1
|
Mukherjee T, Pournik O, Lim Choi Keung SN, Arvanitis TN. Clinical Decision Support Systems for Brain Tumour Diagnosis and Prognosis: A Systematic Review. Cancers (Basel) 2023; 15:3523. [PMID: 37444633 DOI: 10.3390/cancers15133523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
CDSSs are being continuously developed and integrated into routine clinical practice as they assist clinicians and radiologists in dealing with an enormous amount of medical data, reduce clinical errors, and improve diagnostic capabilities. They assist detection, classification, and grading of brain tumours as well as alert physicians of treatment change plans. The aim of this systematic review is to identify various CDSSs that are used in brain tumour diagnosis and prognosis and rely on data captured by any imaging modality. Based on the 2020 preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocol, the literature search was conducted in PubMed and Engineering Village Compendex databases. Different types of CDSSs identified through this review include Curiam BT, FASMA, MIROR, HealthAgents, and INTERPRET, among others. This review also examines various CDSS tool types, system features, techniques, accuracy, and outcomes, to provide the latest evidence available in the field of neuro-oncology. An overview of such CDSSs used to support clinical decision-making in the management and treatment of brain tumours, along with their benefits, challenges, and future perspectives has been provided. Although a CDSS improves diagnostic capabilities and healthcare delivery, there is lack of specific evidence to support these claims. The absence of empirical data slows down both user acceptance and evaluation of the actual impact of CDSS on brain tumour management. Instead of emphasizing the advantages of implementing CDSS, it is important to address its potential drawbacks and ethical implications. By doing so, it can promote the responsible use of CDSS and facilitate its faster adoption in clinical settings.
Collapse
Affiliation(s)
- Teesta Mukherjee
- Department of Electronic, Electrical and Systems Engineering, School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Omid Pournik
- Department of Electronic, Electrical and Systems Engineering, School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarah N Lim Choi Keung
- Department of Electronic, Electrical and Systems Engineering, School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Theodoros N Arvanitis
- Department of Electronic, Electrical and Systems Engineering, School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Knowledge-Based Personal Health System to empower outpatients of diabetes mellitus by means of P4 Medicine. Methods Mol Biol 2016; 1246:237-57. [PMID: 25417090 DOI: 10.1007/978-1-4939-1985-7_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Diabetes Mellitus (DM) affects hundreds of millions of people worldwide and it imposes a large economic burden on healthcare systems. We present a web patient empowering system (PHSP4) that ensures continuous monitoring and assessment of the health state of patients with DM (type I and II). PHSP4 is a Knowledge-Based Personal Health System (PHS) which follows the trend of P4 Medicine (Personalized, Predictive, Preventive, and Participative). It provides messages to outpatients and clinicians about the achievement of objectives, follow-up, and treatments adjusted to the patient condition. Additionally, it calculates a four-component risk vector of the associated pathologies with DM: Nephropathy, Diabetic retinopathy, Diabetic foot, and Cardiovascular event. The core of the system is a Rule-Based System which Knowledge Base is composed by a set of rules implementing the recommendations of the American Diabetes Association (ADA) (American Diabetes Association: http://www.diabetes.org/ ) clinical guideline. The PHSP4 is designed to be standardized and to facilitate its interoperability by means of terminologies (SNOMED-CT [The International Health Terminology Standards Development Organization: http://www.ihtsdo.org/snomed-ct/ ] and UCUM [The Unified Code for Units of Measure: http://unitsofmeasure.org/ ]), standardized clinical documents (HL7 CDA R2 [Health Level Seven International: http://www.hl7.org/index.cfm ]) for managing Electronic Health Record (EHR). We have evaluated the functionality of the system and its users' acceptance of the system using simulated and real data, and a questionnaire based in the Technology Acceptance Model methodology (TAM). Finally results show the reliability of the system and the high acceptance of clinicians.
Collapse
|
3
|
Eldridge SM, Lancaster GA, Campbell MJ, Thabane L, Hopewell S, Coleman CL, Bond CM. Defining Feasibility and Pilot Studies in Preparation for Randomised Controlled Trials: Development of a Conceptual Framework. PLoS One 2016; 11:e0150205. [PMID: 26978655 PMCID: PMC4792418 DOI: 10.1371/journal.pone.0150205] [Citation(s) in RCA: 719] [Impact Index Per Article: 89.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/10/2016] [Indexed: 12/18/2022] Open
Abstract
We describe a framework for defining pilot and feasibility studies focusing on studies conducted in preparation for a randomised controlled trial. To develop the framework, we undertook a Delphi survey; ran an open meeting at a trial methodology conference; conducted a review of definitions outside the health research context; consulted experts at an international consensus meeting; and reviewed 27 empirical pilot or feasibility studies. We initially adopted mutually exclusive definitions of pilot and feasibility studies. However, some Delphi survey respondents and the majority of open meeting attendees disagreed with the idea of mutually exclusive definitions. Their viewpoint was supported by definitions outside the health research context, the use of the terms 'pilot' and 'feasibility' in the literature, and participants at the international consensus meeting. In our framework, pilot studies are a subset of feasibility studies, rather than the two being mutually exclusive. A feasibility study asks whether something can be done, should we proceed with it, and if so, how. A pilot study asks the same questions but also has a specific design feature: in a pilot study a future study, or part of a future study, is conducted on a smaller scale. We suggest that to facilitate their identification, these studies should be clearly identified using the terms 'feasibility' or 'pilot' as appropriate. This should include feasibility studies that are largely qualitative; we found these difficult to identify in electronic searches because researchers rarely used the term 'feasibility' in the title or abstract of such studies. Investigators should also report appropriate objectives and methods related to feasibility; and give clear confirmation that their study is in preparation for a future randomised controlled trial designed to assess the effect of an intervention.
