigue resistance, self-lubrication and chemical stability. Significantly, compared to metal-based implants, PEEK implants have mechanical properties that are closer to natural bone, which can mitigate the "stress shielding" effect in bone implantation. Nevertheless, PEEK is incapable of inducing osteogenesis due to its bio-inert molecular structure, thereby hindering the osseointegration process. To optimize the clinical application of PEEK, researchers have been working on promoting its bioactivity and endowing this polymer with beneficial properties, such as antibacterial, anti-inflammatory, anti-tumor, and angiogenesis-promoting capabilities. Considering the significant growth of research on PEEK implants over the past 5 years, this review aims to present a timely update on PEEK's modification methods. By highlighting the latest advancements in PEEK modification, we hope to provide guidance and inspiration for researchers in developing the next generation bone implants and optimizing their clinical applications.
Collapse
Affiliation(s)
- Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongxu Wu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiangrui Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Chen Y, Chen Y, Han T, Xie Z, Yang Y, Chen S, Wang C. Enhanced osteogenic and antibacterial properties of polyetheretherketone by ultraviolet-initiated grafting polymerization of a gelatin methacryloyl/epsilon-poly-L-lysine/laponite hydrogel coating. J Biomed Mater Res A 2023; 111:1808-1821. [PMID: 37548424 DOI: 10.1002/jbm.a.37589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Polyetheretherketone (PEEK) is a promising material for use in orthopedic implants, but its bio-inert character and lack of antibacterial activity limit its applications in bone repair. In the present study, considering the advantages of PEEK in self-initiated graft polymerization and of hydrogels in bone tissue engineering, we constructed a hydrogel coating (GPL) consisting of Gelatin methacryloyl (GelMA), methacrylamide-modified ε-poly-l-lysine (ε-PLMA) and Laponite on PEEK through UV-initiated crosslinking. The coating improved the hydrophilicity of PEEK, and the coating degraded slowly so that approximately 80% was retained after incubation in PBS for 8 weeks. In vitro studies revealed that as compared to culturing on PEEK, culturing on PEEK-GPL led to enhanced viability and adhesion of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs). Due to the synergistic effect of the micron-scale three-dimensional surface and Laponite, PEEK-GPL exhibited a significantly improved induction of osteogenic differentiation of hWJ-MSCs compared to PEEK, as demonstrated by increased alkaline phosphatase activity, matrix mineralization, and expression of osteogenesis-related genes. Furthermore, PEEK-GPL showed antibacterial activity upon contact with Staphylococcus aureus and Escherichia coli, and this activity would be maintained before complete degradation of the hydrogel because the ε-PLMA was cross-linked covalently into the coating. Thus, PEEK-GPL achieved both osteogenesis and infection prevention in a single simple step, providing a feasible approach for the extensive use of PEEK in bone implants.
Collapse
Affiliation(s)
- Yuhong Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Yiyi Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Tianlei Han
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Zhe Xie
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Yuchen Yang
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Siyuan Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Chen Wang
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| |
Collapse
|
10
|
Pu F, Yu Y, Zhang Z, Wu W, Shao Z, Li C, Feng J, Xue L, Chen F. Research and Application of Medical Polyetheretherketone as Bone Repair Material. Macromol Biosci 2023; 23:e2300032. [PMID: 37088909 DOI: 10.1002/mabi.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Indexed: 04/25/2023]
Abstract
Polyetheretherketone (PEEK) can potentially be used for bone repair because its elastic modulus is similar to that of human natural bone and good biocompatibility and chemical stability. However, its hydrophobicity and biological inertness limit its application in the biomedical field. Inspired by the composition, structure, and function of bone tissue, many strategies are proposed to change the structure and functionality of the PEEK surface. In this review, the applications of PEEK in bone repair and the optimization strategy for PEEK's biological activity are reviewed, which provides a direction for the development of multifunctional bone repair materials in the future.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yihan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chao Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
