1
|
Guo J, Hu M, Yang M, Cao H, Li H, Zhu J, Li S, Zhang J. Inhibition mechanism of theaflavins on matrix metalloproteinase-2: inhibition kinetics, multispectral analysis, molecular docking and molecular dynamics simulation. Food Funct 2024; 15:7452-7467. [PMID: 38910519 DOI: 10.1039/d4fo01620c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dental caries is a chronic and destructive disease and matrix metalloproteinase-2 (MMP-2) plays a major role in caries. The inhibitory mechanisms of theaflavins [theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B), and theaflavin-3,3'-digallate (TF3)] on MMP-2 were investigated using techniques such as enzyme inhibition kinetics, multi-spectral methods, molecular docking, and molecular dynamics simulations. The results showed that TF1, TF2A, TF2B, and TF3 all competitively and reversibly inhibited MMP-2 activity. Fluorescence spectra and molecular docking indicated that four theaflavins spontaneously bind to MMP-2 through noncovalent interactions, driven by hydrogen bonds and hydrophobic interactions, constituting a static quenching mechanism and resulting in an altered tryptophan residue environment around MMP-2. Molecular dynamic simulations demonstrated that four theaflavins can form stable, compact complexes with MMP-2. In addition, the order of theaflavins' ability to inhibit MMP-2 was found to be TF1 > TF2B > TF2A > TF3. Interestingly, the order of binding capacity between MMP-2 and TF1, TF2A, TF2B, and TF3 was consistent with the order of inhibitory capacity, and was opposite to the order of steric hindrance of theaflavins. This may be due to the narrow space of the active pocket of MMP-2, and the smaller the steric hindrance of theaflavins, the easier it is to enter the active pocket and bind to MMP-2. This study provided novel insights into theaflavins as functional components in the exploration of natural MMP-2 inhibitors.
Collapse
Affiliation(s)
- Jing Guo
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Mengna Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Mingqi Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Huang Cao
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Hongan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Jiayu Zhu
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Shuang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| |
Collapse
|
2
|
Kaur A, Thakur S, Deswal G, Chopra B, Dhingra AK, Guarve K, Grewal AS. In silico docking based screening of constituents from Persian shallot as modulators of human glucokinase. J Diabetes Metab Disord 2023; 22:547-570. [PMID: 37255832 PMCID: PMC10225407 DOI: 10.1007/s40200-022-01176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 06/01/2023]
Abstract
Purpose Small molecule glucokinase (GK) modulators not only decrease fasting and basal plasma sugar contents but also progress glucose tolerance. The hydro-ethanolic extract of the Persian shallot (Allium hirtifolium Boiss.) decreased blood glucose, improved plasma insulin and amplified GK action. The present study was proposed to screen phytoconstituents from Persian shallot as human GK activators using in silico docking studies. Methods A total of 91 phytoconstituents reported in Persian shallot (A. hirtifolium Boiss.) were assessed in silico for the prediction of drug-like properties and molecular docking investigations were carried out with human GK using AutoDock vina with the aim of exploring the binding interactions between the phytoconstituents and GK enzyme followed by in silico prediction of toxicity. Results Almost all the phytoconstituents tested showed good pharmacokinetic parameters for oral bioavailability and drug-likeness. In the docking analysis, cinnamic acid, methyl 3,4,5-trimethoxy benzoate, quercetin, kaempferol, kaempferol 3-O-β-D-glucopyranosyl-(1- > 4)-glucopyranoside, 5-hydroxy-methyl furfural, ethyl N-(O-anisyl) formimidate, 2-pyridinethione and ascorbic acid showed appreciable hydrogen bond and hydrophobic type interactions with the allosteric site residues of the GK enzyme. Conclusion These screened phytoconstituents may serve as promising hit molecules for further development of clinically beneficial and safe allosteric activators of the human GK enzyme.
