1
|
Najafi Z, Han S, Sumnu G, Kahyaoglu LN. Colorimetric core/shell ZIF-8/PEO/PDA nanofibers for detection of fish spoilage. Food Chem 2025; 466:142195. [PMID: 39603000 DOI: 10.1016/j.foodchem.2024.142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Here, colorimetric nanofibers (NFs) based on polydiacetylene (PDA), zeolitic imidazolate framework-8 (ZIF-8), and poly(ethylene) oxide (PEO) were developed. First, the successful synthesis of ZIF-8 was illustrated with structural and morphological analysis. Next, shell/core PDA/PEO/ZIF-8 NFs, namely PPZ0, PPZ5, PPZ15, and PPZ25, were fabricated by coaxial electrospinning at various ZIF-8 concentrations in the core. PPZ5 NFs exhibited a 63 % increase in tensile strength while PPZ25 NFs showed the highest thermal resistance. PPZ15 NFs with the best physicochemical and colorimetric properties were selected to evaluate food spoilage. The change in color difference values of PPZ15 NFs was correlated well with total viable count (TVC) and total volatile basic nitrogenous (TVB-N) in fish samples during chilled storage, reaching TVC to 6.69 log CFU/g, and TVB-N to 33.13 mg N/100 g on day 6. Ultimately, the PPZ15 NFs were successfully utilized to provide a real-time, quantitative assessment of fish freshness.
Collapse
Affiliation(s)
- Zahra Najafi
- Department of Food Engineering, Faculty of Food Engineering, Middle East Technical University, 06800 Ankara, Turkiye
| | - Sangil Han
- Department of Chemical Engineering, Changwon National University, Changwon 51140, South Korea
| | - Gülüm Sumnu
- Department of Food Engineering, Faculty of Food Engineering, Middle East Technical University, 06800 Ankara, Turkiye
| | - Leyla Nesrin Kahyaoglu
- Department of Food Engineering, Faculty of Food Engineering, Middle East Technical University, 06800 Ankara, Turkiye.
| |
Collapse
|
2
|
Batista FG, Medeiros DTD, Silva DW, Mascarenhas ARP, Scatolino MV, Martins MA, Alves Junior FT, Thygesen LG, Tonoli GHD, Mendes LM. The potential of nanofibrillated cellulose from Hevea brasiliensis to produce films for bio-based packaging. Int J Biol Macromol 2024; 279:135495. [PMID: 39255886 DOI: 10.1016/j.ijbiomac.2024.135495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Cellulose micro/nanofibril (MNFC) films are an interesting alternative to plastic-based films for application in biodegradable packaging. In this study, we aimed to produce and characterize MNFC films obtained from alkaline-pretreated rubberwood (Hevea brasiliensis) waste and Eucalyptus sp. commercial pulp. MNFC and films were evaluated regarding microstructure; crystallinity; stability; and physical, optical, mechanical, and barrier properties. A combined quality index (QI) was also calculated. Eucalyptus MNFC suspensions were more stable than H. brasiliensis. Both films had a hydrophobic surface (>90°) and high grease resistance (oil kit 12). H. brasiliensis films had lower transparency (26.4 %) and high crystallinity (∼89 %), while Eucalyptus films had lower permeability and higher mechanical strength. The QI of MNFC was 51 ± 5 for H. brasiliensis and 55 ± 4 for Eucalyptus, showing that both types of raw material have potential for application in the packaging industry and in the reinforcement of composites, as well as for high value-added applications in products made from special materials.
Collapse
Affiliation(s)
- Felipe Gomes Batista
- Department of Forest Science, Federal University of Lavras (UFLA), C.P. 3037, 37200-900 Lavras, MG, Brazil.
| | - Dayane Targino de Medeiros
- Department of Forest Science, Federal University of Lavras (UFLA), C.P. 3037, 37200-900 Lavras, MG, Brazil.
| | - Danillo Wisky Silva
- Department of Production Engineering, State University of Amapá (UEAP), 68900-070 Macapá, AP, Brazil; Klabin, Technology Center, Industrial R&D+I, Fazenda Monte Alegre, St. Harmonia, Telêmaco Borba, PR, Brazil.
