1
|
Liu Y, Shen X, Gong Y, Liu Y, Song B, Zeng X. Sequence Alignment/Map format: a comprehensive review of approaches and applications. Brief Bioinform 2023; 24:bbad320. [PMID: 37668049 DOI: 10.1093/bib/bbad320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
The Sequence Alignment/Map (SAM) format file is the text file used to record alignment information. Alignment is the core of sequencing analysis, and downstream tasks accept mapping results for further processing. Given the rapid development of the sequencing industry today, a comprehensive understanding of the SAM format and related tools is necessary to meet the challenges of data processing and analysis. This paper is devoted to retrieving knowledge in the broad field of SAM. First, the format of SAM is introduced to understand the overall process of the sequencing analysis. Then, existing work is systematically classified in accordance with generation, compression and application, and the involved SAM tools are specifically mined. Lastly, a summary and some thoughts on future directions are provided.
Collapse
Affiliation(s)
- Yuansheng Liu
- College of Computer Science and Electronic Engineering, Hunan University, 410086, Changsha, China
| | - Xiangzhen Shen
- College of Computer Science and Electronic Engineering, Hunan University, 410086, Changsha, China
| | - Yongshun Gong
- School of Software, Shandong University, 250100, Jinan, China
| | - Yiping Liu
- College of Computer Science and Electronic Engineering, Hunan University, 410086, Changsha, China
| | - Bosheng Song
- College of Computer Science and Electronic Engineering, Hunan University, 410086, Changsha, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, 410086, Changsha, China
| |
Collapse
|
2
|
Firtina C, Park J, Alser M, Kim JS, Cali D, Shahroodi T, Ghiasi N, Singh G, Kanellopoulos K, Alkan C, Mutlu O. BLEND: a fast, memory-efficient and accurate mechanism to find fuzzy seed matches in genome analysis. NAR Genom Bioinform 2023; 5:lqad004. [PMID: 36685727 PMCID: PMC9853099 DOI: 10.1093/nargab/lqad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Generating the hash values of short subsequences, called seeds, enables quickly identifying similarities between genomic sequences by matching seeds with a single lookup of their hash values. However, these hash values can be used only for finding exact-matching seeds as the conventional hashing methods assign distinct hash values for different seeds, including highly similar seeds. Finding only exact-matching seeds causes either (i) increasing the use of the costly sequence alignment or (ii) limited sensitivity. We introduce BLEND, the first efficient and accurate mechanism that can identify both exact-matching and highly similar seeds with a single lookup of their hash values, called fuzzy seed matches. BLEND (i) utilizes a technique called SimHash, that can generate the same hash value for similar sets, and (ii) provides the proper mechanisms for using seeds as sets with the SimHash technique to find fuzzy seed matches efficiently. We show the benefits of BLEND when used in read overlapping and read mapping. For read overlapping, BLEND is faster by 2.4×-83.9× (on average 19.3×), has a lower memory footprint by 0.9×-14.1× (on average 3.8×), and finds higher quality overlaps leading to accurate de novo assemblies than the state-of-the-art tool, minimap2. For read mapping, BLEND is faster by 0.8×-4.1× (on average 1.7×) than minimap2. Source code is available at https://github.com/CMU-SAFARI/BLEND.
Collapse
Affiliation(s)
| | - Jisung Park
- ETH Zurich, Zurich 8092, Switzerland
- POSTECH, Pohang 37673, Republic of Korea
| | | | | | | | | | | | | | | | - Can Alkan
- Bilkent University, Ankara 06800, Turkey
| | | |
Collapse
|
3
|
Wei ZG, Fan XG, Zhang H, Zhang XD, Liu F, Qian Y, Zhang SW. kngMap: Sensitive and Fast Mapping Algorithm for Noisy Long Reads Based on the K-Mer Neighborhood Graph. Front Genet 2022; 13:890651. [PMID: 35601495 PMCID: PMC9117619 DOI: 10.3389/fgene.2022.890651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
With the rapid development of single molecular sequencing (SMS) technologies such as PacBio single-molecule real-time and Oxford Nanopore sequencing, the output read length is continuously increasing, which has dramatical potentials on cutting-edge genomic applications. Mapping these reads to a reference genome is often the most fundamental and computing-intensive step for downstream analysis. However, these long reads contain higher sequencing errors and could more frequently span the breakpoints of structural variants (SVs) than those of shorter reads, leading to many unaligned reads or reads that are partially aligned for most state-of-the-art mappers. As a result, these methods usually focus on producing local mapping results for the query read rather than obtaining the whole end-to-end alignment. We introduce kngMap, a novel k-mer neighborhood graph-based mapper that is specifically designed to align long noisy SMS reads to a reference sequence. By benchmarking exhaustive experiments on both simulated and real-life SMS datasets to assess the performance of kngMap with ten other popular SMS mapping tools (e.g., BLASR, BWA-MEM, and minimap2), we demonstrated that kngMap has higher sensitivity that can align more reads and bases to the reference genome; meanwhile, kngMap can produce consecutive alignments for the whole read and span different categories of SVs in the reads. kngMap is implemented in C++ and supports multi-threading; the source code of kngMap can be downloaded for free at: https://github.com/zhang134/kngMap for academic usage.
