1
|
Zhao J, Jiao Y, Wang H, Song P, Gao Z, Bing X, Zhang C, Ouyang A, Yao J, Wang S, Jiang H. Radiomic features of the hippocampal based on magnetic resonance imaging in the menopausal mouse model linked to neuronal damage and cognitive deficits. Brain Imaging Behav 2024; 18:368-377. [PMID: 38102441 PMCID: PMC11156756 DOI: 10.1007/s11682-023-00808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 12/17/2023]
Abstract
Estrogen deficiency in the early postmenopausal phase is associated with an increased long-term risk of cognitive decline or dementia. Non-invasive characterization of the pathological features of the pathological hallmarks in the brain associated with postmenopausal women (PMW) could enhance patient management and the development of therapeutic strategies. Radiomics is a means to quantify the radiographic phenotype of a diseased tissue via the high-throughput extraction and mining of quantitative features from images acquired from modalities such as CT and magnetic resonance imaging (MRI). This study set out to explore the correlation between radiomics features based on MRI and pathological features of the hippocampus and cognitive function in the PMW mouse model. Ovariectomized (OVX) mice were used as PWM models. MRI scans were performed two months after surgery. The brain's hippocampal region was manually annotated, and the radiomic features were extracted with PyRadiomics. Chemiluminescence was used to evaluate the peripheral blood estrogen level of mice, and the Morris water maze test was used to evaluate the cognitive ability of mice. Nissl staining and immunofluorescence were used to quantify neuronal damage and COX1 expression in brain sections of mice. The OVX mice exhibited marked cognitive decline, brain neuronal damage, and increased expression of mitochondrial complex IV subunit COX1, which are pathological phenomena commonly observed in the brains of AD patients, and these phenotypes were significantly correlated with radiomics features (p < 0.05, |r|>0.5), including Original_firstorder_Interquartile Range, Original_glcm_Difference Average, Original_glcm_Difference Average and Wavelet-LHH_glszm_Small Area Emphasis. Meanwhile, the above radiomics features were significantly different between the sham-operated and OVX groups (p < 0.01) and were associated with decreased serum estrogen levels (p < 0.05, |r|>0.5). This initial study indicates that the above radiomics features may have a role in the assessment of the pathology of brain damage caused by estrogen deficiency using routinely acquired structural MR images.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Jiao
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hui Wang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peiji Song
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhen Gao
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xue Bing
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunling Zhang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Aimei Ouyang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jian Yao
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Song Wang
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, South Wanping Road, Shanghai, 200032, China.
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
2
|
Dousti M, Sadjjadi SM, Solgi R, Vafafar A, Sharifi Y, Radfar A, Hatam GR. Comparison of Isoenzyme Pattern of Echinococcus granulosus sensu stricto (G1-G3) and E. canadensis (G6/G7) Protoscoleces. IRANIAN BIOMEDICAL JOURNAL 2023; 27:136-45. [PMID: 37073115 PMCID: PMC10314765 DOI: 10.52547/ibj.3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023]
Abstract
Background Different genotypes of Echinococcus granulosus sensu lato (s.l.) infect humans and ungulate animals, causing cystic echinococcosis. Simultaneous isoenzyme, as well as molecular characterizations of this parasite, has not yet been investigated in Iran. The present study aimed to evaluate the isoenzyme pattern of the E. granulosus sensu stricto (s.s.) and E. canadensis genotypes in Iran. Methods A total of 32 (8 humans and 24 animals) cystic echinococcosis cysts were isolated from Shiraz, Tehran, Ilam, and Birjand from May 2018 to December 2020. The DNAs were extracted and their genotypes were determined by molecular methods. Enzymes were extracted from the cysts and subjected to polyacrylamide gel electrophoresis. The activities of glucose-6-phosphate sehydrogenase (G6PD), malate dehydrogenase (MDH), malic enzyme (ME), nucleoside hydrolyse 1 (NH1), and isocitrate dehydrogenase (ICD) were examined in the cyst samples using isoenzyme method and compared it with the genotyping findings. Results DNA sequence analysis of the samples showed that the specimens contained 75% E. granulosus s.s. (G1) and 25% E. canadensis (G6) genotypes. The isoenzyme pattern of ICD in both genotypes produced a six-band pattern with different relative factors. The G6PD also produced two bands with different relative migrations in both genotypes. The MDH and NH1 systems revealed a two-band pattern, while only one band was generated in the ME enzyme in the E. granulosus s.s. genotype. In the E. canadensis, the MDH and NH1 enzymes showed one band, and the ME enzyme represented a two-band pattern. Conclusion Our findings suggest that E. granulosus s.s. and E. canadensis genotypes have entirely different isoenzyme patterns for NH1, G6PD, MDH, and ME.