Collapse
Affiliation(s)
- Anmol Kaur
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana India
| | - Shivani Thakur
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana India
| | - Geeta Deswal
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana India
| | | | - Kumar Guarve
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana India
| | | |
Collapse
|
3
|
Rationally designed donepezil-based hydroxamates modulate Sig-1R and HDAC isoforms to exert anti-glioblastoma effects. Eur J Med Chem 2023; 248:115054. [PMID: 36630883 DOI: 10.1016/j.ejmech.2022.115054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023]
Abstract
The pursuit of activating the HDAC inhibitory template towards additional mechanisms spurred us to design dual modulators (Sig-1R agonist - HDAC inhibitor) via utilization of the core structural unit of donepezil (an FDA-approved anti-Alzheimer's agent) as a surface recognition part. Literature precedents coupled with our experience rendered us with several insights that led to the inclusion of chemically diverse linkers and hydroxamic acid (zinc-binding motif) as the other components of HDAC inhibitory pharmacophore. With this envisionment and clarity, donepezil-based HDAC inhibitory adducts were furnished and exhaustively explored for their anti-GBM efficacy. Resultantly, a magnificently potent HDAC inhibitor 10 [IC50 (HDAC6) = 2.7 nM, IC50 (HDAC2) = 0.71 μM] was pinpointed that was endowed with the ability to: i) exert cell growth inhibitory effects against Human U87MG GBM cells ii) cause death in TMZ-resistant GBM cells iii) induce subG1 arrest in GBM cells iv) prolong the survival of TMZ-resistant U87MG inoculated orthotopic mice (in-vivo studies) v) induce GBM cell apoptosis via binding to Sig-1R. Collectively, the results led to the identification of compound 10 as a tractable anti-GBM agent that deserves detailed investigation for the accomplishment of its candidature as a GBM therapeutic.
Collapse
|
4
|
Sharma R, Chatterjee E, Mathew J, Sharma S, Rao NV, Pan CH, Lee SB, Dhingra A, Grewal AS, Liou JP, Guru SK, Nepali K. Accommodation of ring C expanded deoxyvasicinone in the HDAC inhibitory pharmacophore culminates into a tractable anti-lung cancer agent and pH-responsive nanocarrier. Eur J Med Chem 2022; 240:114602. [PMID: 35858522 DOI: 10.1016/j.ejmech.2022.114602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
A fragment recruitment process was conducted to pinpoint a suitable fragment for installation in the HDAC inhibitory template to furnish agents endowed with the potential to treat lung cancer. Resultantly, Ring C expanded deoxyvasicinone was selected as an appropriate surface recognition part that was accommodated in the HDAC three-component model. Delightfully, fused quinazolinone 6 demonstrating a magnificent anticancer profile against KRAS and EGFR mutant lung cancer cell lines (IC50 = 0.80-0.96 μM) was identified. Results of the mechanistic studies confirmed that the cell growth inhibitory effects of compound 6 stems for HDAC6 (IC50 = 12.9 nM), HDAC1 (IC50 = 49.9 nM) and HDAC3 inhibition (IC50 = 68.5 nM), respectively. Compound 6 also suppressed the colony formation ability of A549 cells, induced apoptosis, and increased autophagic flux. Key interactions of HDAC inhibitor 6 within the active site of HDAC isoforms were figured out through molecular modeling studies. Furthermore, a pH-responsive nanocarrier (Hyaluronic acid - fused quinazolinone 6 nanoparticles) was designed and assessed using a dialysis bag approach under both normal and acidic circumstances that confirmed the pH-sensitive nature of NPs. Delightfully, the nanoparticles demonstrated selective cell viability reduction potential towards the lung cancer cell lines (A549 lung cancer cell lines) and were found to be largely devoid of cell growth inhibitory effects under normal settings (L929, mouse fibroblast cells).