Collapse
Affiliation(s)
- Ze-Gang Wei
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Xing-Guo Fan
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Hao Zhang
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Xiao-Dan Zhang
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Fei Liu
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Yu Qian
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
- *Correspondence: Yu Qian, ; Shao-Wu Zhang,
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Yu Qian, ; Shao-Wu Zhang,
| |
Collapse
|
4
|
Rebelo HD, de Oliveira LA, Almeida GM, Sotomayor CA, Rochocz GL, Melo WE. Intent Identification in Unattended Customer Queries Using an Unsupervised Approach. JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT 2021. [DOI: 10.1142/s0219649221500374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Customer’s satisfaction is crucial for companies worldwide. An integrated strategy composes omnichannel communication systems, in which chabot is widely used. This system is supervised, and the key point is that the required training data are originally unlabelled. Labelling data manually is unfeasible mainly nowadays due to the considerable volume. Moreover, customer behaviour is often hidden in the data even for experts. This work proposes a methodology to find unknown entities and intents automatically using unsupervised learning. This is based on natural language processing (NLP) for text data preparation and on machine learning (ML) for clustering model identification. Several combinations for preprocessing, vectorisation, dimensionality reduction and clustering techniques, were investigated. The case study refers to a Brazilian electric energy company, with a data set of failed customer queries, that is, not met by the company for any reason. They correspond to about 30% (4,044 queries) of the original data set. The best identified intent model employed stemming for preprocessing, word frequency analysis for vectorisation, latent Dirichlet allocation (LDA) for dimensionality reduction, and mini-batch [Formula: see text]-means for clustering. This system was able to allocate 62% of the failed queries in one of the seven found intents. For instance, this new labelled data can be used for the training of NLP-based chatbots contributing to a greater generalisation capacity, and ultimately, to increase customer satisfaction.
Collapse
Affiliation(s)
- Hugo D. Rebelo
- Radix – Engineering and Software, Passeio Corporate, R. do Passeio, 38, Tower 2, Centro, Rio de Janeiro 20021-290, RJ, Brazil
| | - Lucas A. F. de Oliveira
- Radix – Engineering and Software, R. Santa Rita Durão, 444, Funcionários, Belo Horizonte 30140-110, MG, Brazil
| | - Gustavo M. Almeida
- Department of Chemical Engineering, School of Engineering, Federal University of Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - César A. M. Sotomayor
- Radix – Engineering and Software, Passeio Corporate, R. do Passeio, 38, Tower 2, Centro, Rio de Janeiro 20021-290, RJ, Brazil
| | - Geraldo L. Rochocz
- Radix – Engineering and Software, Passeio Corporate, R. do Passeio, 38, Tower 2, Centro, Rio de Janeiro 20021-290, RJ, Brazil
| | - Willian E. D. Melo
- Cemig Distribution S/A, Av. Barbacena, 1200, Santo Agostinho, Belo Horizonte 30190-924, MG, Brazil
| |
Collapse
|
5
|
Alser M, Rotman J, Deshpande D, Taraszka K, Shi H, Baykal PI, Yang HT, Xue V, Knyazev S, Singer BD, Balliu B, Koslicki D, Skums P, Zelikovsky A, Alkan C, Mutlu O, Mangul S. Technology dictates algorithms: recent developments in read alignment. Genome Biol 2021; 22:249. [PMID: 34446078 PMCID: PMC8390189 DOI: 10.1186/s13059-021-02443-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Aligning sequencing reads onto a reference is an essential step of the majority of genomic analysis pipelines. Computational algorithms for read alignment have evolved in accordance with technological advances, leading to today's diverse array of alignment methods. We provide a systematic survey of algorithmic foundations and methodologies across 107 alignment methods, for both short and long reads. We provide a rigorous experimental evaluation of 11 read aligners to demonstrate the effect of these underlying algorithms on speed and efficiency of read alignment. We discuss how general alignment algorithms have been tailored to the specific needs of various domains in biology.