Collapse
Affiliation(s)
- Majid Dousti
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahmat Solgi
- Department of Medical Microbiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Vafafar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yosef Sharifi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Radfar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Dousti M, Sadjjadi SM, Solgi R, Vafafar A, Sharifi Y, Radfar A, Hatam GR. Comparison of Isoenzyme Pattern of Echinococcus granulosus sensu stricto (G1-G3) and E. canadensis (G6/G7) Protoscoleces. IRANIAN BIOMEDICAL JOURNAL 2023; 27:136-45. [PMID: 37073115 PMCID: PMC10314765 DOI: 10.61186/ibj.3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/13/2023] [Indexed: 12/17/2023]
Abstract
Background Different genotypes of Echinococcus granulosus sensu lato (s.l.) infect humans and ungulate animals, causing cystic echinococcosis. Simultaneous isoenzyme, as well as molecular characterizations of this parasite, has not yet been investigated in Iran. The present study aimed to evaluate the isoenzyme pattern of the E. granulosus sensu stricto (s.s.) and E. canadensis genotypes in Iran. Methods A total of 32 (8 humans and 24 animals) cystic echinococcosis cysts were isolated from Shiraz, Tehran, Ilam, and Birjand from May 2018 to December 2020. The DNAs were extracted and their genotypes were determined by molecular methods. Enzymes were extracted from the cysts and subjected to polyacrylamide gel electrophoresis. The activities of glucose-6-phosphate sehydrogenase (G6PD), malate dehydrogenase (MDH), malic enzyme (ME), nucleoside hydrolyse 1 (NH1), and isocitrate dehydrogenase (ICD) were examined in the cyst samples using isoenzyme method and compared it with the genotyping findings. Results DNA sequence analysis of the samples showed that the specimens contained 75% E. granulosus s.s. (G1) and 25% E. canadensis (G6) genotypes. The isoenzyme pattern of ICD in both genotypes produced a six-band pattern with different relative factors. The G6PD also produced two bands with different relative migrations in both genotypes. The MDH and NH1 systems revealed a two-band pattern, while only one band was generated in the ME enzyme in the E. granulosus s.s. genotype. In the E. canadensis, the MDH and NH1 enzymes showed one band, and the ME enzyme represented a two-band pattern. Conclusion Our findings suggest that E. granulosus s.s. and E. canadensis genotypes have entirely different isoenzyme patterns for NH1, G6PD, MDH, and ME.
Collapse
Affiliation(s)
- Majid Dousti
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahmat Solgi
- Department of Medical Microbiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Vafafar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yosef Sharifi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Radfar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Sadjjadi FS, Hajjaran H, Sedaghat B, Mardani P, Sadjjadi SM. Proteomics investigation of human sera for determination of postoperative indicators of pulmonary cystic echinococcosis. J Cardiothorac Surg 2023; 18:18. [PMID: 36631795 PMCID: PMC9832791 DOI: 10.1186/s13019-023-02109-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cystic echinococcosis (CE)/hydatidosis is an important zoonotic parasitic disease caused by the larval stage of Echinococcus granulosus. The disease is a major health problem all over the world. Finding specific and sensitive biomarkers for follow-up of CE in patients after surgery is essential. Using proteomics methods, the present study aimed to evaluate post-surgical treatment by finding probable biomarker/s in the serum of human lungs CE. METHODS A total of 24 human sera were tested. These sera included eight confirmed lung/s CE patients sera before surgery (BS), eight sera 12 months post-surgery (12MPS) as well as eight control sera from healthy people. Proteomics methods including 2DE and LC-MS/MS were performed on the specimens followed by bioinformatics analysis. Differentially expressed proteins (DEP) were detected and, separately integrated with protein-protein interaction (PPI) data to construct the PPI network. RESULTS A total of 171 protein spots were detected in three groups including BS, 12MPS, and control groups; of which a total of 106 DEP have been expressed based on fold changes > = 2 and p-value < 0.05. More analysis was performed and a total of 10 protein spots were selected for identification by mass spectrometry showing the following proteins: APOA1, BGN, SPP2, EAF1, ACOXL, MRPL55, MCTP2, SEPTIN1, B4GALNT1, and ZNF843. Based on centrality parameters of the PPI network (degree and betweenness) five Hub-bottlenecks proteins with significant centrality values were found including APOA1, BGN, SPP2, EAF1, and ACOXL. CONCLUSION This study showed five proteins as hub-bottleneck proteins; of which APOA1 was more prominent. It can be concluded that a change in expression of this protein in patients' sera could be used as an indicator tool for the achievement of lungs CE surgical therapy.