| | - Adriano Reis Prazeres Mascarenhas
- Department of Forest Engineering, Lignocellulosic Materials Engineering Laboratory (LEMLIG), Federal University of Rondônia (UNIR), 76940-000 Rolim de Moura, RO, Brazil.
| | - Mário Vanoli Scatolino
- Department of Forest Science, State University of Amapá (UEAP), 68908-908, Macapá, Amapá, Brazil.
| | - Maria Alice Martins
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil.
| | | | - Lisbeth Garbrecht Thygesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark.
| | | | - Lourival Marin Mendes
- Department of Forest Science, Federal University of Lavras (UFLA), C.P. 3037, 37200-900 Lavras, MG, Brazil.
| |
Collapse
|
3
|
Roy S, Malik B, Chawla R, Bora S, Ghosh T, Santhosh R, Thakur R, Sarkar P. Biocompatible film based on protein/polysaccharides combination for food packaging applications: A comprehensive review. Int J Biol Macromol 2024; 278:134658. [PMID: 39128751 DOI: 10.1016/j.ijbiomac.2024.134658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Protein and polysaccharides are the mostly used biopolymers for developing packaging film and their combination-based composite produced better quality film compared to their single counterpart. The combination of protein and polysaccharides are superior owing to the better physical properties like water resistance, mechanical and barrier properties of the film. The protein/polysaccharide-based composite film showed promising result in active and smart food packaging regime. This work discussed the recent advances on the different types of protein/polysaccharide combinations used for making bio-based sustainable packaging film formulation and further utilized in food packaging applications. The fabrication and properties of various protein/polysaccharide combination are comprehensively discussed. This review also presents the use of the multifunctional composite film in meat, fish, fruits, vegetables, milk products, and bakery products, etc. Developing composite is a promising approach to improve physical properties and practical applicability of packaging film. The low water resistance properties, mechanical performance, and barrier properties limit the real-time use of biopolymer-based packaging film. The combination of protein/polysaccharide can be one of the promising solutions to the biopolymer-based packaging and thus recently many works has been published which is suitable to preserve the shelf life of food as well trace the food spoilage during food storage.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Bhawna Malik
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Rekha Chawla
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Susmita Bora
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, Assam 784028, India
| | - Tabli Ghosh
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, Assam 784028, India
| | - R Santhosh
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Rahul Thakur
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
4
|
Hong SJ, Riahi Z, Shin GH, Kim JT. Development of innovative active packaging films using gelatin/pullulan-based composites incorporated with cinnamon essential oil-loaded metal-organic frameworks for meat preservation. Int J Biol Macromol 2024; 267:131606. [PMID: 38631566 DOI: 10.1016/j.ijbiomac.2024.131606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
This study aimed to investigate the effect of cinnamon essential oil (CEO)-loaded metal-organic frameworks (CEO@MOF) on the properties of gelatin/pullulan (Gel/Pull)-based composite films (Gel/Pull-based films). The incorporation of CEO@MOF into Gel/Pull-based films demonstrated significant antimicrobial activity against S. aureus, S. enterica, E. coli, and L. monocytogenes. Additionally, CEO@MOF integrated film exhibited a 98.16 % ABTS radical scavenging, with no significant change in the mechanical properties of the neat Gel/Pull film. The UV blocking efficiency of the composite films increased significantly from 81.38 to 99.56 % at 280 nm with the addition of 3 wt% CEO@MOF. Additionally, Gel/Pull/CEO@MOF films effectively extended the shelf life of meat preserved at 4 °C by reducing moisture loss by 3.35 %, maintaining the pH within the threshold limit (6.2), and inhibiting bacterial growth by 99.9 %. These results propose that CEO@MOF has significant potential as an effective additive in active packaging to improve shelf life and food safety.