Collapse
Affiliation(s)
- Mohammed Alser
- Computer Science Department, ETH Zürich, 8092, Zürich, Switzerland
- Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey
- Information Technology and Electrical Engineering Department, ETH Zürich, Zürich, 8092, Switzerland
| | - Jeremy Rotman
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dhrithi Deshpande
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kodi Taraszka
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Huwenbo Shi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Pelin Icer Baykal
- Department of Computer Science, Georgia State University, Atlanta, GA, 30302, USA
| | - Harry Taegyun Yang
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Ph.D. Program, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Victor Xue
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sergey Knyazev
- Department of Computer Science, Georgia State University, Atlanta, GA, 30302, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Brunilda Balliu
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - David Koslicki
- Computer Science and Engineering, Pennsylvania State University, University Park, PA, 16801, USA
- Biology Department, Pennsylvania State University, University Park, PA, 16801, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16801, USA
| | - Pavel Skums
- Department of Computer Science, Georgia State University, Atlanta, GA, 30302, USA
| | - Alex Zelikovsky
- Department of Computer Science, Georgia State University, Atlanta, GA, 30302, USA
- The Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Can Alkan
- Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey
- Bilkent-Hacettepe Health Sciences and Technologies Program, Ankara, Turkey
| | - Onur Mutlu
- Computer Science Department, ETH Zürich, 8092, Zürich, Switzerland
- Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey
- Information Technology and Electrical Engineering Department, ETH Zürich, Zürich, 8092, Switzerland
| | - Serghei Mangul
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
6
|
Chakraborty A, Morgenstern B, Bandyopadhyay S. S-conLSH: alignment-free gapped mapping of noisy long reads. BMC Bioinformatics 2021; 22:64. [PMID: 33573603 PMCID: PMC7879691 DOI: 10.1186/s12859-020-03918-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Background The advancement of SMRT technology has unfolded new opportunities of genome analysis with its longer read length and low GC bias. Alignment of the reads to their appropriate positions in the respective reference genome is the first but costliest step of any analysis pipeline based on SMRT sequencing. However, the state-of-the-art aligners often fail to identify distant homologies due to lack of conserved regions, caused by frequent genetic duplication and recombination. Therefore, we developed a novel alignment-free method of sequence mapping that is fast and accurate. Results We present a new mapper called S-conLSH that uses Spaced context based Locality Sensitive Hashing. With multiple spaced patterns, S-conLSH facilitates a gapped mapping of noisy long reads to the corresponding target locations of a reference genome. We have examined the performance of the proposed method on 5 different real and simulated datasets. S-conLSH is at least 2 times faster than the recently developed method lordFAST. It achieves a sensitivity of 99%, without using any traditional base-to-base alignment, on human simulated sequence data. By default, S-conLSH provides an alignment-free mapping in PAF format. However, it has an option of generating aligned output as SAM-file, if it is required for any downstream processing. Conclusions S-conLSH is one of the first alignment-free reference genome mapping tools achieving a high level of sensitivity. The spaced-context is especially suitable for extracting distant similarities. The variable-length spaced-seeds or patterns add flexibility to the proposed algorithm by introducing gapped mapping of the noisy long reads. Therefore, S-conLSH may be considered as a prominent direction towards alignment-free sequence analysis.
Collapse
Affiliation(s)
- Angana Chakraborty
- Department of Computer Science, West Bengal Education Service, Kolkata, India
| | - Burkhard Morgenstern
- Department of Bioinformatics (IMG), University of Göttingen, 37077, Göttingen, Germany.
| | | |
Collapse
|