Collapse
Affiliation(s)
- Fatemeh Sadat Sadjjadi
- grid.411600.2Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Hajjaran
- grid.411705.60000 0001 0166 0922Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Sedaghat
- grid.412571.40000 0000 8819 4698Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parviz Mardani
- grid.412571.40000 0000 8819 4698Department of Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Khan Z, Shehla S, Alouffi A, Kashif Obaid M, Zeb Khan A, Almutairi MM, Numan M, Aiman O, Alam S, Ullah S, Zaman Safi S, Tanaka T, Ali A. Molecular Survey and Genetic Characterization of Anaplasma marginale in Ticks Collected from Livestock Hosts in Pakistan. Animals (Basel) 2022; 12:ani12131708. [PMID: 35804607 PMCID: PMC9264954 DOI: 10.3390/ani12131708] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Ticks transmit different disease-causing agents to humans and animals. Pakistan is an agricultural country, the rural economy mainly relies on livestock farming, and tick infestation is a severe constraint to its livelihood. The genus Anaplasma comprises obligate Gram-negative intracellular bacteria multiplying within the host cells and can be transmitted to humans and animals through the tick vector. The current study aimed to molecularly characterize the Anaplasma spp. in hard ticks infesting livestock in different districts of Khyber Pakhtunkhwa, Pakistan. The present study reported nine species of hard ticks infesting different hosts. The most prevalent tick life stage was adult females, followed by nymphs and adult males. In the phylogenetic tree, 16S rDNA sequences of Anaplasma spp. clustered with sequences of A. marginale. The hard ticks act as a carrier for the transmission of A. marginale. Further extensive country-wide research is required to explore the diverse tick species and the associated pathogens in Pakistan. Abstract Ticks transmit pathogens to animals and humans more often than any other arthropod vector. The rural economy of Pakistan mainly depends on livestock farming, and tick infestations cause severe problems in this sector. The present study aimed to molecularly characterize the Anaplasma spp. in hard ticks collected from six districts of Khyber Pakhtunkhwa, Pakistan. Ticks were collected from various livestock hosts, including cattle breeds (Holstein-Friesian, Jersey, Sahiwal, and Achai), Asian water buffaloes, sheep, and goats from March 2018 to February 2019. Collected ticks were morphologically identified and subjected to molecular screening of Anaplasma spp. by amplifying 16S rDNA sequences. Six hundred seventy-six ticks were collected from infested hosts (224/350, 64%). Among the nine morphologically identified tick species, the highest occurrence was noted for Rhipicephalus microplus (254, 37.6%), followed by Hyalomma anatolicum (136, 20.1%), Rhipicephalus haemaphysaloides (119, 17.6%), Rhipicephalus turanicus (116, 17.1%), Haemaphysalis montgomeryi (14, 2.1%), Hyalomma dromedarii (11, 1.6%), Haemaphysalis bispinosa (10, 1.5%), Hyalomma scupense (8, 1.2%), and Haemaphysalis kashmirensis (8, 1.2%). The occurrence of tick females was highest (260, 38.5%), followed by nymphs (246, 36.4%) and males (170, 25.1%). Overall, the highest occurrence of ticks was recorded in the Peshawar district (239, 35.3%), followed by Mardan (183, 27.1%), Charsadda (110, 16.3%), Swat (52, 7.7%), Shangla (48, 7.1%), and Chitral (44, 6.5%). Among these ticks, Anaplasma marginale was detected in R. microplus, R. turanicus, and R. haemaphysaloides. The 16S rDNA sequences showed high identity (98–100%) with A. marginale reported from Australia, China, Japan, Pakistan, Thailand, Uganda, and the USA. In phylogenetic analysis, the sequence of A. marginale clustered with the same species reported from Australia, China, Pakistan, Thailand, Uruguay, and the USA. Further molecular work regarding the diversity of tick species and associated pathogens is essential across the country.