Collapse
Affiliation(s)
- Su Jung Hong
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Zohreh Riahi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Liu Y, Chen X, Lin X, Yan J, Yu DG, Liu P, Yang H. Electrospun multi-chamber core-shell nanofibers and their controlled release behaviors: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1954. [PMID: 38479982 DOI: 10.1002/wnan.1954] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 06/06/2024]
Abstract
Core-shell structure is a concentric circle structure found in nature. The rapid development of electrospinning technology provides more approaches for the production of core-shell nanofibers. The nanoscale effects and expansive specific surface area of core-shell nanofibers can facilitate the dissolution of drugs. By employing ingenious structural designs and judicious polymer selection, specialized nanofiber drug delivery systems can be prepared to achieve controlled drug release. The synergistic combination of core-shell structure and materials exhibits a strong strategy for enhancing the drug utilization efficiency and customizing the release profile of drugs. Consequently, multi-chamber core-shell nanofibers hold great promise for highly efficient disease treatment. However, little attention concentration is focused on the effect of multi-chamber core-shell nanofibers on controlled release of drugs. In this review, we introduced different fabrication techniques for multi-chamber core-shell nanostructures, including advanced electrospinning technologies and surface functionalization. Subsequently, we reviewed the different controlled drug release behaviors of multi-chamber core-shell nanofibers and their potential needs for disease treatment. The comprehensive elucidation of controlled release behaviors based on electrospun multi-chamber core-shell nanostructures could inspire the exploration of novel controlled delivery systems. Furthermore, once these fibers with customizable drug release profiles move toward industrial mass production, they will potentially promote the development of pharmacy and the treatment of various diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yubo Liu
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Xiangde Lin
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jiayong Yan
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Hui Yang
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Ferreira CAM, Guerreiro SFC, Padrão T, Alves NMF, Dias JR. Antimicrobial Nanofibers to Fight Multidrug-Resistant Bacteria. NANOTECHNOLOGY BASED STRATEGIES FOR COMBATING ANTIMICROBIAL RESISTANCE 2024:533-579. [DOI: 10.1007/978-981-97-2023-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Priyanka S, Raja Namasivayam SK, Bharani RSA, John A. Biocompatible green technology principles for the fabrication of food packaging material with noteworthy mechanical and antimicrobial properties A sustainable developmental goal towards the effective, safe food preservation strategy. CHEMOSPHERE 2023; 336:139240. [PMID: 37348611 DOI: 10.1016/j.chemosphere.2023.139240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Biocompatible, eco-friendly, highly economical packaging methods should be needed as conventional packaging is known to cause undesirable effects. As food packaging is the major determining factor of food safety, the selection or methods of packaging materials plays a pioneering role. With this scope, modern food technology seeks unique sustainable approaches for the fabrication of package materials with notable desired properties. The principles, features, and fabrication methodology of modern food packaging are briefly covered in this review. We extensively revealed improved packaging (nanocoating, nanolaminates, and nano clay), active packaging (antimicrobial, oxygen scavenging, and UV barrier packaging), and intelligent/smart packaging (O2 indicator, CO2 indicator, Time Temperature Indicator, freshness indicator, and pH indicator). In particular, we described the role of nanomaterials in the fabrication of packaging material. Methods for the evaluation of mechanical, barrier properties, and anti-microbial assays have been featured. The present studies suggest the possible utilization of materials in the fabrication of food packaging for the production, utilization, and distribution of safe foods without affecting nutritional values.
Collapse
Affiliation(s)
- S Priyanka
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | | | - Arun John
- Department of Molecular Analytics, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
8
|
Tan Y, Zi Y, Peng J, Shi C, Zheng Y, Zhong J. Gelatin as a bioactive nanodelivery system for functional food applications. Food Chem 2023; 423:136265. [PMID: 37167667 DOI: 10.1016/j.foodchem.2023.136265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Gelatin has long been used as an encapsulant agent in the pharmaceutical and biomedical industries because of its low cost, wide availability, biocompatibility, and degradability. However, the exploitation of gelatin for nanodelivery application is not fully achieved in the functional food filed. In this review article, we highlight the latest work being performed for gelatin-based nanocarriers, including polyelectrolyte complexes, nanoemulsions, nanoliposomes, nanogels, and nanofibers. Specifically, we discuss the applications and challenges of these nanocarriers for stabilization and controlled release of bioactive compounds. To achieve better efficacy, gelatin is frequently used in combination with other biomaterials such as polysaccharides. The fabrication and synergistic effects of the newly developed gelatin composite nanocarriers are also present.