11
|
Zhang Z, Shao J, Gao Y, Li Y, Liu T, Yang M. Research progress and future prospects of antimicrobial modified polyetheretherketone (PEEK) for the treatment of bone infections. Front Bioeng Biotechnol 2023; 11:1244184. [PMID: 37600311 PMCID: PMC10436002 DOI: 10.3389/fbioe.2023.1244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Infection of the bone is a difficult problem in orthopedic diseases. The key and basis of the treatment of bone infection is the effective control of local infection, as well as the elimination of infection focus and dead cavities. The most commonly used approach utilized for the prevention and management of bone infection is the application of antibiotic bone cement. However, the incorporation of antibiotics into the cement matrix has been found to considerably compromise the mechanical characteristics of bone cement. Moreover, some investigations have indicated that the antibiotic release rate of antibiotic bone cement is relatively low. Polyetheretherketone (PEEK) and its composites have been considered to perfectly address the challenges above, according to its favorable biomechanical characteristics and diverse surface functionalizations. This article provides a comprehensive overview of the recent advancements in the antimicrobial modification of PEEK composites in the field of antibacterial therapy of bone infection. Furthermore, the potential application of PEEK-modified materials in clinical treatment was discussed and predicted.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junxing Shao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Lau NC, Huang YY, Chen DW, Cheng KW. Preparation of Ta2O5/ polyetheretherketone samples with loading of PLGA/antibiotic agents for the tests of antibacterial performances and cell growth activities. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
13
|
Gao W, Han X, Sun D, Li Y, Liu X, Yang S, Zhou Z, Qi Y, Jiao J, Zhao J. Antibacterial properties of antimicrobial peptide HHC36 modified polyetheretherketone. Front Microbiol 2023; 14:1103956. [PMID: 36998411 PMCID: PMC10043374 DOI: 10.3389/fmicb.2023.1103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionPolyetheretherketone (PEEK) is considered to be a new type of orthopedic implant material due to its mechanical properties and biocompatibility. It is becoming a replacement for titanium (Ti) due to its near-human-cortical transmission and modulus of elasticity. However, its clinical application is limited because of its biological inertia and susceptibility to bacterial infection during implantation. To solve this problem, there is an urgent need to improve the antibacterial properties of PEEK implants.MethodsIn this work, we fixed antimicrobial peptide HHC36 on the 3D porous structure of sulfonated PEEK (SPEEK) by a simple solvent evaporation method (HSPEEK), and carried out characterization tests. We evaluated the antibacterial properties and cytocompatibility of the samples in vitro. In addition, we evaluated the anti-infection property and biocompatibility of the samples in vivo by establishing a rat subcutaneous infection model.ResultsThe characterization test results showed that HHC36 was successfully fixed on the surface of SPEEK and released slowly for 10 days. The results of antibacterial experiments in vitro showed that HSPEEK could reduce the survival rate of free bacteria, inhibit the growth of bacteria around the sample, and inhibit the formation of biofilm on the sample surface. The cytocompatibility test in vitro showed that the sample had no significant effect on the proliferation and viability of L929 cells and had no hemolytic activity on rabbit erythrocytes. In vivo experiments, HSPEEK can significantly reduce the bacterial survival rate on the sample surface and the inflammatory reaction in the soft tissue around the sample.DiscussionWe successfully loaded HHC36 onto the surface of SPEEK through a simple solvent evaporation method. The sample has excellent antibacterial properties and good cell compatibility, which can significantly reduce the bacterial survival rate and inflammatory reaction in vivo. The above results indicated that we successfully improved the antibacterial property of PEEK by a simple modification strategy, making it a promising material for anti-infection orthopedic implants.
