1
|
Hu JJ, Wang JP. Production of Natural Penicillin-Binding Protein 2 and Development of a Signal-Amplified Fluorescence Polarization Assay for the Determination of 28 Beta-Lactam Antibiotics in Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27528-27537. [PMID: 39585958 DOI: 10.1021/acs.jafc.4c07028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
In this study, two magnetic activity-based protein profiling probes based on cephradine and amoxicillin were first synthesized that were used to produce the natural penicillin-binding protein 2 of Escherichia coli. After characterization by using LC-ESI-MS/MS, it was found that the obtained proteins by using the two probes were the same. The molecular docking for 28 beta-lactam antibiotics showed that the key amino acids were Ser330 and Ser387, the main intermolecular forces were hydrogen bond and hydrophobic interaction, and the main binding sites in their molecules were on the beta-lactam ring. Then this protein was combined with streptavidin-labeled tracer and biotinylated fluorescein isothiocyanate to establish a signal-amplified fluorescence polarization assay to determine the 28 drugs in milk. The limits of detection ranged from 0.07 to 2.21 ng/mL, and the sensitivities for the 28 drugs were improved 4 to 48-fold in comparison with the use of a fluorescein isothiocyanate-labeled fluorescent tracer. Therefore, this method could be used for rapid multiscreening of the 28 beta-lactam antibiotics in milk.
Collapse
Affiliation(s)
- Jia Jia Hu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, Hebei, China
| |
Collapse
|
2
|
Lu Q, Yang Q. Study on the Mechanism of Levofloxacin Combined with Imipenem Against Pseudomonas aeruginosa. Appl Biochem Biotechnol 2024; 196:690-700. [PMID: 37178250 DOI: 10.1007/s12010-023-04516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Pseudomonas aeruginosa can develop resistance. Therefore, it is necessary to design proper treatment for it. Pseudomonas aeruginosa can develop resistance against levofloxacin due to the development of efflux pumps. However, the development of these efflux pumps cannot develop resistance against imipenem. Additionally, the MexCDOprJ efflux system which is responsible for the resistance of Pseudomonas aeruginosa to levofloxacin is highly susceptible to imipenem. The objective of the study was to evaluate the emergence of resistance of Pseudomonas aeruginosa against 750 mg levofloxacin, 250 mg imipenem, and a combination of 750 mg levofloxacin and 250 mg imipenem. An in vitro pharmacodynamic model was selected for the evaluation of the emergence of resistance. Pseudomonas aeruginosa strain 236, Pseudomonas aeruginosa strain GB2, and Pseudomonas aeruginosa strain GB65 were selected. Susceptibility testing of both antibiotics was done by agar dilution methodology. A disk diffusion bioassay was performed for antibiotics. RT-PCR measurement was done for the evaluation of expressions of Pseudomonas aeruginosa genes. Samples were tested at 2 h, 4 h, 6 h, 8 h, 12 h, 16 h, 24 h, and 30 h. Levofloxacin and imipenem both individually reported a decrease in colony-forming unit per milliliter of strength in the initial stage but in the later stage both develop resistance individually. Levofloxacin with imipenem had no resistance to Pseudomonas aeruginosa during 30 h. Time after the start of development of resistance or decrease in clinical efficacy was higher for levofloxacin and imipenem combination in all strains. The concentration of Pseudomonas aeruginosa at the time after the start of development of resistance or decrease in clinical efficacy was fewer for levofloxacin and imipenem combination. Levofloxacin with imipenem is recommended for the treatment of infection due to Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Qiang Lu
- Northern Jiangsu People's Hospital, Nantong West Road No. 98, Yangzhou, 225001, Jiangsu, China.
