1
|
Wang P, Sun S, Bai G, Zhang R, Liang F, Zhang Y. Nanosized Prussian blue and its analogs for bioimaging and cancer theranostics. Acta Biomater 2024; 176:77-98. [PMID: 38176673 DOI: 10.1016/j.actbio.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Prussian blue (PB) nanoparticles (NPs) and Prussian blue analogs (PBAs) can form metal-organic frameworks through the programmable coordination of ferrous ions with cyanide. PB and PBAs represent a burgeoning class of hybrid functional nano-systems with a wide-ranging application spectrum encompassing biomedicine, cancer diagnosis, and therapy. A comprehensive overview of recent advancements is crucial for gaining insights for future research. In this context, we reviewed the synthesis techniques and surface modification strategies employed to tailor the dimensions, morphology, and attributes of PB NPs. Subsequently, we explored advanced biomedical utilities of PB NPs, encompassing photoacoustic imaging, magnetic resonance imaging, ultrasound (US) imaging, and multimodal imaging. In particular, the application of PB NPs-mediated photothermal therapy, photodynamic therapy, and chemodynamic therapy to cancer treatment was reviewed. Based on the literature, we envision an evolving trajectory wherein the future of Prussian blue-driven biological applications converge into an integrated theranostic platform, seamlessly amalgamating bioimaging and cancer therapy. STATEMENT OF SIGNIFICANCE: Prussian blue, an FDA-approved coordinative pigment with a centuries-long legacy, has paved the way for Prussian blue nanoparticles (PB NPs), renowned for their remarkable biocompatibility and biosafety. These PB NPs have found their niche in biomedicine, playing crucial roles in both diagnostics and therapeutic applications. The comprehensive review goes beyond PB NP-based cancer therapy. Alongside in-depth coverage of PB NP synthesis and surface modifications, the review delves into their cutting-edge applications in the realm of biomedical imaging, encompassing techniques such as photoacoustic imaging, magnetic resonance imaging, ultrasound imaging, and multimodal imaging.
Collapse
Affiliation(s)
- Pengfei Wang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Shaohua Sun
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guosheng Bai
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ruiqi Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Fei Liang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics of Zhejiang Province, 218 Qingyi Road, Ningbo, 315103, China.
| |
Collapse
|
2
|
Hong H, Kim M, Lee W, Jeon M, Lee C, Kim H, Im HJ, Piao Y. Injectable biocompatible nanocomposites of Prussian blue nanoparticles and bacterial cellulose as a safe and effective photothermal cancer therapy. J Nanobiotechnology 2023; 21:365. [PMID: 37798714 PMCID: PMC10552393 DOI: 10.1186/s12951-023-02108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
Photothermal therapy (PTT) is a novel cancer treatment using a photoabsorber to cause hyperthermia to kill tumors by laser irradiation. Prussian blue nanoparticles (PB NPs) are considered as next-generation photothermal agents due to the facile synthesis and excellent absorption of near-infrared light. Although PB NPs demonstrate remarkable PTT capabilities, their clinical application is limited due to their systemic toxicity. Bacterial cellulose (BC) has been applied to various bio-applications based on its unique properties and biocompatibility. Herein, we design composites with PB NPs and BC as an injectable, highly biocompatible PTT agent (IBC-PB composites). Injectable bacterial cellulose (IBC) is produced through the trituration of BC, with PB NPs synthesized on the IBC surface to prepare IBC-PB composites. IBC-PB composites show in vitro and in vivo photothermal therapeutic effects similar to those of PB NPs but with significantly greater biocompatibility. Specifically, in vitro therapeutic index of IBC-PB composites is 26.5-fold higher than that of PB NPs. Furthermore, unlike PB NPs, IBC-PB composites exhibit no overt toxicity in mice as assessed by blood biochemical analysis and histological images. Hence, it is worth pursuing further research and development of IBC-PB composites as they hold promise as safe and efficacious PTT agents for clinical application.
Collapse
Affiliation(s)
- Hwichan Hong
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - MinKyu Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wooseung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Miyeon Jeon
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chaedong Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoonsub Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do, Republic of Korea.
- Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea.
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do, Republic of Korea.
- Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Deshmukh S, Pawar K, Koli V, Pachfule P. Emerging Graphitic Carbon Nitride-based Nanobiomaterials for Biological Applications. ACS APPLIED BIO MATERIALS 2023; 6:1339-1367. [PMID: 37011107 DOI: 10.1021/acsabm.2c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Graphitic carbon nitride (g-CN) based nanostructures are distinctive materials with unique compositional, structural, optical, and electronic properties with exceptional band structure, moderate surface area, and exceptional thermal and chemical stability. Because of these properties, g-CN based nanomaterials have shown promising applications and higher performance in the biological avenue. This review covers the state-of-the-art synthetic strategies used for the preparation of the materials, the basic structure, and a panorama of different optimization strategies leading to improved physicochemical properties responsible for the biological application. The following sections include the recent progress in the use of g-CN based nanobiomaterials for biosensors, bioimaging, photodynamic therapy, drug delivery, chemotherapy, and the antimicrobial segment. Furthermore, we have summarized the role and evaluation of biosafety and biocompatibility of the material. Finally, the unresolved issues, plausible challenges, current status, and future perspectives for the development and design of g-CN have been summarized and are expected to promote a clinical path for the medical sector and human well-being.
