1
|
Ren S, Xu Y, Dong X, Mu Q, Chen X, Yu Y, Su G. Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges. J Nanobiotechnology 2024; 22:431. [PMID: 39034407 PMCID: PMC11265020 DOI: 10.1186/s12951-024-02670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with multifactorial etiology and intricate pathogenesis. In RA, repeated monotherapy is frequently associated with inadequate efficacy, drug resistance, and severe side effects. Therefore, a shift has occurred in clinical practice toward combination therapy. However, conventional combination therapy encounters several hindrances, including low selectivity to arthritic joints, short half-lives, and varying pharmacokinetics among coupled drugs. Emerging nanotechnology offers an incomparable opportunity for developing advanced combination therapy against RA. First, it allows for co-delivering multiple drugs with augmented physicochemical properties, targeted delivery capabilities, and controlled release profiles. Second, it enables therapeutic nanomaterials development, thereby expanding combination regimens to include multifunctional nanomedicines. Lastly, it facilitates the construction of all-in-one nanoplatforms assembled with multiple modalities, such as phototherapy, sonodynamic therapy, and imaging. Thus, nanotechnology offers a promising solution to the current bottleneck in both RA treatment and diagnosis. This review summarizes the rationale, advantages, and recent advances in nano-empowered combination therapy for RA. It also discusses safety considerations, drug-drug interactions, and the potential for clinical translation. Additionally, it provides design tips and an outlook on future developments in nano-empowered combination therapy. The objective of this review is to achieve a comprehensive understanding of the mechanisms underlying combination therapy for RA and unlock the maximum potential of nanotechnology, thereby facilitating the smooth transition of research findings from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Shujing Ren
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Xingpeng Dong
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Xia Chen
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| |
Collapse
|
2
|
Han X, Sharma N, Xu Z, Krajewski S, Li P, Spintzyk S, Lv L, Zhou Y, Thieringer FM, Rupp F. A balance of biocompatibility and antibacterial capability of 3D printed PEEK implants with natural totarol coating. Dent Mater 2024; 40:674-688. [PMID: 38388252 DOI: 10.1016/j.dental.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVE Polyetheretherketone (PEEK), a biomaterial with appropriate bone-like mechanical properties and excellent biocompatibility, is widely applied in cranio-maxillofacial and dental applications. However, the lack of antibacterial effect is an essential drawback of PEEK material and might lead to infection and osseointegration issues. This study aims to apply a natural antibacterial agent, totarol coating onto the 3D printed PEEK surface and find an optimized concentration with balanced cytocompatibility, osteogenesis, and antibacterial capability. METHODS In this study, a natural antibacterial agent, totarol, was applied as a coating to fused filament fabrication (FFF) 3D printed PEEK surfaces at a series of increasing concentrations (1 mg/ml, 5 mg/ml, 10 mg/ml, 15 mg/ml, and 20 mg/ml). The samples were then evaluated for cytocompatibility with L929 fibroblast and SAOS-2 osteoblast using live/dead staining and CCK-8 assay. The antibacterial capability was assessed by crystal violet staining, live/dead staining, and scanning electron microscopy (SEM) utilizing the oral primary colonizer S. gordonii and isolates of mixed oral bacteria in a stirring system simulating the oral environment. The appropriate safe working concentration for totarol coating is selected based on the results of the cytocompatibility and antibacterial test. Subsequently, the influence on osteogenic differentiation was evaluated by alkaline phosphatase (ALP) and alizarin red staining (ARS) analysis of pre-osteoblasts. RESULTS Our results showed that the optimal concentration of totarol solution for promising antibacterial coating was approximately 10 mg/ml. Such surfaces could play an excellent antibacterial role by inducing a contact-killing effect with an inhibitory effect against biofilm development without affecting the healing of soft and hard tissues around FFF 3D printed PEEK implants or abutments. SIGNIFICANCE This study indicates that the totarol coated PEEK has an improved antibacterial effect with excellent biocompatibility providing great clinical potential as an orthopedic/dental implant/abutment material.