| | - Qingqing Yang
- Northern Jiangsu People's Hospital, Nantong West Road No. 98, Yangzhou, 225001, Jiangsu, China
| |
Collapse
|
3
|
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cationic and ionizable cationic lipids are broadly applied as auxiliary agents, but their use is associated with adverse effects. If these excipients are rapidly degraded to endogenously occurring metabolites such as amino acids and fatty acids, their toxic potential can be minimized. So far, synthesized and evaluated biodegradable cationic and ionizable cationic lipids already showed promising results in terms of functionality and safety. Within this review, an overview about the different types of such biodegradable lipids, the available building blocks, their synthesis and cleavage by endogenous enzymes is provided. Moreover, the relationship between the structure of the lipids and their toxicity is described. Their application in drug delivery systems is critically discussed and placed in context with the lead compounds used in mRNA vaccines. Moreover, their use as preservatives is reviewed, guidance for their design is provided, and an outlook on future developments is given.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
4
|
Salimova EV, Mozgovoj OS, Efimova SS, Ostroumova OS, Parfenova LV. 3-Amino-Substituted Analogues of Fusidic Acid as Membrane-Active Antibacterial Compounds. MEMBRANES 2023; 13:309. [PMID: 36984696 PMCID: PMC10056636 DOI: 10.3390/membranes13030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Fusidic acid (FA) is an antibiotic with high activity against Staphylococcus aureus; it has been used in clinical practice since the 1960s. However, the narrow antimicrobial spectrum of FA limits its application in the treatment of bacterial infections. In this regard, this work aims both at the study of the antimicrobial effect of a number of FA amines and at the identification of their potential biological targets. In this way, FA analogues containing aliphatic and aromatic amino groups and biogenic polyamine, spermine and spermidine, moieties at the C-3 atom, were synthesized (20 examples). Pyrazinecarboxamide-substituted analogues exhibit a high antibacterial activity against S. aureus (MRSA) with MIC ≤ 0.25 μg/mL. Spermine and spermidine derivatives, along with activity against S. aureus, also inhibit the growth and reproduction of Gram-negative bacteria Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa, and have a high fungicidal effect against Candida albicans and Cryptococcus neoformans. The study of the membrane activity demonstrated that the spermidine- and spermine-containing compounds are able to immerse into membranes and disorder the lipidsleading to a detergent effect. Moreover, spermine-based compounds are also able to form ion-permeable pores in the lipid bilayers mimicking the bacterial membranes. Using molecular docking, inhibition of the protein synthesis elongation factor EF-G was proposed, and polyamine substituents were shown to make the greatest contribution to the stability of the complexes of fusidic acid derivatives with biological targets. This suggests that the antibacterial effect of the obtained compounds may be associated with both membrane activity and inhibition of the elongation factor EF-G.
Collapse
Affiliation(s)
- Elena V. Salimova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| | - Oleg S. Mozgovoj
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| | - Svetlana S. Efimova
- Institute of Cytology of Russian Academy of Sciences, 4 Tikhoretsky Prospect, 194064 Saint Petersburg, Russia
| | - Olga S. Ostroumova
- Institute of Cytology of Russian Academy of Sciences, 4 Tikhoretsky Prospect, 194064 Saint Petersburg, Russia
| | - Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| |
Collapse
|
5
|
Fatima H, Bhattacharya A, Khare SK. Efficient remediation of meropenem using Bacillus tropicus EMB20 β-lactamase immobilized on magnetic nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117054. [PMID: 36549054 DOI: 10.1016/j.jenvman.2022.117054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Reducing antibiotic pollution in the environment in essential to preserve the effectiveness of the available antibiotics. In the present study, β-lactamase from Bacillus tropicus EMB20 was immobilized onto magnetic nanoparticles (Fe3O4) through covalent coupling method. The nanoconjugate was structurally characterized using SEM, FTIR, UV-spectrometry, and XRD diffraction analyses. The prepared enzyme nanoconjugate was thereafter used for remediation of meropenem (Mer) and showed complete removal of 10 mgL-1 Mer within 3 h of treatment. Moreover, the immobilized enzyme was successfully recovered and reused for up to 5 cycles with 57% removal efficiency. The immobilized preparation was also observed to be effective in the removal of higher Mer concentrations of 25 and 50 mgL-1 with 79% and 75% removal efficiency, respectively. The major hydrolyzed product of Mer was found to be opened-lactam ring structure with m/z 402.16. The hydrolyzed product(s) were observed to be non-toxic as revealed through microbial MTT, confocal microscopy, and growth studies. Under the mixed conditions of 50 mgL-1 ampicillin (Amp), 10 mgL-1 amoxicillin (Amox) and, Mer, the nanoconjugate showed simultaneous complete removal of Amp and Mer, while 49% Amox removal was detected after 3 h of treatment. Moreover, the nanoconjugates also showed concomitant complete removal of antibiotic mixture with in 2 h from aquaculture wastewater. Overall, the study comes out with an efficient approach for remediation of β-lactam antibiotics from contaminated systems.