Collapse
Affiliation(s)
- Zaibullah Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (Z.K.); (S.S.); (M.K.O.); (M.N.); (O.A.); (S.A.); (S.U.)
| | - Shehla Shehla
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (Z.K.); (S.S.); (M.K.O.); (M.N.); (O.A.); (S.A.); (S.U.)
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
| | - Muhammad Kashif Obaid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (Z.K.); (S.S.); (M.K.O.); (M.N.); (O.A.); (S.A.); (S.U.)
| | - Alam Zeb Khan
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muhammad Numan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (Z.K.); (S.S.); (M.K.O.); (M.N.); (O.A.); (S.A.); (S.U.)
| | - Ome Aiman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (Z.K.); (S.S.); (M.K.O.); (M.N.); (O.A.); (S.A.); (S.U.)
| | - Shumaila Alam
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (Z.K.); (S.S.); (M.K.O.); (M.N.); (O.A.); (S.A.); (S.U.)
| | - Shafi Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (Z.K.); (S.S.); (M.K.O.); (M.N.); (O.A.); (S.A.); (S.U.)
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
- Interdisciplinary Research Centre in Biomedical Materials, Lahore Campus, COMSATS University Islamabad, Lahore 54000, Pakistan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Correspondence: (T.T.); (A.A.)
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (Z.K.); (S.S.); (M.K.O.); (M.N.); (O.A.); (S.A.); (S.U.)
- Correspondence: (T.T.); (A.A.)
| |
Collapse
|
6
|
Mardani P, Ezabadi AT, Sedaghat B, Sadjjadi SM. Pulmonary hydatidosis genotypes isolates from human clinical surgery based on sequencing of mitochondrial genes in Fars, Iran. J Cardiothorac Surg 2021; 16:167. [PMID: 34099002 PMCID: PMC8186107 DOI: 10.1186/s13019-021-01547-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cystic echinococcosis (CE)/hydatidosis is an important neglected parasitic zoonotic disease caused by the metacestode of Echinococcus granulosus s.l. The present study was designed to identify the pulmonary CE species/genotypes in isolated human underwent to surgery in our center in Southern Iran. METHODS The study population of this study were all patients in Fars province who were admitted to Namazi Hospitals for pulmonary hydatid cyst surgery. Thoracic surgery was performed in the thoracic ward and the cyst/s was removed by open surgery via posterolateral or lateral thoracotomy. DNA was extracted from the germinal layer or the protoscoleces. PCR technique was performed using the cytochrome C oxidase subunit1 (cox1) gene, and the products were sequenced. RESULTS A total of 32 pulmonary hydatid cyst samples were collected from 9 (28%) female and 23 (72%) male aged from 4 to 74 years old. A total of 18(56%) cyst/s were in the left lobe and 14 (44%) cysts in the right lobe. Sequence analysis of the cysts showed that 24 samples (75%) were E. granulosus s.s (G1-G3) genotype and 8 (25%) were E. canadensis (G6/G7) genotype. CONCLUSION E.granulosus s.s genotype was the most prevalent genotype followed by E. canadensis (G6/G7) genotype. There was no significant statistical correlation between cysts' size, location, genotype strain, and patients' age and gender.