Collapse
Affiliation(s)
- Xingting Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China; University Hospital Tübingen, Department of Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany
| | - Neha Sharma
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Zeqian Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China; University Hospital Tübingen, Department of Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany.
| | - Stefanie Krajewski
- University Hospital Tübingen, Department of Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany
| | - Ping Li
- University Hospital Tübingen, Department of Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany; Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Sebastian Spintzyk
- University Hospital Tübingen, Department of Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany; ADMiRE Research Center - Additive Manufacturing, Intelligent Robotics, Sensors and Engineering, School of Engineering and IT, Carinthia University of Applied Sciences, Villach, Austria
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Florian M Thieringer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Frank Rupp
- University Hospital Tübingen, Department of Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany
| |
Collapse
|
3
|
Uysal I, Tezcaner A, Evis Z. Methods to improve antibacterial properties of PEEK: A review. Biomed Mater 2024; 19:022004. [PMID: 38364280 DOI: 10.1088/1748-605x/ad2a3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
As a thermoplastic and bioinert polymer, polyether ether ketone (PEEK) serves as spine implants, femoral stems, cranial implants, and joint arthroplasty implants due to its mechanical properties resembling the cortical bone, chemical stability, and radiolucency. Although there are standards and antibiotic treatments for infection control during and after surgery, the infection risk is lowered but can not be eliminated. The antibacterial properties of PEEK implants should be improved to provide better infection control. This review includes the strategies for enhancing the antibacterial properties of PEEK in four categories: immobilization of functional materials and functional groups, forming nanocomposites, changing surface topography, and coating with antibacterial material. The measuring methods of antibacterial properties of the current studies of PEEK are explained in detail under quantitative, qualitative, andin vivomethods. The mechanisms of bacterial inhibition by reactive oxygen species generation, contact killing, trap killing, and limited bacterial adhesion on hydrophobic surfaces are explained with corresponding antibacterial compounds or techniques. The prospective analysis of the current studies is done, and dual systems combining osteogenic and antibacterial agents immobilized on the surface of PEEK are found the promising solution for a better implant design.
Collapse
Affiliation(s)
- Idil Uysal
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ayşen Tezcaner
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Zafer Evis
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
4
|
Attia L, Chen L, Doyle PS. Orthogonal Gelations to Synthesize Core-Shell Hydrogels Loaded with Nanoemulsion-Templated Drug Nanoparticles for Versatile Oral Drug Delivery. Adv Healthc Mater 2023; 12:e2301667. [PMID: 37507108 PMCID: PMC11469203 DOI: 10.1002/adhm.202301667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Hydrophobic active pharmaceutical ingredients (APIs) are ubiquitous in the drug development pipeline, but their poor bioavailability often prevents their translation into drug products. Industrial processes to formulate hydrophobic APIs are expensive, difficult to optimize, and not flexible enough to incorporate customizable drug release profiles into drug products. Here, a novel, dual-responsive gelation process that exploits orthogonal thermo-responsive and ion-responsive gelations is introduced. This one-step "dual gelation" synthesizes core-shell (methylcellulose-alginate) hydrogel particles and encapsulates drug-laden nanoemulsions in the hydrogel matrices. In situ crystallization templates drug nanocrystals inside the polymeric core, while a kinetically stable amorphous solid dispersion is templated in the shell. Drug release is explored as a function of particle geometry, and programmable release is demonstrated for various therapeutic applications including delayed pulsatile release and sequential release of a model fixed-dose combination drug product of ibuprofen and fenofibrate. Independent control over drug loading between the shell and the core is demonstrated. This formulation approach is shown to be a flexible process to develop drug products with biocompatible materials, facile synthesis, and precise drug release performance. This work suggests and applies a novel method to leverage orthogonal gel chemistries to generate functional core-shell hydrogel particles.