Collapse
Affiliation(s)
- Sandra M. Eldridge
- Centre for Primary Care and Public Health, Queen Mary University of London, London, United Kingdom
- * E-mail:
| | - Gillian A. Lancaster
- Department of Mathematics and Statistics, Lancaster University, Lancaster, Lancashire, United Kingdom
| | - Michael J. Campbell
- School of Health and Related Research, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Lehana Thabane
- Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Sally Hopewell
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Claire L. Coleman
- Centre for Primary Care and Public Health, Queen Mary University of London, London, United Kingdom
| | - Christine M. Bond
- Centre of Academic Primary Care, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
4
|
Julià-Sapé M, Griffiths JR, Tate AR, Howe FA, Acosta D, Postma G, Underwood J, Majós C, Arús C. Classification of brain tumours from MR spectra: the INTERPRET collaboration and its outcomes. NMR IN BIOMEDICINE 2015; 28:1772-1787. [PMID: 26768492 DOI: 10.1002/nbm.3439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 07/15/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
The INTERPRET project was a multicentre European collaboration, carried out from 2000 to 2002, which developed a decision-support system (DSS) for helping neuroradiologists with no experience of MRS to utilize spectroscopic data for the diagnosis and grading of human brain tumours. INTERPRET gathered a large collection of MR spectra of brain tumours and pseudo-tumoural lesions from seven centres. Consensus acquisition protocols, a standard processing pipeline and strict methods for quality control of the aquired data were put in place. Particular emphasis was placed on ensuring the diagnostic certainty of each case, for which all cases were evaluated by a clinical data validation committee. One outcome of the project is a database of 304 fully validated spectra from brain tumours, pseudotumoural lesions and normal brains, along with their associated images and clinical data, which remains available to the scientific and medical community. The second is the INTERPRET DSS, which has continued to be developed and clinically evaluated since the project ended. We also review here the results of the post-INTERPRET period. We evaluate the results of the studies with the INTERPRET database by other consortia or research groups. A summary of the clinical evaluations that have been performed on the post-INTERPRET DSS versions is also presented. Several have shown that diagnostic certainty can be improved for certain tumour types when the INTERPRET DSS is used in conjunction with conventional radiological image interpretation. About 30 papers concerned with the INTERPRET single-voxel dataset have so far been published. We discuss stengths and weaknesses of the DSS and the lessons learned. Finally we speculate on how the INTERPRET concept might be carried into the future.
Collapse
Affiliation(s)
- Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | | | - A Rosemary Tate
- School of Informatics, University of Sussex, Falmer, Brighton, UK
| | - Franklyn A Howe
- Cardiovascular and Cell Sciences Research Institute, St George's, University of London, London, UK
| | - Dionisio Acosta
- CHIME, University College London, The Farr Institute of Health Informatics Research, London, UK
| | - Geert Postma
- Radboud University Nijmegen, Institute for Molecules and Materials, Analytical Chemistry, Nijmegen, The Netherlands
| | | | - Carles Majós
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Institut de Diagnòstic per la Imatge (IDI), CSU de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Julià-Sapé M, Majós C, Camins À, Samitier A, Baquero M, Serrallonga M, Doménech S, Grivé E, Howe FA, Opstad K, Calvar J, Aguilera C, Arús C. Multicentre evaluation of the INTERPRET decision support system 2.0 for brain tumour classification. NMR IN BIOMEDICINE 2014; 27:1009-1018. [PMID: 25042391 DOI: 10.1002/nbm.3144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 04/14/2014] [Accepted: 05/03/2014] [Indexed: 06/03/2023]
Abstract
In a previous study, we have shown the added value of (1) H MRS for the neuroradiological characterisation of adult human brain tumours. In that study, several methods of MRS analysis were used, and a software program, the International Network for Pattern Recognition of Tumours Using Magnetic Resonance Decision Support System 1.0 (INTERPRET DSS 1.0), with a short-TE classifier, provided the best results. Since then, the DSS evolved into a version 2.0 that contains an additional long-TE classifier. This study has two objectives. First, to determine whether clinicians with no experience of spectroscopy are comparable with spectroscopists in the use of the system, when only minimum training in the use of the system was given. Second, to assess whether or not a version with another TE is better than the initial version. We undertook a second study with the same cases and nine evaluators to assess whether the diagnostic accuracy of DSS 2.0 was comparable with the values obtained with DSS 1.0. In the second study, the analysis protocol was flexible in comparison with the first one to mimic a clinical environment. In the present study, on average, each case required 5.4 min by neuroradiologists and 9 min by spectroscopists for evaluation. Most classes and superclasses of tumours gave the same results as with DSS 1.0, except for astrocytomas of World Health Organization (WHO) grade III, in which performance measured as the area under the curve (AUC) decreased: AUC = 0.87 (0.72-1.02) with DSS 1.0 and AUC = 0.62 (0.55-0.70) with DSS 2.0. When analysing the performance of radiologists and spectroscopists with respect to DSS 1.0, the results were the same for most classes. Having data with two TEs instead of one did not affect the results of the evaluation.
Collapse
Affiliation(s)
- Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain; Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, UAB, Cerdanyola del Vallès, Spain; Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, UAB, Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|