Collapse
Affiliation(s)
- Parviz Mardani
- Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran.,Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Talebi Ezabadi
- Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Sedaghat
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Zahid H, Muñoz-Leal S, Khan MQ, Alouffi AS, Labruna MB, Ali A. Life Cycle and Genetic Identification of Argas persicus Infesting Domestic Fowl in Khyber Pakhtunkhwa, Pakistan. Front Vet Sci 2021; 8:664731. [PMID: 34095277 PMCID: PMC8170322 DOI: 10.3389/fvets.2021.664731] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 01/19/2023] Open
Abstract
Ticks transmit numerous pathogens to animals including humans; therefore, they are parasites of health concern. Soft ticks infesting domestic fowl in Pakistan are carriers of viruses and bacteria and cause unestimated economic losses in the poultry sector. The current study was intended to identify soft ticks infesting domestic fowl and understand their spatiotemporal distribution along 1 year. A sum of 7,219 soft ticks were collected from 608 domestic fowl in 58 infested shelters; 938 (12.9%) ticks were found on the host and 6,281 (87%) in the shelters. The collected ticks comprised 3,503 (48.52%) adults including 1,547 (21.42%) males and 1,956 (27.09%) females, 3,238 (44.85%) nymphs, and 478 (6.62%) larvae. The most prevalent life stages were adults, followed by nymphs and larvae. Overall tick prevalence considering all visited shelters was 38.66% (58/150). The highest tick prevalence was found in district Lakki Marwat (50.03%) followed by Peshawar (31.08%) and Chitral (18.88%) districts. All ticks were morpho-taxonomically identified as Argas persicus. To determine their life cycle, adult A. persicus were reared in the laboratory infesting domestic fowl (Gallus gallus domesticus). The life cycle was completed in 113–132 days (egg to egg) with a mean temperature of 33 ± 3°C and relative humidity of 65 ± 5%. Individual ticks were used for DNA extraction and subjected to polymerase chain reaction (PCR) using specific primers for the amplification of a partial fragment of mitochondrial cytochrome oxidase subunit I (cox1) and 16S ribosomal RNA (16S rRNA) genes. Obtained amplicons were compared using basic local alignment search tool (BLAST) to scan for homologous sequences. Phylogenetic trees showed A. persicus from Pakistan clustering with conspecific sequences reported from Australia, Chile, China, Kenya, and the United States. This is the first study aiming to reproduce the life cycle of A. persicus and genetically identify this tick in the region. Further studies are encouraged to investigate the pathogens associated with this soft tick species in Pakistan.
Collapse
Affiliation(s)
- Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sebastián Muñoz-Leal
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Concepción, Chile
| | | | | | - Marcelo B Labruna
- Departamento de Medicina Veterinaria Preventiva e Saúde Animal, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
8
|
Comparative analysis of the mitochondrial proteins reveals complex structural and functional relationships in Fasciola species. Microb Pathog 2021; 152:104754. [PMID: 33508415 DOI: 10.1016/j.micpath.2021.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/31/2020] [Accepted: 01/17/2021] [Indexed: 12/21/2022]
Abstract
Mitochondria is a cellular source of energy, appears to play an essential role in dealing with cellular stress induced by environmental stimuli. The genetic diversity of mitochondrial genes involved in oxidative phosphorylation affecting the production of cellular energy and regional adaptation to various ecological (climatic) pressures affecting amino acid sequences (variants of protein). However, little is known about the combined effect of protein changes on cell-level metabolic alterations in simultaneous exposure to various environmental conditions, including mitochondrial dysfunction and oxidative stress induction. The present study was designed to address this issue by analyzing the mitochondrial proteins in Fasciola species including Cytochrome oxidase (COX1, COX2, COX3, and CYTB) and NADH dehydrogenase (ND1, ND2, ND3, ND4, ND5, and ND6). Mitochondrial proteins were used for detailed computational investigation, using available standard bioinformatics tools to exploit structural and functional relationships. These proteins in Fasciola hepatica, Fasciola gigentica, and Fasciola jacksoni were functionally annotated using public databases. The results showed that the protein of COX1 of F. hepatica, F. gigantica, and F. jacksoni consist of 510, 513, and 517 amino acids, respectively. The alignment of proteins showed that these proteins are conserved in the same regions at ten positions in COX and CYTB proteins while at twelve locations in NADH. Three-dimensional structure of COX, CYTB, and NADH proteins were compared and showed differences in additional conserved and binding sites in COX and CYTB proteins as compared to NADH in three species of Fasciola. These results based on the amino acid diversity pattern were used to identify sites in the enzyme and the variations in mitochondrial proteins among Fasciola species. Our study provides valuable information for future experimental studies, including identification of therapeutic, diagnostic, and immunoprophylactic interests with novel mitochondrial proteins.