Collapse
Affiliation(s)
- Lucas Attia
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Liang‐Hsun Chen
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Patrick S. Doyle
- Department of Chemical EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
- Campus for Research Excellence and Technological EnterpriseSingapore138602Singapore
| |
Collapse
|
5
|
Zhang Z, Zhang X, Zheng Z, Xin J, Han S, Qi J, Zhang T, Wang Y, Zhang S. Latest advances: Improving the anti-inflammatory and immunomodulatory properties of PEEK materials. Mater Today Bio 2023; 22:100748. [PMID: 37600350 PMCID: PMC10432209 DOI: 10.1016/j.mtbio.2023.100748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Excellent biocompatibility, mechanical properties, chemical stability, and elastic modulus close to bone tissue make polyetheretherketone (PEEK) a promising orthopedic implant material. However, biological inertness has hindered the clinical applications of PEEK. The immune responses and inflammatory reactions after implantation would interfere with the osteogenic process. Eventually, the proliferation of fibrous tissue and the formation of fibrous capsules would result in a loose connection between PEEK and bone, leading to implantation failure. Previous studies focused on improving the osteogenic properties and antibacterial ability of PEEK with various modification techniques. However, few studies have been conducted on the immunomodulatory capacity of PEEK. New clinical applications and advances in processing technology, research, and reports on the immunomodulatory capacity of PEEK have received increasing attention in recent years. Researchers have designed numerous modification techniques, including drug delivery systems, surface chemical modifications, and surface porous treatments, to modulate the post-implantation immune response to address the regulatory factors of the mechanism. These studies provide essential ideas and technical preconditions for the development and research of the next generation of PEEK biological implant materials. This paper summarizes the mechanism by which the immune response after PEEK implantation leads to fibrous capsule formation; it also focuses on modification techniques to improve the anti-inflammatory and immunomodulatory abilities of PEEK. We also discuss the limitations of the existing modification techniques and present the corresponding future perspectives.
Collapse
Affiliation(s)
- Zilin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jinwei Qi
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Tianhui Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| |
Collapse
|
6
|
Feng X, Guo Y, Zhao N, Dong Q, Li Z. Bioinspired medical indwelling catheters with hierarchically structured coatings exhibiting specific wettability and antibacterial property. Colloids Surf B Biointerfaces 2023; 227:113388. [PMID: 37285668 DOI: 10.1016/j.colsurfb.2023.113388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The use of medical indwelling catheters in conjunction with implantable medical devices has saved countless lives in various medical procedures. However, biofilm formation on catheter surfaces remains a persistent problem that can lead to chronic infections and device failure. Current approaches to addressing this issue involve the use of biocidal agents or self-cleaning surfaces, but these methods are limited in their effectiveness. Superwettable surfaces have shown great promise in preventing biofilm formation by manipulating the adhesive properties between bacteria and catheter surfaces. In this study, we present a novel medical indwelling catheter with hierarchically structured coatings that exhibit specific wettability and antibacterial properties. By integrating the hierarchical structure and specific wettability, we have developed an indwelling catheter with high flexibility and self-cleaning ability, which is very promising in biomedical engineering applications. Our approach draws inspiration from natural examples, such as the compound eyes of mosquitoes and lotus leaves, and represents a significant step forward in the development of effective anti-infection strategies for medical indwelling catheters.
Collapse
Affiliation(s)
- Xuelian Feng
- Children's Medical Center, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Yigang Guo
- Department of Hematology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Na Zhao
- Department of Nephrology, Aerospace Center Hospital, Beijing 100049, China
| | - Qian Dong
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China; Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China.
| | - Zhangzhi Li
- Department of Hematology, Taihe Hospital, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
7
|
Ma T, Zhang J, Sun S, Meng W, Zhang Y, Wu J. Current treatment methods to improve the bioactivity and bonding strength of PEEK for dental application: A systematic review. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|