1
|
Polita AR, Bagdonaitė RT, Shivabalan AP, Valinčius G. Influence of Simvastatin and Pravastatin on the Biophysical Properties of Model Lipid Bilayers and Plasma Membranes of Live Cells. ACS Biomater Sci Eng 2024; 10:5714-5722. [PMID: 39180473 PMCID: PMC11388144 DOI: 10.1021/acsbiomaterials.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Statins are among the most widely used drugs for the inhibition of cholesterol biosynthesis, prevention of cardiovascular diseases, and treatment of hypercholesterolemia. Additionally, statins also exhibit cholesterol-independent benefits in various diseases, including neuroprotective properties in Alzheimer's disease, anti-inflammatory effects in coronary artery disease, and antiproliferative activities in cancer, which likely result from the statins' interaction and alteration of lipid bilayers. However, the membrane-modulatory effects of statins and the mechanisms by which statins alter lipid bilayers remain poorly understood. In this work, we explore the membrane-modulating effects of statins on model lipid bilayers and live cells. Through the use of fluorescence lifetime imaging microscopy (FLIM) combined with viscosity-sensitive environmental probes, we demonstrate that hydrophobic, but not hydrophilic, statins are capable of changing the microviscosity and lipid order in model and live cell membranes. Furthermore, we show that hydrophobic simvastatin is capable of forming nanoscale cholesterol-rich domains and homogenizing the cholesterol concentrations in lipid bilayers. Our results provide a mechanistic framework for understanding the bimodal effects of simvastatin on the lipid order and the lateral organization of cholesterol in lipid bilayers. Finally, we demonstrate that simvastatin temporarily decreases the microviscosity of live cell plasma membranes, making them more permeable and increasing the level of intracellular chemotherapeutic drug accumulation.
Collapse
Affiliation(s)
- Artu Ras Polita
- Department of Biospectroscopy and bioelectrochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Ru Ta Bagdonaitė
- Department of Biospectroscopy and bioelectrochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Arun Prabha Shivabalan
- Department of Biospectroscopy and bioelectrochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Gintaras Valinčius
- Department of Biospectroscopy and bioelectrochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
2
|
Płachta Ł, Mach M, Kowalska M, Wydro P. The effect of trans-resveratrol on the physicochemical properties of lipid membranes with different cholesterol content. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184212. [PMID: 37774995 DOI: 10.1016/j.bbamem.2023.184212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 10/01/2023]
Abstract
Resveratrol is one of the most popular phytoalexins, which naturally occurs in grapes and red wine. This compound not only has beneficial effects on the human body, especially on the cardiovascular system, but also has antiviral, antibacterial and antifungal properties. In addition, resveratrol may have therapeutic effects against various types of cancer. The mechanism of action of resveratrol is not fully understood, but it is suspected that one of the most important steps is its interaction with the cell membrane and changing its molecular organization. Therefore, in the present study, we investigated the effects of resveratrol at different concentrations (0-75 μM) on model membranes composed of POPC, SM and cholesterol, in systems with different cholesterol contents and a constant POPC/SM molar ratio (1:1). Our tests included systems containing 5, 15 and 33.3 mol% cholesterol. Tests were carried out for monolayers using the Langmuir monolayer technique supported by Brewster angle microscopy and penetration experiments. Bilayer (liposome) experiments included calcein release, steady-state DPH fluorescence anisotropy and partition coefficients. The results showed that resveratrol interacts with model cell membranes (lipid monolayers and lipid bilayers), and its incorporation into membranes is accompanied by changes in their physicochemical parameters, such as lipid packing, fluidity and permeability. Furthermore, we showed that the cholesterol content of the membrane significantly affects the degree of incorporation of resveratrol into the model membrane, which may indicate that the molecular mechanism of action of this compound is closely related to its interactions with lipid rafts, domains responsible for regulating various cellular functions.
Collapse
Affiliation(s)
- Łukasz Płachta
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marzena Mach
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Magdalena Kowalska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Paweł Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
3
|
Afzal M, Alarifi A, Mahmoud Karami A, Ayub R, Abduh NAY, Sharaf Saeed W, Muddassir M. Activating the delivery of a model drug to lipid membrane by encapsulation of cyclodextrin: Combined experimental and molecular docking studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123038. [PMID: 37348276 DOI: 10.1016/j.saa.2023.123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Drug delivery science is always an important topic as it studies the delivery of therapeutic payloads to the desired target cells without affecting the healthy tissues/cells, thus minimizing drug-induced toxicity. Aiming towards the targeted drug delivery, the present project deals with the delivery of a polarity-sensitive solvatochromic model drug, namely, salt of 8-anilinonaphthalene-1-sulphonic acid (ANSA) to the model bio-membrane (which mimic several aspects of the real cell membrane), more precisely at the lipid-water interface of L-α-Dipalmitoylphosphatidylcholine (DPPC) phospholipid. The drug delivery process has been activated through the binding of dye with cyclodextrin, acting as a drug transporter. Detailed steady-state and time-resolved spectroscopic studies including molecular docking analysis imply the targeted drug delivery of dye, ANSA, towards the lipid-water interface region of lipid bilayers through encapsulation within the cyclodextrin void. Stronger binding interaction of the dye with the lipid bilayers relative to β-cyclodextrin (β-CD) is the foremost reason for the targeted delivery. The present biophysical interaction studies of drug-lipid interaction, thus, may provide a cordial approach for drug formulation and drug delivery.