Collapse
|
9
|
Sedaghat B, Hajjaran H, Sadjjadi FS, Heidari S, Sadjjadi SM. Proteomic characterization of hydatid cyst fluid: two-dimensional electrophoresis (2-DE) setup through optimizing protein extraction. BMC Res Notes 2021; 14:22. [PMID: 33430965 PMCID: PMC7802163 DOI: 10.1186/s13104-020-05433-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/24/2020] [Indexed: 12/04/2022] Open
Abstract
Objective Proper characterization of hydatid cyst fluid (HCF) is useful for diagnostic and follow up purposes of cystic echinococcosis/hydatidosis, which is an important zoonotic disease. In this regard, proteomics methods are very helpful. The present study was conducted to compare three protein extraction methods for HCF collected from sheep liver hydatid cysts including, trichloracetic acid (TCA)/Acetone precipitation, TCA/Acetone along with dialysis, and combination of 2-D Clean-up Kit and dialysis followed by two-dimensional electrophoresis (2-DE), to achieve better resolution in the proteomic characterization of HCF proteins. Results The 2-DE of TCA/Acetone products showed a lot of smears in the background of gels; TCA/Acetone with dialysis showed greatly reduced smears while the 2-D Clean-up Kit together with dialysis showed sharp spots and least smears. Three-dimensional images of separated spots created by Progenesis SameSpots software showed the best result was achieved by 2-D Clean-up Kit and dialysis.
Collapse
Affiliation(s)
- Bahareh Sedaghat
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Sadat Sadjjadi
- Faculty of Paramedical Sciences, Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudabeh Heidari
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Li Z, Li M, Xu S, Liu L, Chen Z, Zou K. Complete Mitogenomes of Three Carangidae (Perciformes) Fishes: Genome Description and Phylogenetic Considerations. Int J Mol Sci 2020; 21:E4685. [PMID: 32630142 PMCID: PMC7370159 DOI: 10.3390/ijms21134685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/31/2022] Open
Abstract
Carangidae are ecologically and economically important marine fish. The complete mitogenomes of three Carangidae species (Alectis indicus, Decapterus tabl, and Alepes djedaba) were sequenced, characterized, and compared with 29 other species of the family Carangidae in this study. The length of the three mitogenomes ranged from 16,530 to 16,610 bp, and the structures included 2 rRNA genes (12S rRNA and 16S rRNA), 1 control region (a non-coding region), 13 protein-coding genes, and 22 tRNA genes. Among the 22 tRNA genes, only tRNA-Ser (GCT) was not folded into a typical cloverleaf secondary structure and had no recognizable DHU stem. The full-length sequences and protein-coding genes (PCGs) of the mitogenomes of the three species all had obvious AT biases. The majority of the AT-skew and GC-skew values of the PCGs among the three species were negative, demonstrating bases T and C were more plentiful than A and G. Analyses of Ka/Ks and overall p-genetic distance demonstrated that ATP8 showed the highest evolutionary rate and COXI/COXII were the most conserved genes in the three species. The phylogenetic tree based on PCGs sequences of mitogenomes using maximum likelihood and Bayesian inference analyses showed that three clades were divided corresponding to the subfamilies Caranginae, Naucratinae, and Trachinotinae. The monophyly of each superfamily was generally well supported. The divergence time analyses showed that Carangidae evolved during three geological periods, the Cretaceous, Paleogene, and Neogene. A. indicus began to differentiate from other species about 27.20 million years ago (Mya) in the early Miocene, while D. tabl (21.25 Mya) and A. djedaba (14.67 Mya) differentiated in the middle Oligocene.