Collapse
Affiliation(s)
- Shamkumar Deshmukh
- Department of Chemistry, Damani Bhairuratan Fatechand, Dayanand College of Arts and Science, Solapur 413002, India
| | - Krishna Pawar
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, India
| | - Valmiki Koli
- Department of Physics, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Pradip Pachfule
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
4
|
Kolarikova M, Hosikova B, Dilenko H, Barton-Tomankova K, Valkova L, Bajgar R, Malina L, Kolarova H. Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Med Res Rev 2023. [PMID: 36757198 DOI: 10.1002/med.21935] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 02/10/2023]
Abstract
Photodynamic therapy is an alternative treatment mainly for cancer but also for bacterial infections. This treatment dates back to 1900 when a German medical school graduate Oscar Raab found a photodynamic effect while doing research for his doctoral dissertation with Professor Hermann von Tappeiner. Unexpectedly, Raab revealed that the toxicity of acridine on paramecium depends on the intensity of light in his laboratory. Photodynamic therapy is therefore based on the administration of a photosensitizer with subsequent light irradiation within the absorption maxima of this substance followed by reactive oxygen species formation and finally cell death. Although this treatment is not a novelty, there is an endeavor for various modifications to the therapy. For example, selectivity and efficiency of the photosensitizer, as well as irradiation with various types of light sources are still being modified to improve final results of the photodynamic therapy. The main aim of this review is to summarize anticancer and antibacterial modifications, namely various compounds, approaches, and techniques, to enhance the effectiveness of photodynamic therapy.
Collapse
Affiliation(s)
- Marketa Kolarikova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hosikova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Katerina Barton-Tomankova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Valkova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukas Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolarova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
5
|
Lu K, Zhu XY, Li Y, Gu N. Progress in the preparation of Prussian blue-based nanomaterials for biomedical applications. J Mater Chem B 2023. [PMID: 36748242 DOI: 10.1039/d2tb02617a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prussian blue (PB) is composed of the coordination network of Fe2+-CN-Fe3+ mixed valence state as a classic metal complex, which includes a C atom and Fe2+ (low spin), N atom and Fe3+ (high spin). PB and its analogues (PBA) have excellent biosafety, good magnetic properties, outstanding photothermal properties and the ability to mimic enzymatic behaviors due to their stable structure, tunable size, controllable morphology, abundant modification methods and excellent physicochemical properties. They have received increasing research interest and have shown promising applications in the biomedical field. Here, progress in the preparation of PB-based nanomaterials for biomedical applications is summarized and discussed. The preparation strategies, traditional synthesis and emerging preparation methods of PB are summarized systematically in this review. The design and preparation of PBA, PB(PBA)-based hollow structures and PB(PBA)-based composites are also included. While introducing the preparation status, some PB-based nanomaterials that have performed well in specific biomedical fields are emphasized. More importantly, the key factors and future development of PB for the clinical translation as multifunctional nanomaterials are also discussed. This review provides a reference for the design and biomedical application of PB-based nanomaterials.
Collapse
Affiliation(s)
- Kun Lu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China.
| | - Xiao-Yang Zhu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China.
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China. .,Medical School, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
6
|
Wang X, Wang C, Xu Y, Li Y, Li H, Fan B, Yang F, Li L. The multifunctional Prussian blue/graphitic carbon nitride nanocomposites for fluorescence imaging-guided photothermal and photodynamic combination therapy. RSC Adv 2022; 13:335-343. [PMID: 36605658 PMCID: PMC9782363 DOI: 10.1039/d2ra07022g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has been regarded as one of the most intractable diseases worldwide and threatens human health and life. Photothermal/Photodynamic therapy (PTT and PDT) have emerged as reliable and effective strategies in cancer treatment with the superiorities of non-invasiveness, slight side effects, and high treatment efficiency. Herein, a nanocomposite (PBCN) was fabricated via electrostatic interaction between Prussian blue nanoparticles (PBNPs) and graphitic carbon nitride (g-C3N4), and the resulting PBCN possessed good photothermal properties and excellent photodynamic effects with 808 nm irradiation. Furthermore, it exhibits excellent fluorescence imaging ability in cells, highlighting its potential as a powerful imaging agent in the biomedical field. Combination with a photothermal material, photosensitizer, and fluorescence imaging agent would thus allow PBCN to realize fluorescence imaging-guided PTT/PDT, showing an outstanding theranostic effect on cancer cells.
Collapse
Affiliation(s)
- Xinxu Wang
- Shanxi Medical University Taiyuan 030001 China
| | | | - Yichen Xu
- Xiangya School of Medicine, Central South University Changsha 410006 China
| | - Yuxin Li
- Shanxi Medical University Taiyuan 030001 China
| | - Haotian Li
- Shanxi Medical University Taiyuan 030001 China
| | - Bingjun Fan
- Shanxi Medical University Taiyuan 030001 China
| | - Fan Yang
- Shanxi Medical University Taiyuan 030001 China
| | - Liping Li
- Shanxi Medical University Taiyuan 030001 China
| |
Collapse
|
7
|
Zhang Y, Chen S, Xia Q, Zhang H, Wang Z, Yan R, Zhang X, Dai J, Wu X, Fang W, Jin Y. Photodynamic antitumor activity of tetrahydroxyl-methyl pyropheophorbide-a with improved water-solubility and depth of treatment. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|