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Esha Chatterjee
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - N Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taiwan
| | - Ashwani Dhingra
- Dept. of Pharmaceutical Sciences, Guru Gobind Singh College of Pharmacy, Near Guru Nanak Khalsa College, Yamuna Nagar, 135001, Haryana, India
| | - Ajmer S Grewal
- Dept. of Pharmaceutical Sciences, Guru Gobind Singh College of Pharmacy, Near Guru Nanak Khalsa College, Yamuna Nagar, 135001, Haryana, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Santosh K Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India.
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan.
| |
Collapse
|
5
|
Wang W, Liu Z, Jing B, Mai H, Jiao H, Guan T, Chen D, Kong J, Pan T. 4,8-dicarboxyl-8,9-iridoid-1-glycoside Promotes Neural Stem Cell Differentiation Through MeCP2. Dose Response 2022; 20:15593258221112959. [PMID: 35958275 PMCID: PMC9358204 DOI: 10.1177/15593258221112959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022]
Abstract
Background Borojó (Borojoa patinoi Cuatrec) fruit has recently been shown to have a variety of health benefit, but the mechanisms have been little studied. The aim of this study was to investigate the effect of 4,8-dicarboxyl-8,9-iridoid-1-glycoside (388) on proliferation and differentiation of embryonic neural stem cells (NSCs). Methods NSCs were treated with 388 and stem cell differentiation was determined by western blotting and immunofluorescence staining. The role of MeCP2 in 388-mediated embryonic NSCs differentiation was examined. Results The results showed that in the presence of mitogen when NSCs proliferated and maintained their multipotency, treatment with 388 did not affect the viability of NSCs. Following mitogen withdrawal to initiate NSC differentiation, treatment with 388 at the doses of 10 and 50 μg/mL significantly increased neural differentiation in both cortex and spinal cord-derived culture. 388 also significantly up-regulated MeCP2 expression. The expression of the neuronal and oligodendrocytic markers was enhanced after addition of 388 in the differentiation culture. However, knockdown of MeCP2 results in inhibition of NSC differentiation, and the pro-differentiation effect of 388 was mostly abolished. Conclusions This study confirmed that 388 stimulates differentiation of NSCs and identifies its mechanism of action by upregulating MeCP2.
Collapse
Affiliation(s)
- WeiBing Wang
- Department of Anesthesiology, The Affiliated AnQing Municipal Hospitals of Anhui Medical University, AnQing, China
| | - Zhen Liu
- Department of Orthopedic, The Affiliated AnQing Municipal Hospitals of Anhui Medical University, AnQing, China
| | - BaoSheng Jing
- Department of Orthopedic, The Affiliated AnQing Municipal Hospitals of Anhui Medical University, AnQing, China
| | - HaiMin Mai
- Department of Human Anatomy and Cell Science, The Sixth Affiliated Hospital of Sun Yat-sen University, GuangZhou, China
| | - Hong Jiao
- Guangzhou Bolojo Biological Technology Co. Ltd., GuangZhou, China
| | - Teng Guan
- University of Manitoba, Winnipeg, MB, Canada
| | - DanGui Chen
- Department of Hematology, The affiliated AnQing municipal hospitals of Anhui Medical University, AnQing, China
| | - JiMing Kong
- University of Manitoba, Winnipeg, MB, Canada
| | - Tao Pan
- Department of Orthopedic, The Affiliated AnQing Municipal Hospitals of Anhui Medical University, AnQing, China
| |
Collapse
|
6
|
Mathpal S, Sharma P, Joshi T, Pande V, Mahmud S, Jeong MK, Obaidullah AJ, Chandra S, Kim B. Identification of Zinc-Binding Inhibitors of Matrix Metalloproteinase-9 to Prevent Cancer Through Deep Learning and Molecular Dynamics Simulation Approach. Front Mol Biosci 2022; 9:857430. [PMID: 35463960 PMCID: PMC9024349 DOI: 10.3389/fmolb.2022.857430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The overexpression of matrix metalloproteinase-9 (MMP-9) is associated with tumor development and angiogenesis, and hence, it has been considered an attractive drug target for anticancer therapy. To assist in drug design endeavors for MMP-9 targets, an in silico study was presented to investigate whether our compounds inhibit MMP-9 by binding to the catalytic domain, similar to their inhibitor or not. For that, in the initial stage, a