Collapse
Affiliation(s)
- Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Abdullah Alarifi
- Department of Science Technology Unit, King Saud University, P.O.Box-2454, Riyadh 11451, Saudi Arabia
| | | | - Rashid Ayub
- Department of Science Technology Unit, King Saud University, P.O.Box-2454, Riyadh 11451, Saudi Arabia
| | - Naaser A Y Abduh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Waseem Sharaf Saeed
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Bobrowska K, Sadowska K, Stolarczyk K, Prześniak-Welenc M, Golec P, Bilewicz R. Bovine Serum Albumin - Hydroxyapatite Nanoflowers as Potential Local Drug Delivery System of Ciprofloxacin. Int J Nanomedicine 2023; 18:6449-6467. [PMID: 38026518 PMCID: PMC10640833 DOI: 10.2147/ijn.s427258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Hybrid nanoflowers are structures consisting of organic (enzymes, proteins, nucleic acids) and inorganic components (mostly metal phosphates) with a flower-like hierarchical structure. Novel hybrid nanoflowers based on bovine serum albumin (BSA) and hydroxyapatite (HA) were obtained and characterized. Study on BSA-HA nanoflowers as potential drug delivery system is reported for the first time. Methods Embedding ciprofloxacin in the structure of hybrid nanoflowers was confirmed by ATR-FTIR and thermogravimetric analysis. The inorganic phase of the nanoflowers was determined by X-ray diffraction. UV‒Vis spectroscopy was used to evaluate the release profiles of ciprofloxacin from nanoflowers in buffer solutions at pH 7.4 and 5. The agar disk diffusion method was used to study the antibacterial activity of the synthesized nanoflowers against Staphylococcus aureus and Pseudomonas aeruginosa. Results Bovine serum albumin - hydroxyapatite nanoflowers were obtained with diameters of ca. 1-2 µm. The kinetics of ciprofloxacin release from nanoflowers were described by the Korsmeyer-Peppas model. The antibacterial activity of the synthesized nanoflowers was demonstrated against S. aureus and P. aeruginosa, two main pathogens found in osteomyelitis. Conclusion The formulated nanoflowers may act as an efficient local antibiotic delivery system. Due to the use of nonhazardous, biodegradable components and benign synthesis, hybrid nanoflowers are very promising drug delivery systems that could be applied in the treatment of skeletal system infections.
Collapse
Affiliation(s)
- Kornelia Bobrowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marta Prześniak-Welenc
- Institute of Nanotechnology and Materials Engineering, and Advanced Materials Centre, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
5
|
Zaborowska M, Dobrowolski MA, Matyszewska D. Revealing the structure and mechanisms of action of a synthetic opioid with model biological membranes at the air-water interface. Colloids Surf B Biointerfaces 2023; 226:113289. [PMID: 37028230 DOI: 10.1016/j.colsurfb.2023.113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Synthetic opioids such as piperazine derivative called MT-45 interact with opioid receptors in a manner similar to morphine leading to euphoria, a sense of relaxation and pain relief and are commonly used as substituents of natural opioids. In this study we show the changes in the surface properties of nasal mucosa and intestinal epithelial model cell membranes formed at the air - water interface using Langmuir technique upon the exposure to MT-45. Both membranes constitute the first barrier to absorb this substance into the human body. The presence of the piperazine derivative affects the organization of both DPPC and ternary DMPC:DMPE:DMPS monolayers treated as simple models of nasal mucosa and intestinal cell membranes, respectively. This novel psychoactive substance (NPS) leads to the fluidization of the model layers, which may indicate their increased permeability. MT-45 has a greater influence on the ternary monolayers characteristic of the intestinal epithelial cells than nasal mucosa. It might be attributed to the increased attractive interactions between the components of the ternary layer, which in turn increase the interactions with a synthetic opioid. Additionally, the crystal structures of MT-45 determined by single-crystal and powder X-ray diffraction methods allowed us to both provide useful data for facilitating the identification of synthetic opioids as well as to attribute the effect of MT-45 to the ionic interactions between protonated nitrogen atoms and negatively charged parts of the polar heads of the lipids.