Collapse
Affiliation(s)
- Weijia Gao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xiao Han
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Duo Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yongli Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xiaoli Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Shihui Yang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Prostheses, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhe Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuanzheng Qi
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Junjie Jiao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jinghui Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- *Correspondence: Jinghui Zhao,
| |
Collapse
|
14
|
Ma T, Zhang J, Sun S, Meng W, Zhang Y, Wu J. Current treatment methods to improve the bioactivity and bonding strength of PEEK for dental application: A systematic review. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Liu T, Liu W, Zeng L, Wen Z, Xiong Z, Liao Z, Hu Y. Biofunctionalization of 3D Printed Porous Tantalum Using a Vancomycin-Carboxymethyl Chitosan Composite Coating to Improve Osteogenesis and Antibiofilm Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41764-41778. [PMID: 36087275 DOI: 10.1021/acsami.2c11715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
3D-printed porous tantalum scaffold has been increasingly used in arthroplasty due to its bone-matching elastic modulus and good osteoinductive ability. However, the lack of antibacterial ability makes it difficult for tantalum to prevent the occurrence and development of periprosthetic joint infection. The difficulty and high cost of curing periprosthetic joint infection (PJI) and revision surgery limit the further clinical application of tantalum. Therefore, we fabricated vancomycin-loaded porous tantalum scaffolds by combining the chemical grafting of (3-aminopropyl)triethoxysilane (APTES) and the electrostatic assembly of carboxymethyl chitosan and vancomycin for the first time. Our in vitro experiments show that the scaffold achieves rapid killing of initially adherent bacteria and effectively prevents biofilm formation. In addition, our modification preserves the original excellent structure and biocompatibility of porous tantalum and promotes the generation of mineralized matrix and osteogenesis-related gene expression by mesenchymal stem cells on the surface of scaffolds. Through a rat subcutaneous infection model, the composite bioscaffold shows efficient bacterial clearance and inflammation control in soft tissue and creates an immune microenvironment suitable for tissue repair at an early stage. Combined with the economic friendliness and practicality of its preparation, this scaffold has great clinical application potential in the treatment of periprosthetic joint infection.
Collapse
Affiliation(s)
- Tuozhou Liu
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Wenbin Liu
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Liyi Zeng
- Centers for Disease Control and Prevention, Zhuzhou 412008, P. R. China
| | - Zhongchi Wen
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Zixuan Xiong
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Zhan Liao
- Department of Orthopeadics, Xiangya Hospital Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, P. R. China
| | - Yihe Hu
- Department of Orthopeadics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 311121, P. R. China
| |
Collapse
|
16
|
Zhang S, Long J, Chen L, Zhang J, Fan Y, Shi J, Huang Y. Treatment methods toward improving the anti-infection ability of poly(etheretherketone) implants for medical applications. Colloids Surf B Biointerfaces 2022; 218:112769. [PMID: 35994991 DOI: 10.1016/j.colsurfb.2022.112769] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Due to its favorable chemical stability, biocompatibility, and mechanical properties, Poly(etheretherketone) (PEEK) is a promising material for repairing bone and dental hard tissue defects. However, there are critical disadvantages: PEEK is biologically and chemically inert, which influences osseointegration of implants and bonding strength of prostheses, and its mechanical properties still cannot meet the requirements for some medical applications. Furthermore, bacterial infections and inflammatory reactions often accompany bone defects caused by trauma or inflammation or teeth loss caused by periodontitis. Previous studies mainly focused on enhancing PEEK's bioactivity and mechanical performance, but PEEK also lacks effective anti-infection ability. Thus, it is necessary to improve its anti-infection ability, and this is considered in this paper from two aspects. The first is to inhibit the attachment and growth of bacteria on the material, and the second is to endow the material with immunoregulatory ability, which means mobilizing the host immune system to protect tissue from inflammation. In this review, we analyze and discuss the existing treatment methods to improve the antibacterial and immunomodulatory abilities of PEEK addressing their limitations, relevant future challenges, and required research efforts.