Collapse
Affiliation(s)
- Huma Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, India.
| |
Collapse
|
6
|
Lustri WR, Lazarini SC, Simei Aquaroni NA, Resende FA, Aleixo NA, Pereira DH, Lustri BC, Moreira CG, Ribeiro CM, Pavan FR, Nakahata DH, Gonçalves AM, Nascimento-Júnior NM, Corbi PP. A new complex of silver(I) with probenecid: Synthesis, characterization, and studies of antibacterial and extended spectrum β-lactamases (ESBL) inhibition activities. J Inorg Biochem 2023; 243:112201. [PMID: 37003189 DOI: 10.1016/j.jinorgbio.2023.112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
This article describes the in vitro antibacterial and β-lactamase inhibition of a novel silver(I) complex with the sulfonamide probenecid (Ag-PROB). The formula Ag2C26H36N2O8S2·2H2O for the Ag-PROB complex was proposed based on elemental analysis. High-resolution mass spectrometric studies revealed the existence of the complex in its dimeric form. Infrared, nuclear magnetic resonance spectroscopies and Density Functional Theory calculations indicated a bidentate coordination of probenecid to the silver ions by the oxygen atoms of the carboxylate. In vitro antibacterial activities of Ag-PROB showed significant growth inhibitory activity over Mycobacterium tuberculosis, S. aureus, and P. aeruginosa PA01biofilm-producers, B. cereus, and E. coli. The Ag-PROB complex was active over multi-drug resistant of uropathogenic E. coli extended spectrum β-lactamases (ESBL) producing (EC958 and BR43), enterohemorrhagic E. coli (O157:H7) and enteroaggregative E. coli (O104:H4). Ag-PROB was able to inhibit CTX-M-15 and TEM-1B ESBL classes, at concentrations below the minimum inhibitory concentration for Ag-PROB, in the presence of ampicillin (AMP) concentration in which EC958 and BR43 bacteria were resistant in the absence of Ag-PROB. These results indicate that, in addition to ESBL inhibition, there is a synergistic antibacterial effect between AMP and the Ag-PROB. Molecular docking results revealed potential key residues involved in interactions between Ag-PROB, CTX-M-15 and TEM1B, suggesting the molecular mechanism of the ESBL inhibition. The obtained results added to the absence of mutagenic activity and low cytotoxic activity over non-tumor cell of the Ag-PROB complex open a new perspective for future in vivo tests demonstrating its potential of use as an antibacterial agent.
Collapse
|
7
|
Alaoui Mdarhri H, Benmessaoud R, Yacoubi H, Seffar L, Guennouni Assimi H, Hamam M, Boussettine R, Filali-Ansari N, Lahlou FA, Diawara I, Ennaji MM, Kettani-Halabi M. Alternatives Therapeutic Approaches to Conventional Antibiotics: Advantages, Limitations and Potential Application in Medicine. Antibiotics (Basel) 2022; 11:1826. [PMID: 36551487 PMCID: PMC9774722 DOI: 10.3390/antibiotics11121826] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Resistance to antimicrobials and particularly multidrug resistance is one of the greatest challenges in the health system nowadays. The continual increase in the rates of antimicrobial resistance worldwide boosted by the ongoing COVID-19 pandemic poses a major public health threat. Different approaches have been employed to minimize the effect of resistance and control this threat, but the question still lingers as to their safety and efficiency. In this context, new anti-infectious approaches against multidrug resistance are being examined. Use of new antibiotics and their combination with new β-lactamase inhibitors, phage therapy, antimicrobial peptides, nanoparticles, and antisense antimicrobial therapeutics are considered as one such promising approach for overcoming bacterial resistance. In this review, we provide insights into these emerging alternative therapies that are currently being evaluated and which may be developed in the future to break the progression of antimicrobial resistance. We focus on their advantages and limitations and potential application in medicine. We further highlight the importance of the combination therapy approach, wherein two or more therapies are used in combination in order to more effectively combat infectious disease and increasing access to quality healthcare. These advances could give an alternate solution to overcome antimicrobial drug resistance. We eventually hope to provide useful information for clinicians who are seeking solutions to the problems caused by antimicrobial resistance.