Collapse
Affiliation(s)
- Zhenhai Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Science, South China Agriculture University, Guangzhou 510642, China; (Z.L.); (L.L.)
| | - Min Li
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (M.L.); (S.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shannan Xu
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (M.L.); (S.X.)
| | - Li Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Science, South China Agriculture University, Guangzhou 510642, China; (Z.L.); (L.L.)
| | - Zuozhi Chen
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (M.L.); (S.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Keshu Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Science, South China Agriculture University, Guangzhou 510642, China; (Z.L.); (L.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agriculture University, Guangzhou 510642, China
| |
Collapse
|
11
|
Zhuge XL, Xu H, Xiu ZJ, Yang HL. Biochemical Functions of Glutathione S-Transferase Family of Salix babylonica. FRONTIERS IN PLANT SCIENCE 2020; 11:364. [PMID: 32308662 PMCID: PMC7145991 DOI: 10.3389/fpls.2020.00364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/13/2020] [Indexed: 05/02/2023]
Abstract
Glutathione S-transferases (GSTs) are ubiquitous enzymes that are encoded by a large gene family, and they contribute to the detoxification of endogenous or xenobiotic compounds and oxidative stress metabolism in plants. Although the GSTs gene family has been reported in many land plants, our knowledge of the evolution and function of the willow GSTs is still limited. In this study, 22 full-length GST genes were cloned from Salix babylonica and divided into three classes based on the conserved domain analysis, phylogenetic tree and gene structure: tau, phi and DHAR. The tissue-specific expression patterns were substantially different among the tau and phi GSTs. The Salix GST proteins showed functional divergences in the substrate specificities, substrate activities and kinetic characteristics. The site-directed mutagenesis studies revealed that a single amino acid mutation (Ile/Val53→Thr53) resulted in the lowest activity of SbGSTU7 among the Salix GSTs. These results suggest that non-synonymous substitution of an amino acid at the putative glutathione-binding site may play an important role in the divergence of enzymatic functions of Salix GST family.
Collapse
Affiliation(s)
- Xiang-Lin Zhuge
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hui Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Jing Xiu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hai-Ling Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Ali A, Khan MA, Zahid H, Yaseen PM, Qayash Khan M, Nawab J, Ur Rehman Z, Ateeq M, Khan S, Ibrahim M. Seasonal Dynamics, Record of Ticks Infesting Humans, Wild and Domestic Animals and Molecular Phylogeny of Rhipicephalus microplus in Khyber Pakhtunkhwa Pakistan. Front Physiol 2019; 10:793. [PMID: 31379587 PMCID: PMC6646419 DOI: 10.3389/fphys.2019.00793] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
Although ticks prevalent in various agro-systems of Pakistan are associated with economic losses, information is still missing about the tick's diversity, hosts they infest, seasonal dynamics and molecular phylogeny of Rhipicephalus microplus in Khyber Pakhtunkhwa (KP) Pakistan. This study for the first time enlisted ticks infesting diverse hosts including humans in various regions of KP. A total of 8,641 ticks were collected across the northern, southern and central regions of KP and were morpho-taxonomically categorized into six genera comprising 17 species, R. microplus (n = 3,584, 42%), Hyalomma anatolicum (n = 2,253, 27%), Argas persicus (n = 1,342, 16%), Hya. impeltatum (n = 586, 7%), R. turanicus (n = 161, 2%), R. haemaphysaloides (n = 142, 2%), R. annulatus (n = 132, 2%), Hae. montgomeryi (n = 123, 1.4%), Hya. marginatum (n = 110, 1.3%), R. sanguineus (n = 34, 0.4%), and Hae. longicornis (n = 31, 0.4%). Ticks infesting wild animals included Amblyomma gervaisi, Amb. exornatum, Amb. latum, Dermacentor marginatus, and Hae. indica, while ticks collected from humans included R. microplus, R. annulatus, Hya. anatolicum, Hya. marginatum, and Hae. punctata. The overall prevalence of ticks infesting domestic animals was 69.4% (536/772). Among animal hosts, cattle were found highly infested (87.2%, 157/180) followed by buffalos (79%, 91/114), domestic fowls (74.7%, 112/150), goats (68.3%, 82/120), dogs (66.7%, 32/48), horses (61.3%, 49/80), and sheep (16.3%, 13/80). Analysis revealed that the tick burden significantly differed among domestic animals and was found to be high in cattle, followed by buffalos, goats, sheep, domestic fowl, dogs, and horses. Seasonal patterns of ticks distribution showed highest prevalance in July, August, and September due to the prevailing high temperature and humidity during these months. The phylogenetic analysis of cattle tick R. microplus based on partial mitochondrial cytochrome oxidase subunit I (COX1), 16S ribosomal RNA (16S rRNA) and internal transcribed spacer 2 (ITS2) sequences, revealed that R. microplus prevalent in this region belongs to clade C which include ticks originating from Bangladesh, Malaysia, and India. Further large scale studies across the country are necessary to explore the molecular and cross breeding aspects at the geographical overlapping of various tick species and their associated pathogens to facilitate designing control strategies as well as awareness against tick infestation in the region.