1
|
Liu L, Xia L, Li Y, Zhang Y, Wang Q, Ding J, Wang X. Inhibiting SRC activity attenuates kainic-acid induced mouse epilepsy via reducing NR2B phosphorylation and full-length NR2B expression. Epilepsy Res 2022; 185:106975. [PMID: 35907325 DOI: 10.1016/j.eplepsyres.2022.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the effect of SRC activation on spontaneously recurrent seizures and to investigate the underlying mechanisms of NR2B phosphorylation. METHODS C57BL/6 mice were injected intrahippocampally with kainic acid (KA, 0.4 μg/25 g) to induce status epilepticus (SE). Saracatinib(STB) was used as an SRC inhibitor. Spontaneously recurrent seizures were monitored from day 7 to day 14 after the KA injection. Nissl's stain and NeuN were used to detect neuron loss and Timm stain was used to evaluate mossy fibre sprouting 14 days after KA injection. We also investigated the effect of SRC on full-length expression of NR2B. MDL28170 was used to inhibit calpain activity. Western blotting and qPCR were performed to verify phosphorylation levels and expression of SRC and NR2B 24 h after KA injection. RESULTS The duration of status epileptics in the SRC inhibitor group decreased significantly compared to the KA group 24 h after the injection of KA (P < 0.05). The application of the SRC inhibitor significantly reduced the degree of contralateral mossy fibre sprouting (P < 0.05) and improved the degree of neuron loss (P < 0.01) compared to the epilepsy group. Full-length NR2B levels in the ipsilateral hippocampus decreased in the epilepsy group (P < 0.01) compared to the sham group, and it further decreased in the STB inhibitor group (P < 0.01). The effect of the STB inhibitor was counteracted by simultaneous inhibition of SRC activity and calpain activation, while the level of full-length NR2B increased compared to the KA+STB group(P < 0.01). Reduction of NR2B cleavage by MDL28170 significantly increased the duration of epileptic status compared to the KA group (P < 0.05). SIGNIFICANCE Our data indicated that the early application of SRC inhibitors exerted protective effects on seizure severity, loss of neurons, and sprouting of mossy fibres in KA-induced mouse epilepsy. Seizure severity attenuation due to SRC inhibition was associated with the decrease of NR2B in both the phosphorylation and full-length forms.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China
| | - Lu Xia
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China
| | - Yuxiang Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China
| | - Yiying Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China
| | - Qiang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Fenglin Road, Shanghai 200032, China; Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Prava J, Pan A. In silico analysis of Leishmania proteomes and protein-protein interaction network: Prioritizing therapeutic targets and drugs for repurposing to treat leishmaniasis. Acta Trop 2022; 229:106337. [PMID: 35134348 DOI: 10.1016/j.actatropica.2022.106337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 01/31/2023]
Abstract
Leishmaniasis is a serious world health problem and its current therapies have several limitations demanding to develop novel therapeutics for this disease. The present study aims to prioritize novel broad-spectrum targets using proteomics and protein-protein interaction network (PPIN) data for 11 Leishmania species. Proteome comparison and host non-homology analysis resulted in 3605 pathogen-specific conserved core proteins. Gene ontology analysis indicated their involvement in major molecular functions like DNA binding, transportation, dioxygenase, and catalytic activity. PPIN analysis of these core proteins identified eight hub proteins (viz., vesicle-trafficking protein (LBRM2903_190011800), ribosomal proteins S17 (LBRM2903_34004790) and L2 (LBRM2903_080008100), eukaryotic translation initiation factor 3 (LBRM2903_350086700), replication factor A (LBRM2903_150008000), U3 small nucleolar RNA-associated protein (LBRM2903_340025600), exonuclease (LBRM2903_200021800), and mitochondrial RNA ligase (LBRM2903_200074100)). Among the hub proteins, six were classified as drug targets and two as vaccine candidates. Further, druggability analysis indicated three hub proteins, namely eukaryotic translation initiation factor 3, ribosomal proteins S17 and L2 as druggable. Their three-dimensional structures were modelled and docked with the identified ligands (2-methylthio-N6-isopentenyl-adenosine-5'-monophosphate, artenimol and omacetaxine mepesuccinate). These ligands could be experimentally validated (in vitro and in vivo) and repurposed for the development of novel antileishmanial agents.
Collapse
|
3
|
Liu R, Sun L, Wang Y, Jia M, Wang Q, Cai X, Wu J. Double-edged Role of K Na Channels in Brain Tuning: Identifying Epileptogenic Network Micro-Macro Disconnection. Curr Neuropharmacol 2022; 20:916-928. [PMID: 34911427 PMCID: PMC9881102 DOI: 10.2174/1570159x19666211215104829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is commonly recognized as a disease driven by generalized hyperexcited and hypersynchronous neural activity. Sodium-activated potassium channels (KNa channels), which are encoded by the Slo 2.2 and Slo 2.1 genes, are widely expressed in the central nervous system and considered as "brakes" to adjust neuronal adaptation through regulating action potential threshold or after-hyperpolarization under physiological condition. However, the variants in KNa channels, especially gain-of-function variants, have been found in several childhood epileptic conditions. Most previous studies focused on mapping the epileptic network on the macroscopic scale while ignoring the value of microscopic changes. Notably, paradoxical role of KNa channels working on individual neuron/microcircuit and the macroscopic epileptic expression highlights the importance of understanding epileptogenic network through combining microscopic and macroscopic methods. Here, we first illustrated the molecular and physiological function of KNa channels on preclinical seizure models and patients with epilepsy. Next, we summarized current hypothesis on the potential role of KNa channels during seizures to provide essential insight into what emerged as a micro-macro disconnection at different levels. Additionally, we highlighted the potential utility of KNa channels as therapeutic targets for developing innovative anti-seizure medications.
Collapse
Affiliation(s)
- Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiang Cai
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| |
Collapse
|