Collapse
Affiliation(s)
- Hiba Alaoui Mdarhri
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rachid Benmessaoud
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Yacoubi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Lina Seffar
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Guennouni Assimi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Mouhsine Hamam
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rihabe Boussettine
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Najoie Filali-Ansari
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Fatima Azzahra Lahlou
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Idrissa Diawara
- Department of Biological Engineering, Higher Institute of Bioscience and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Mohamed Kettani-Halabi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| |
Collapse
|
8
|
Fatima H, Kumar S, Khare SK. Insights from the genome sequence of Bacillus tropicus EMB20, an efficient β-lactamase-producing bacterium. 3 Biotech 2022; 12:330. [PMID: 36304438 PMCID: PMC9592686 DOI: 10.1007/s13205-022-03395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/12/2022] [Indexed: 11/01/2022] Open
Abstract
We report here the whole-genome sequence of β-lactamase-producing bacteria Bacillus tropicus EMB20. The genome sequence of Bacillus tropicus EMB20 has a size of 5.8 Mb (G + C content of 35.52%) with 5593 coding DNA sequences (CDSs), 108 tRNA, and 14 rRNA operons. The bacterium has the unique ability to produce a β-lactamase enzyme with high activity. β-Lactamases are one of the most common causes of antimicrobial resistance as these enzymes inactivate almost all β-lactam antibiotics. The antibiotic susceptibility test showed that the B. tropicus EMB20 is producing β-lactamase and can degrade the β-lactam antibiotics. Further, the antibiotic degradation potential of this bacteria was confirmed by growing the bacteria in the presence of varying concentrations of β-lactam antibiotic, amoxicillin. The bacteria were able to hydrolyze amoxicillin up to 50 mg/L in 4 h. Furthermore, the analyses of the genome revealed the presence of multiple β-lactamase genes, possibly involved in antibiotic degradation. The availability of the genome sequence will provide further insights into the mechanism of antimicrobial resistance by β-lactamase-producing bacteria. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03395-w.
Collapse
Affiliation(s)
- Huma Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| | - Sumit Kumar
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| |
Collapse
|
9
|
Diab SE, Tayea NA, Elwakil BH, Gad AAEM, Ghareeb DA, Olama ZA. Novel Amoxicillin-Loaded Sericin Biopolymeric Nanoparticles: Synthesis, Optimization, Antibacterial and Wound Healing Activities. Int J Mol Sci 2022; 23:11654. [PMID: 36232955 PMCID: PMC9570309 DOI: 10.3390/ijms231911654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Infected wounds are a major threat among diabetic patients. Technological advancements are currently increasing the number of new adjunctive therapies that may be potent agents for speeding recovery, lowering the amputation rate and limiting infection recurrences. A novel formula with promising antibacterial activity, namely sericin/propolis/Amoxicillin nanoparticles, was assessed as a potent treatment of infected wounds in normal and diabetic rats. Skin wound healing efficiency was assessed through wound healing scorings, bacterial load assessment and histological examinations. It was revealed that upon using sericin/propolis/Amoxicillin nanoparticles, complete wound healing was successfully achieved after 10 and 15 days postinjury for nondiabetic and diabetic rats, respectively. However, the bacterial load in the induced infected wounds was extremely low (0-10 CFU/mL) after 15 days post-treatment. The histological studies revealed that the dermis was more organized with new matrix deposition, and mature collagen fibers were observed among the treated animal groups. The present study is the first preclinical study which reported the importance of silk sericin in the form of nano-sericin/propolis loaded with Amoxicillin as an effective treatment against bacterial wound infections.