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Munsif Ali Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Pir Muhammad Yaseen
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Qayash Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Javed Nawab
- Department of Environmental Sciences, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Zia Ur Rehman
- Department of Microbiology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
13
|
Schramm STJ, Place K, Montaña S, Almuzara M, Fung S, Fernandez JS, Tuttobene MR, Golic A, Altilio M, Traglia GM, Vay C, Mussi MA, Iriarte A, Ramirez MS. Genetic and Phenotypic Features of a Novel Acinetobacter Species, Strain A47, Isolated From the Clinical Setting. Front Microbiol 2019; 10:1375. [PMID: 31275288 PMCID: PMC6591377 DOI: 10.3389/fmicb.2019.01375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
In 2014, a novel species of Acinetobacter, strain A47, determined to be hospital-acquired was recovered from a single patient soft tissue sample following a traumatic accident. The complexity of the Acinetobacter genus has been established, and every year novel species are identified. However, specific features and virulence factors that allow members of this genus to be successful pathogens are not well understood. Utilizing both genomic and phenotypic approaches, we identified distinct features and potential virulence factors of the A47 strain to understand its pathobiology. In silico analyses confirmed the uniqueness of this strain and other comparative and sequence analyses were used to study the evolution of relevant features identified in this isolate. The A47 genome was further analyzed for genes associated with virulence and genes involved in type IV pili (T4P) biogenesis, hemolysis, type VI secretion system (T6SS), and novel antibiotic resistance determinants were identified. A47 exhibited natural transformation with both genomic and plasmid DNA. It was able to form biofilms on different surfaces, to cause hemolysis of sheep and rabbit erythrocytes, and to kill competitor bacteria. Additionally, surface structures with non-uniform length were visualized with scanning electron microscopy and proposed as pili-like structures. Furthermore, the A47 genome revealed the presence of two putative BLUF type photoreceptors, and phenotypic assays confirmed the modulation by light of different virulence traits. Taken together, these results provide insight into the pathobiology of A47, which exhibits multiple virulence factors, natural transformation, and the ability to sense and respond to light, which may contribute to the success of an A47 as a hospital dwelling pathogen.
Collapse
Affiliation(s)
- Sareda T. J. Schramm
- Department of Biological Science, California State University Fullerton, Fullerton, CA, United States
| | - Kori Place
- Department of Biological Science, California State University Fullerton, Fullerton, CA, United States
| | - Sabrina Montaña
- Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa Almuzara
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hosp. de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sammie Fung
- Department of Biological Science, California State University Fullerton, Fullerton, CA, United States
| | - Jennifer S. Fernandez
- Department of Biological Science, California State University Fullerton, Fullerton, CA, United States
| | - Marisel R. Tuttobene
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI – CONICET), Rosario, Argentina
| | - Adrián Golic
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI – CONICET), Rosario, Argentina
| | - Matías Altilio
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI – CONICET), Rosario, Argentina
| | - German M. Traglia
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hosp. de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Vay
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hosp. de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Alejandra Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI – CONICET), Rosario, Argentina
| | - Andres Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Maria Soledad Ramirez
- Department of Biological Science, California State University Fullerton, Fullerton, CA, United States
| |
Collapse
|