Collapse
Affiliation(s)
- Shuqi Zhang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Jiazhen Long
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Lin Chen
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Jie Zhang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Yunjian Fan
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Jiayu Shi
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Yuanjin Huang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| |
Collapse
|
17
|
Gao W, Han X, Li Y, Zhou Z, Wang J, Shi R, Jiao J, Qi Y, Zhou Y, Zhao J. Modification strategies for improving antibacterial properties of polyetheretherketone. J Appl Polym Sci 2022. [DOI: 10.1002/app.52847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Weijia Gao
- Hospital of Stomatology Jilin University Changchun Jilin Province China
| | - Xiao Han
- Hospital of Stomatology Jilin University Changchun Jilin Province China
| | - Yongli Li
- Hospital of Stomatology Jilin University Changchun Jilin Province China
| | - Zhe Zhou
- Hospital of Stomatology Jilin University Changchun Jilin Province China
| | - Junyan Wang
- Hospital of Stomatology Jilin University Changchun Jilin Province China
| | - Ruining Shi
- Hospital of Stomatology Jilin University Changchun Jilin Province China
| | - Junjie Jiao
- Hospital of Stomatology Jilin University Changchun Jilin Province China
| | - Yuanzheng Qi
- Hospital of Stomatology Jilin University Changchun Jilin Province China
| | - Yanmin Zhou
- Hospital of Stomatology Jilin University Changchun Jilin Province China
| | - Jinghui Zhao
- Hospital of Stomatology Jilin University Changchun Jilin Province China
| |
Collapse
|
18
|
Application of biomolecules modification strategies on PEEK and its composites for osteogenesis and antibacterial properties. Colloids Surf B Biointerfaces 2022; 215:112492. [PMID: 35430485 DOI: 10.1016/j.colsurfb.2022.112492] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022]
Abstract
As orthopedic and dental implants, polyetheretherketone (PEEK) is expected to be a common substitute material of titanium (Ti) and its alloys due to its good biocompatibility, chemical stability, and elastic modulus close to that of bone tissue. It could avoid metal allergy and bone resorption caused by the stress shielding effect of Ti implants, widely studied in the medical field. However, the lack of biological activity is not conducive to the clinical application of PEEK implants. Therefore, the surface modification of PEEK has increasingly become one of the research hotspots. Researchers have explored various biomolecules modification methods to effectively enhance the osteogenic and antibacterial activities of PEEK and its composites. Therefore, this review mainly summarizes the recent research of PEEK modified by biomolecules and discusses the further research directions to promote the clinical transformation of PEEK implants.
Collapse
|
19
|
Wang B, Huang M, Dang P, Xie J, Zhang X, Yan X. PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement. Polymers (Basel) 2022; 14:polym14122323. [PMID: 35745900 PMCID: PMC9228596 DOI: 10.3390/polym14122323] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Polyetheretherketone (PEEK) has been widely applied in fixed dental prostheses, comprising crowns, fixed partial dentures, and post-and-core. PEEK’s excellent mechanical properties facilitate better stress distribution than conventional materials, protecting the abutment teeth. However, the stiffness of PEEK is not sufficient, which can be improved via fiber reinforcement. PEEK is biocompatible. It is nonmutagenic, noncytotoxic, and nonallergenic. However, the chemical stability of PEEK is a double-edged sword. On the one hand, PEEK is nondegradable and intraoral corrosion is minimized. On the other hand, the inert surface makes adhesive bonding difficult. Numerous strategies for improving the adhesive properties of PEEK have been explored, including acid etching, plasma treatment, airborne particle abrasion, laser treatment, and adhesive systems.
Collapse
Affiliation(s)
- Biyao Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China; (B.W.); (P.D.); (J.X.)
| | - Minghao Huang
- Liaoning Provincial Key Laboratory of Oral Diseases, Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China;
| | - Pengrui Dang
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China; (B.W.); (P.D.); (J.X.)
| | - Jiahui Xie
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China; (B.W.); (P.D.); (J.X.)
| | - Xinwen Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China;
- Correspondence: (X.Z.); (X.Y.); Tel.: +86-024-31927731 (X.Z.); +86-024-31927715 (X.Y.)
| | - Xu Yan
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, No. 117 North Street Nanjing Road, Shenyang 110002, China; (B.W.); (P.D.); (J.X.)