Collapse
Affiliation(s)
- Shaimaa E. Diab
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Nourhan A. Tayea
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Bassma H. Elwakil
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21500, Egypt
| | - Abir Abd El Mageid Gad
- Applied Entomology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Doaa A. Ghareeb
- Biological Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Zakia A. Olama
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| |
Collapse
|
10
|
Shalmashi H, Farajnia S, Sadeghi M, Tanoumand A, Veissi K, Hamishekar H, Gotaslou R. Detection of ESBLs types blaCTX-M, blaSHV and blaTEM resistance genes among clinical isolates of Pseudomonas aeruginosa. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Zhou K, Zhang Z, Xue J, Shang J, Ding D, Zhang W, Liu Z, Yan F, Cheng N. Hybrid Ag nanoparticles/polyoxometalate-polydopamine nano-flowers loaded chitosan/gelatin hydrogel scaffolds with synergistic photothermal/chemodynamic/Ag + anti-bacterial action for accelerated wound healing. Int J Biol Macromol 2022; 221:135-148. [PMID: 36029962 DOI: 10.1016/j.ijbiomac.2022.08.151] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
Bacterial infections significantly slow the wound healing process, thus severely threatening human health. Furthermore, traditional antibiotics may promote the development of multidrug-resistant bacteria. Therefore, developing novel bactericides and therapeutic strategies for bacterial infections is important to enhance wound healing. Herein, a three-in-one bactericidal flower-like nanocomposite was assembled using Ag nanoparticles/phosphotungstic acid-polydopamine nano-flowers (AgNPs/POM-PDA). The nanocomposite exhibited photothermal therapy (PTT) when exposed to NIR light via photothermal conversion by PDA. The resultant photothermal effect accelerated and controlled the Ag+ released from AgNPs. The chemodynamic therapy (CDT) was obtained via POM catalytic Fenton-like reaction. The combined PTT/CDT/Ag+ treatment achieved excellent synergistic anti-bacterial activity against both gram-negative E. coli and gram-positive S. aureus. A multifunctional wound dressing was then obtained by embedding the AgNPs/POM-PDA flower-like nanocomposite into the chitosan (CS)/gelatin (GE) biocomposite hydrogel. The synergy of AgNPs/POM-PDA nanocomposites and CS/GE hydrogel remarkably accelerated wound healing in vivo due to the excellent biocompatibility, hydroabsorptivity, and breathability of the hydrogel. In this study, a multifunctional agent was developed to synergistically combat bacterial infections and accelerate wound healing.
Collapse
Affiliation(s)
- Kunpeng Zhou
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Zhengchao Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Jingwen Xue
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Jianmeng Shang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shangdong 261053, PR China.
| | - Fang Yan
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| | - Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
12
|
Yu C, Sui S, Yu X, Huang W, Wu Y, Zeng X, Chen Q, Wang J, Peng Q. Ti 3C 2T x MXene loaded with indocyanine green for synergistic photothermal and photodynamic therapy for drug-resistant bacterium. Colloids Surf B Biointerfaces 2022; 217:112663. [PMID: 35785716 DOI: 10.1016/j.colsurfb.2022.112663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 02/08/2023]
Abstract
Infections caused by antibiotic-resistant bacteria are a critical threat to human health. Considering the difficulties and time-consuming nature of synthesizing new antibiotics, it is of great significance and importance to develop the antibiotic-independent antibacterial approaches against drug-resistant bacteria. Nanomaterials-based photothermal therapy (PTT) and photodynamic therapy (PDT) have attracted much attention due to their broad-spectrum bactericidal activity, low toxicity, and drug-free feature. In this work, we loaded indocyanine green (ICG) on the Ti3C2Tx MXene nanosheets (454 nm) so as to combine the photothermal effect of MXene with the photodynamic effect of ICG. Without near-infrared (NIR) irradiation, MXene (20 μg/mL), ICG (5 μg/mL) or ICG-loaded MXene (ICG-MXene) showed no significant antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Under NIR, however, the viability loss of MRSA remarkably increased to 45% for MXene, 66% for ICG and 100% for ICG-MXene. We further found that the great anti-MRSA activity of ICG-MXene under NIR was attributed to the combination of photothermal effect of MXene (high temperature) and photodynamic effect of ICG (high level of reactive oxygen species). Our findings indicate that MXene can be used as both the photothermal agent and the carrier of photosensitizers to achieve the synergistic PTT/PDT therapy for bacterial infections.
Collapse
Affiliation(s)
- Chenhao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shangyan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaotong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenlong Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Ayipo YO, Osunniran WA, Babamale HF, Ayinde MO, Mordi MN. Metalloenzyme mimicry and modulation strategies to conquer antimicrobial resistance: Metal-ligand coordination perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|