deep-learning algorithm was used for the predictive modeling of the CHEMBL321 dataset of MMP-9 inhibitors. Several regression models were built and evaluated based on R2, MAE MSE, RMSE, and Loss. The best model was utilized to screen the drug bank database containing 9,102 compounds to seek novel compounds as MMP-9 inhibitors. Then top high score compounds were selected for molecular docking based on the comparison between the score of the reference molecule. Furthermore, molecules having the highest docking scores were selected, and interaction mechanisms with respect to S1 pocket and catalytic zinc ion of these compounds were also discussed. Those compounds, involving binding to the catalytic zinc ion and the S1 pocket of MMP-9, were considered preferentially for molecular dynamics studies (100 ns) and an MM-PBSA (last 30 ns) analysis. Based on the results, we proposed several novel compounds as potential candidates for MMP-9 inhibition and investigated their binding properties with MMP-9. The findings suggested that these compounds may be useful in the design and development of MMP-9 inhibitors in the future.
Collapse
Affiliation(s)
- Shalini Mathpal
- Department of Biotechnology, Kumaun University Uttarakhand, Bhimtal, India
| | - Priyanka Sharma
- Department of Botany, DSB, Campus, Kumaun University, Nainital, India
| | - Tushar Joshi
- Department of Biotechnology, Kumaun University Uttarakhand, Bhimtal, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University Uttarakhand, Bhimtal, India
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
- Department of Genome Science, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Mi-Kyung Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ahmad J. Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Subhash Chandra
- Computational Biology and Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, India
- *Correspondence: Subhash Chandra, ; Bonglee Kim,
| | - Bonglee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Subhash Chandra, ; Bonglee Kim,
| |
Collapse
|
7
|
Design and synthesis of newer N-benzimidazol-2yl benzamide analogues as allosteric activators of human glucokinase. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02697-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Lou C, Zhu Z, Xu X, Zhu R, Sheng Y, Zhao H. Picroside II, an iridoid glycoside from Picrorhiza kurroa, suppresses tumor migration, invasion, and angiogenesis in vitro and in vivo. Biomed Pharmacother 2019; 120:109494. [PMID: 31606622 DOI: 10.1016/j.biopha.2019.109494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/07/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. The development of novel anti-cancer agents from natural products is a promising approach to reduce cancer mortality. In this study, we investigated the anti-metastatic and anti-angiogenic activities of picroside II (PII) in human breast cancer cells both in vitro and in vivo. Our results demonstrated that PII significantly inhibited the migration and invasion of MDA-MB-231 cancer cells. With the treatment of PII, the activity of matrix metalloproteinase 9 (MMP-9) in MDA-MB-231 cancer cells was significantly inhibited both in vitro and in vivo. Meanwhile, PII showed effective anti-metastatic activity in an experimental lung metastasis model. Interestingly, cluster of differentiation 31 (CD31), a marker of angiogenesis, was significantly downregulated in the PII-treated tumor samples, indicating the anti-angiogenic activity of PII. Furthermore, we demonstrated that PII significantly inhibited the migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). The inhibition of MMP-9 activity in PII-treated HUVECs was also demonstrated. Finally, the suppression of angiogenesis by PII in the chick embryo chorioallantoic membrane (CAM) was observed. In conclusion, our results demonstrated that PII effectively inhibited the metastasis and angiogenesis of cancer cells both in vitro and in vivo, and thus, might be a novel candidate for cancer therapy.
Collapse
Affiliation(s)
- Chenghua Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China.
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China
| | - Xintong Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China
| | - Rui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|