Collapse
|
6
|
Zaborowska M, Matyszewska D, Bilewicz R. Model Lipid Raft Membranes for Embedding Integral Membrane Proteins: Reconstitution of HMG-CoA Reductase and Its Inhibition by Statins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13888-13897. [PMID: 36335466 PMCID: PMC9671039 DOI: 10.1021/acs.langmuir.2c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
For the first time, HMG-CoA reductase, the membrane protein responsible for cholesterol synthesis, was incorporated into a lipid membrane consisting of DOPC:Chol:SM at a 1:1:1 molar ratio, which mimics the lipid rafts of cell membranes. The membrane containing the protein was generated in the form of either a proteoliposomes or a film obtained by spreading the proteoliposomes at the air-water interface to prepare a protein-rich and stable lipid layer over time. The lipid vesicle parameters were characterized using dynamic light scattering (DLS) and fluorescence microscopy. The incorporation of HMG-CoA reductase was reflected in the increased size of the proteoliposomes compared to that of the empty liposomes of model rafts. Enzyme reconstitution was confirmed by measuring the activity of NADPH, which participates in the catalytic process. The thin lipid raft films formed by spreading liposomes and proteoliposomes at the air-water interface were investigated using the Langmuir technique. The activities of the HMG-CoA reductase films were preserved over time, and the two lipid raft systems, nanoparticles and films, were exposed to solutions of fluvastatin, a HMG-CoA reductase inhibitor commonly used in the treatment of hypercholesterolemia. Both lipid raft systems constructed were useful membrane models for the determination of reductase activity and for monitoring the statin inhibitory effects and may be used for investigating other integral membrane proteins during exposure to inhibitors/activators considered to be potential drugs.
Collapse
Affiliation(s)
| | - Dorota Matyszewska
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089Warsaw, Poland
| | - Renata Bilewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02093Warsaw, Poland
| |
Collapse
|
7
|
Bartkowiak A, Nazaruk E, Gajda E, Godlewska M, Gaweł D, Jabłonowska E, Bilewicz R. Simvastatin Coadministration Modulates the Electrostatically Driven Incorporation of Doxorubicin into Model Lipid and Cell Membranes. ACS Biomater Sci Eng 2022; 8:4354-4364. [PMID: 36173110 PMCID: PMC9554873 DOI: 10.1021/acsbiomaterials.2c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Understanding the interactions between drugs and lipid
membranes
is a prerequisite for finding the optimal way to deliver drugs into
cells. Coadministration of statins and anticancer agents has been
reported to have a positive effect on anticancer therapy. In this
study, we elucidate the mechanism by which simvastatin (SIM) improves
the efficiency of biological membrane penetration by the chemotherapeutic
agent doxorubicin (DOX) in neutral and slightly acidic solutions.
The incorporation of DOX, SIM, or a combination of them (DOX:SIM)
into selected single-component lipid membranes, zwitterionic unsaturated
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC), neutral cholesterol, and negatively charged 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS) was assessed
using the Langmuir method. The penetration of neutral lipid monolayers
by the codelivery of SIM and DOX was clearly facilitated at pH 5.5,
which resembles the pH conditions of the environment of cancer cells.
This effect was ascribed to partial neutralization of the DOX positive
charge as the result of intermolecular interactions between DOX and
SIM. On the other hand, the penetration of the negatively charged
DMPS monolayer was most efficient in the case of the positively charged
DOX. The efficiency of the drug delivery to the cell membranes was
evaluated under in vitro conditions using a panel
of cancer-derived cell lines (A172, T98G, and HeLa). MTS and trypan
blue exclusion assays were performed, followed by confocal microscopy
and spheroid culture tests. Cells were exposed to either free drugs
or drugs encapsulated in lipid carriers termed cubosomes. We demonstrated
that the viability of cancer cells exposed to DOX was significantly
impaired in the presence of SIM, and this phenomenon was greatly magnified
when DOX and SIM were coencapsulated in cubosomes. Overall, our results
confirmed the utility of the DOX:SIM combination delivery, which enhances
the interactions between neutral components of cell membranes and
positively charged chemotherapeutic agents.