- Correspondence: (X.Z.); (X.Y.); Tel.: +86-024-31927731 (X.Z.); +86-024-31927715 (X.Y.)
| |
Collapse
|
20
|
Wang Y, Zhang S, Nie B, Qu X, Yue B. Approaches to Biofunctionalize Polyetheretherketone for Antibacterial: A Review. Front Bioeng Biotechnol 2022; 10:895288. [PMID: 35646862 PMCID: PMC9136111 DOI: 10.3389/fbioe.2022.895288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Due to excellent mechanical properties and similar elastic modulus compared with human cortical bone, polyetheretherketone (PEEK) has become one of the most promising orthopedic implant materials. However, implant-associated infections (IAIs) remain a challenging issue since PEEK is bio-inert. In order to fabricate an antibacterial bio-functional surface, modifications of PEEK had been widely investigated. This review summarizes the modification strategies to biofunctionalize PEEK for antibacterial. We will begin with reviewing different approaches, such as surface-coating modifications and controlled release of antimicrobials. Furthermore, blending modifications and 3D printing technology were discussed. Finally, we compare the effects among different approaches. We aimed to provide an in-depth understanding of the antibacterial modification and optimize the design of the PEEK orthopedic implant.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bin’en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Bing Yue,
| |
Collapse
|
21
|
Hu K, Yang Z, Zhao Y, Wang Y, Luo J, Tuo B, Zhang H. Bioinspired Surface Functionalization of Poly(ether ether ketone) for Enhancing Osteogenesis and Bacterial Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5924-5933. [PMID: 35446583 DOI: 10.1021/acs.langmuir.2c00600] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In orthopedics, developing functionalized biomaterials to enhance osteogenesis and bacterial resistance is crucial. Although poly(ether ether ketone) (PEEK) is regarded as an important engineering plastic for biomedical material with excellent mechanical properties and biocompatibility, its biological inertness has greatly compromised its application in biomedical engineering. Inspired by the catecholamine chemistry of mussels, we propose a universal and versatile approach for enhancing the osteogenesis and antibacterial performances of PEEK based on surface functionalization of polydopamine-modified nanohydroxyapatite and lysozyme simultaneously. The characterizations of surface morphology and elemental composition revealed that the composite coating was successfully added to the PEEK surface. Additionally, the in vitro cell experiment and biomineralization assay indicated that the composite coating-modified PEEK was biocompatible with significantly improved bioactivity to promote osteogenesis and biomineralization compared with the untreated PEEK. Furthermore, the antibacterial test demonstrated that the composite coating had a strongly destructive effect on two bacteria (Staphylococcus aureus and Escherichia coli) with antibacterial ratios of 98.7% and 96.1%, respectively. In summary, the bioinspired method for surface functionalization can enhance the osteogenesis and bacterial resistance of biomedical materials, which may represent a potential approach for designing functionalized implants in orthopedics.
Collapse
Affiliation(s)
- Keming Hu
- College of Mining, Guizhou University, Guiyang 550025, China
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Zeyuan Yang
- Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Yanlong Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuguang Wang
- Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Jing Luo
- Beijing Research Institute of Automation for Machinery Industry Company, Ltd., Beijing 100120, China
| | - Biyang Tuo
- College of Mining, Guizhou University, Guiyang 550025, China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Jiang S, Li Q, Jia W, Wang F, Cao X, Shen X, Yao Z. Expanding the application of ion exchange resins for the preparation of antimicrobial membranes to control foodborne pathogens. CHEMOSPHERE 2022; 295:133963. [PMID: 35167836 DOI: 10.1016/j.chemosphere.2022.133963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Although ion exchange resins (IERs) have been extensively adopted in water treatment, there are no reports on the application thereof for synthesizing antibacterial materials against pathogenic bacteria. The present study is the first in which the ion exchange characteristic of IERs was utilized to introduce silver ions that possess efficient antibacterial properties. The resulting antibacterial materials were incorporated into polylactic acid (PLA) and/or polybutylene adipate terephthalate (PBAT) to prepare antibacterial membranes. XPS spectra revealed the occurrence of in-situ reduction of silver ions to metallic silver, which was preferable since the stability of silver in the materials was improved. EDS mapping analysis indicated that the distribution of silver was consistent with the distribution of sulfur in the membranes, verifying the ion exchange methodology proposed in the present study. To investigate the antibacterial performance of the prepared membranes, zone of inhibition tests and bacteria-killing tests were performed. The results revealed that neither bare polymeric membranes of PLA and PBAT nor IER-incorporated polymeric membranes exhibited noticeable antibacterial activities. In comparison, the antibacterial membranes demonstrated effective and sustainable antibacterial activities against pathogenic bacteria Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The prepared antibacterial membranes exhibited potential in food-related applications such as food packaging to delay food spoilage due to microbial growth.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Wenting Jia
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
23
|
Qin S, Lu Z, Gan K, Qiao C, Li B, Chen T, Gao Y, Jiang L, Liu H. Construction of a
BMP
‐2 gene delivery system for polyetheretherketone bone implant material and its effect on bone formation in vitro. J Biomed Mater Res B Appl Biomater 2022; 110:2075-2088. [PMID: 35398972 DOI: 10.1002/jbm.b.35062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shuang Qin
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Zhengkuan Lu
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Kang Gan
- Department of Stomatology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Chunyan Qiao
- Department of Oral Pathology, Hospital of Stomatology Jilin University Changchun China
| | - Baosheng Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University Changchun China
| | - Tianjie Chen
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Yunbo Gao
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Lingling Jiang
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| | - Hong Liu
- Department of Oral Comprehensive Therapy, Hospital of Stomatology Jilin University Changchun China
| |
Collapse
|
24
|
Li B, Wang M, Liu Y, Zhou Y, Tang L, You P, Deng Y. Independent effects of structural optimization and resveratrol functionalization on extracellular matrix scaffolds for bone regeneration. Colloids Surf B Biointerfaces 2022; 212:112370. [PMID: 35144132 DOI: 10.1016/j.colsurfb.2022.112370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 11/26/2022]
Abstract
Due to their natural biological activity and low immunogenicity, decellularized extracellular matrix (ECM) materials have aroused interest as potential scaffold materials in tissue engineering. Decellularized small intestinal submucosa (SIS) is one ECM biomaterial that can be easily sourced. In the present study, we tested whether the osteogenesis of SIS scaffolds was enhanced via structural optimization and resveratrol (RSV) functionalization and explored the independent effects of these modifications. We obtained SIS scaffolds with different pore structures by controlling the preparation concentration. The group with superior osteogenic properties was further RSV-functionalized via covalent immobilization. We conducted a series of in vitro and in vivo studies to explore the effects of these two optimization strategies on the osteogenic properties of SIS scaffolds. The results showed that pore structure and RSV functionalization significantly affected the osteogenic properties of SIS scaffolds. With a fabrication concentration of 1%, the SIS scaffolds had superior osteogenic properties. Through covalent coupling, RSV was successfully grafted onto SIS scaffolds, where it was slowly released. The most significant improvements in osteogenic properties were obtained with a coupling concentration of 1%. Furthermore, in in vivo experiments, vascular and new bone tissue formation was enhanced with RSV/SIS scaffolds compared with SIS scaffolds and the blank control group at 4 weeks after implantation. These findings indicate that the RSV/SIS scaffolds obtained via dual optimization strategies show promise as biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Bowen Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; Department of Stomatology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, China
| | - Mei Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yuhua Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China.