Collapse
Affiliation(s)
- Yang Tan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zi
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiawei Peng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yulu Zheng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
9
|
Liu J, Chen B, Hu Q, Zhang Q, Huang B, Fei P. Pectin grafted with resorcinol and 4-hexylresorcinol: Preparation, characterization and application in meat preservation. Int J Biol Macromol 2023; 237:124212. [PMID: 36977442 DOI: 10.1016/j.ijbiomac.2023.124212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
To augment the functional attributes of pectin and expand its prospective utilization in food preservation, this research explored the enzymatic grafting of resorcinol and 4-hexylresorcinol onto pectin. Structural analysis verified the successful grafting of both resorcinol and 4-hexylresorcinol to pectin via esterification, with the 1-OH of resorcinol and 4-hexylresorcinol and the carboxyl group of pectin functioning as grafting sites. The grafting ratios of resorcinol-modified pectin (Re-Pe) and 4-hexylresorcinol-modified pectin (He-Pe) were 17.84 % and 10.98 %, respectively. This grafting modification notably enhanced the antioxidative and antibacterial properties of pectin. Specifically, DPPH clearance and the inhibition ratio in the β-carotene bleaching assay increased from 11.38 % and 20.13 % (native pectin, Na-Pe) to 41.15 % and 36.67 % (Re-Pe), and 74.72 % and 53.40 % (He-Pe). Moreover, the inhibition zone diameter against Escherichia coli and Staphylococcus aureus rose from 10.12 and 10.08 mm (Na-Pe) to 12.36 and 11.52 mm (Re-Pe), and 16.78 and 14.87 mm (He-Pe). Additionally, the application of native and modified pectin coatings effectively impeded pork spoilage, with the modified pectins demonstrating a more potent effect. Among the two modified pectins, He-Pe exhibited the most significant enhancement in pork shelf life.
Collapse
|
10
|
Tai Z, Zheng M, Yang Y, Xie C, Li Z, Xu C. Temperature controlled microcapsule loaded with Perilla essential oil and its application in preservation of peaches. Front Nutr 2023; 10:1087605. [PMID: 36814505 PMCID: PMC9939902 DOI: 10.3389/fnut.2023.1087605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
In this study, Perilla frutescens essential oil (PEO) loaded microcapsules (PEOM) were successfully prepared and their thermal stability, temperature-responsive releasing effect, antioxidant activity, antibacterial activity, and preservation of peach were systematically investigated. PEOM showed excellent encapsulation efficiency (91.5%) with a core-shell ratio of 1.4:1 and exhibited high thermal stability, indicating that PEOM could effectively maintain PEO release rate. In vitro assays indicated that the optimal kinetic model for PEO release fitted well with first order with a diffusion mechanism. A high level of antioxidant and antibacterial activity of PEOM was maintained. In addition, owing to its sustained release, PEOM could prolong the shelf life of peaches significantly. Therefore, PEOM has potential application and development prospects in the field of food preservation.
Collapse
Affiliation(s)
- Zhigang Tai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Minjie Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Cheng Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhenjie Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industry Co., Ltd., Kunming, China
| | - Chunping Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
11
|
Wang W, Wang Q, Chen X, Kong Y, Wu M, Zhu S, Chen M, Li L. Release kinetics of pectin/eugenol composite film and application in pork preservation. J Appl Polym Sci 2023. [DOI: 10.1002/app.53670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wei Wang
- School of Biological and Environmental Engineering Chaohu University Hefei China
| | - Qing Wang
- School of Biological and Environmental Engineering Chaohu University Hefei China
| | - Xiaoju Chen
- School of Biological and Environmental Engineering Chaohu University Hefei China
| | - Yaqiong Kong
- School of Chemistry and Material Engineering Chaohu University Hefei China
| | - Mengqing Wu
- School of Biological and Environmental Engineering Chaohu University Hefei China
| | - Shuangshuang Zhu
- School of Biological and Environmental Engineering Chaohu University Hefei China
| | - Minmin Chen
- School of Biological and Environmental Engineering Chaohu University Hefei China
| | - Linlin Li
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei China
| |
Collapse
|
12
|
Gouda M, Khalaf MM, Elmushyakhi A, Abou Taleb MF, Abd El-Lateef HM. Bactericidal activities of Sm2O3/ Sb2O3/graphene oxide loaded cellulose acetate film. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2022; 21:4419-4427. [DOI: 10.1016/j.jmrt.2022.11.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|