Collapse
Affiliation(s)
| | - Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Ewa Gajda
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Damian Gaweł
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | | | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| |
Collapse
|
8
|
McGlone ER, Ansell TB, Dunsterville C, Song W, Carling D, Tomas A, Bloom SR, Sansom MSP, Tan T, Jones B. Hepatocyte cholesterol content modulates glucagon receptor signalling. Mol Metab 2022; 63:101530. [PMID: 35718339 PMCID: PMC9254120 DOI: 10.1016/j.molmet.2022.101530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To determine whether glucagon receptor (GCGR) actions are modulated by cellular cholesterol levels. METHODS We determined the effects of experimental cholesterol depletion and loading on glucagon-mediated cAMP production, ligand internalisation and glucose production in human hepatoma cells, mouse and human hepatocytes. GCGR interactions with lipid bilayers were explored using coarse-grained molecular dynamic simulations. Glucagon responsiveness was measured in mice fed a high cholesterol diet with or without simvastatin to modulate hepatocyte cholesterol content. RESULTS GCGR cAMP signalling was reduced by higher cholesterol levels across different cellular models. Ex vivo glucagon-induced glucose output from mouse hepatocytes was enhanced by simvastatin treatment. Mice fed a high cholesterol diet had increased hepatic cholesterol and a blunted hyperglycaemic response to glucagon, both of which were partially reversed by simvastatin. Simulations identified likely membrane-exposed cholesterol binding sites on the GCGR, including a site where cholesterol is a putative negative allosteric modulator. CONCLUSIONS Our results indicate that cellular cholesterol content influences glucagon sensitivity and indicate a potential molecular basis for this phenomenon. This could be relevant to the pathogenesis of non-alcoholic fatty liver disease, which is associated with both hepatic cholesterol accumulation and glucagon resistance.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom; Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom.
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | - Cecilia Dunsterville
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| | - Wanling Song
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | - David Carling
- Cellular Stress Research Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, United Kingdom.
| | - Alejandra Tomas
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | - Tricia Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| | - Ben Jones
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.
| |
Collapse
|
9
|
Membrane Cholesterol Content and Lipid Organization Influence Melittin and Pneumolysin Pore-Forming Activity. Toxins (Basel) 2022; 14:toxins14050346. [PMID: 35622592 PMCID: PMC9147762 DOI: 10.3390/toxins14050346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Melittin, the main toxic component in the venom of the European honeybee, interacts with natural and artificial membranes due to its amphiphilic properties. Rather than interacting with a specific receptor, melittin interacts with the lipid components, disrupting the lipid bilayer and inducing ion leakage and osmotic shock. This mechanism of action is shared with pneumolysin and other members of the cholesterol-dependent cytolysin family. In this manuscript, we investigated the inverse correlation for cholesterol dependency of these two toxins. While pneumolysin-induced damage is reduced by pretreatment with the cholesterol-depleting agent methyl-β-cyclodextrin, the toxicity of melittin, after cholesterol depletion, increased. A similar response was also observed after a short incubation with lipophilic simvastatin, which alters membrane lipid organization and structure, clustering lipid rafts. Therefore, changes in toxin sensitivity can be achieved in cells by depleting cholesterol or changing the lipid bilayer organization.
Collapse
|
10
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
11
|
Epigallocatechin-3-gallate + L-theanine/β-cyclodextrin inclusion complexes enhance epigallocatechin-3-gallate bioavailability and its lipid-lowering and weight loss effects. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Zhang Y, He J, Tang X, Zhang Z, Tian Y. A Validated LC-MS/MS Method for Simultaneous Quantification of Simvastatin and Simvastatin Acid in Beagle Plasma: Application to an Absolute Bioavailability Study. Biomed Chromatogr 2021; 36:e5290. [PMID: 34854096 DOI: 10.1002/bmc.5290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/06/2022]
Abstract
A highly sensitive LC-MS/MS method for simultaneous detection of both simvastatin (SV) and simvastatin acid (SVA) in beagle plasma was developed and successfully applied to an absolute bioavailability study. Lovastatin (LV) was used as internal standard (IS). The analysis was performed using an electrospray ionization (ESI) and selective reaction monitoring (SRM) in positive mode at m/z 441.0 → 325.0 for SV, 459.0 → 343.0 for SVA and 427.0 → 325.0 for IS, respectively. The assay procedure involved a simple liquid-liquid extraction (LLE) of SV, SVA and LV from beagle plasma into methyl tert-butyl ether. Separation of SV, SVA and IS was achieved on a shim-pack VP-ODS column (150 × 2.0 mm, 5 μm) with a binary gradient solvent system of 0.1% formic acid in water and methanol (15:85, v/v) as the mobile phase. The method was validated over the range of 0.25-500 ng/mL for SV (r2 ≥ 0.9923) and 0.24-481.23 ng/mL for SVA (r2 ≥ 0.9987). The results of method validation for accuracy, precision, extraction recovery, matrix effect and stability were within the acceptance criteria. The value of absolute bioavailability of SV and SVA in beagles was 2.97% and 25.40%, respectively. It is the first study developed for the measurement of absolute bioavailability of simvastatin and simvastatin acid in beagles.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China.,Key Laboratory of Drug Consistency Evaluation, China Pharmaceutical University, Nanjing, China
| | - Jian He
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China.,Key Laboratory of Drug Consistency Evaluation, China Pharmaceutical University, Nanjing, China
| | - Xiao Tang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China.,Key Laboratory of Drug Consistency Evaluation, China Pharmaceutical University, Nanjing, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
| |
Collapse
|