| | - Lin Tang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Pengyue You
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yi Deng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| |
Collapse
|
25
|
Hu CC, Kumar SR, Vi TTT, Huang YT, Chen DW, Lue SJ. Facilitating GL13K Peptide Grafting on Polyetheretherketone via 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide: Surface Properties and Antibacterial Activity. Int J Mol Sci 2021; 23:ijms23010359. [PMID: 35008782 PMCID: PMC8745129 DOI: 10.3390/ijms23010359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
In the present work, the antimicrobial peptide (AMP) of GL13K was successfully coated onto a polyetheretherketone (PEEK) substrate to investigate its antibacterial activities against Staphylococcus aureus (S. aureus) bacteria. To improve the coating efficiency, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was mixed with a GL13K solution and coated on the PEEK surface for comparison. Both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) data confirmed 30% greater peptide coating on PEEK/GL13K-EDC than PEEK without EDC treatment. The GL13K graft levels are depicted in the micrograms per square centimeter range. The PEEK/GL13K-EDC sample showed a smoother and lower roughness (Rq of 0.530 µm) than the PEEK/GL13K (0.634 µm) and PEEK (0.697 µm) samples. The surface of the PEEK/GL13K-EDC was more hydrophilic (with a water contact angle of 24°) than the PEEK/GL13K (40°) and pure PEEK (89°) samples. The pure PEEK disc did not exhibit any inhibition zone against S. aureus. After peptide coating, the samples demonstrated significant zones of inhibition: 28 mm and 25 mm for the PEEK/GL13K-EDC and PEEK/GL13K samples, respectively. The bacteria-challenged PEEK sample showed numerous bacteria clusters, whereas PEEK/GL13K contained a little bacteria and PEEK/GL13K-EDC had no bacterial attachment. The results confirm that the GL13K peptide coating was able to induce antibacterial and biofilm-inhibitory effects. To the best of our knowledge, this is the first report of successful GL13K peptide grafting on a PEEK substrate via EDC coupling. The present work illustrates a facile and promising coating technique for a polymeric surface to provide bactericidal activity and biofilm resistance to medical implantable devices.
Collapse
Affiliation(s)
- Chih-Chien Hu
- Division of Join Reconstruction, Department of Orthopedics, Chang Gung Medical Center at Linkou, Guishan District, Taoyuan City 333, Taiwan;
| | - Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan;
| | - Truong Thi Tuong Vi
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Chang Gung Memorial Hospital, Guishan District, Taoyuan City 333, Taiwan;
| | - Yu-Tzu Huang
- Department of Chemical Engineering, Chung Yuan Christian University, Zhongli, Taoyuan City 320, Taiwan;
- R&D Center for Membrane Technology and Research Center for Circular Economy, Chung Yuan Christian University, Zhongli, Taoyuan City 320, Taiwan
| | - Dave W. Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 204, Taiwan;
| | - Shingjiang Jessie Lue
- Division of Join Reconstruction, Department of Orthopedics, Chang Gung Medical Center at Linkou, Guishan District, Taoyuan City 333, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan;
- Department of Safety, Health and Environment Engineering, Ming Chi University of Technology, Taishan District, New Taipei City 243, Taiwan
- Correspondence: ; Tel.: +88-63-2118800 (ext. 5489); Fax: +88-63-2118700
| |
Collapse
|
26
|
Han M, Dong Z, Li J, Luo J, Yin D, Sun L, Tao S, Zhen L, Yang J, Li J. Mussel-inspired self-assembly engineered implant coatings for synergistic anti-infection and osteogenesis acceleration. J Mater Chem B 2021; 9:8501-8511. [PMID: 34553738 DOI: 10.1039/d1tb01607e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Implant associated infections (IAI) and poor osseointegration are the two major causes for titanium implant failure, leading to subsequent financial burden and physical sufferings. Therefore, advanced implants with excellent anti-infection and osseointegration performance are needed. In this work, mussel-inspired tannic acid (TA) mediated layer-by-layer (LbL) self-assembly was used for fabricating bonded polyethylene glycol (PEG) and 8DSS (8 repeating units of aspartate-serine-serine) coatings (Ti/8DSS/PEG) on the surface of titanium implants. The coating is designed to simultaneously reduce bacterial adhesion through the super-hydrophilic effect of PEG and promote osseointegration through the effective biomineralization of 8DSS. The obtained Ti/8DSS/PEG implant exhibits superior anti-biofouling capabilities (anti-protein adhesion and anti-bacterial adhesion against S. aureus and E. coli) and excellent biocompatibility. Meanwhile, the Ti/8DSS/PEG implant accelerates osteoblast differentiation and presents significantly better osteogenic ability than bare titanium implants in vivo. This mussel-inspired TA mediated LbL self-assembly method is expected to provide a multifunctional and robust platform for surface engineering in bone repair.
Collapse
Affiliation(s)
- Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.,Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Derong Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Lizhong Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Zhen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
|