1
|
Mehmood K, Lazoglu I, Küçükaksu DS. Acausal Modelling of Advanced-Stage Heart Failure and the Istanbul Heart Ventricular Assist Device Support with Patient Data. Cardiovasc Eng Technol 2023; 14:726-741. [PMID: 37723332 DOI: 10.1007/s13239-023-00683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND In object-oriented or acausal modelling, components of the model can be connected topologically, following the inherent structure of the physical system, and system equations can be formulated automatically. This technique allows individuals without a mathematics background to develop knowledge-based models and facilitates collaboration in multidisciplinary fields like biomedical engineering. This study conducts a preclinical evaluation of a ventricular assist device (VAD) in assisting advanced-stage heart failure patients in an acausal modelling environment. METHODS A comprehensive object-oriented model of the cardiovascular system with a VAD is developed in MATLAB/SIMSCAPE, and its hemodynamic behaviour is studied. An analytically derived pump model is calibrated for the experimental prototype of the Istanbul Heart VAD. Hemodynamics are produced under healthy, diseased, and assisted conditions. The study features a comprehensive collection of advanced-stage heart failure patients' data from the literature to identify parameters for disease modelling and to validate the resulting hemodynamics. RESULTS Regurgitation, suction, and optimal speeds are identified, and trends in different hemodynamic parameters are observed for the simulated pathophysiological conditions. Using pertinent parameters in disease modelling allows for more accurate results compared to the traditional approach of arbitrary reduction in left ventricular contractility to model dilated cardiomyopathy. CONCLUSION The current research provides a comprehensive and validated framework for the preclinical evaluation of cardiac assist devices. Due to its object-oriented nature, the featured model is readily modifiable for other cardiovascular diseases for studying the effect of pump operating conditions on hemodynamics and vice versa in silico and hybrid mock circulatory loops. The work also provides a potential teaching tool for understanding the pathophysiology of heart failure, diagnosis rationale, and degree of assist requirements.
Collapse
Affiliation(s)
- Khunsha Mehmood
- Department of Mechanical Engineering, Koç University, 34450, Istanbul, Turkey
| | - Ismail Lazoglu
- Department of Mechanical Engineering, Koç University, 34450, Istanbul, Turkey.
| | - Deniz Süha Küçükaksu
- Cardiovascular Surgery Department, School of Medicine, Başkent University, 34662, Istanbul, Turkey
| |
Collapse
|
2
|
Mehmood K, Arshad M, Lazoglu I, Küçükaksu DS, Bakuy V. In-silico hemodynamic ramp testing of ventricular assist device implanted patients using acausal cardiovascular-VAD modeling. Artif Organs 2023; 47:1452-1463. [PMID: 37306082 DOI: 10.1111/aor.14597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND While cardiovascular system and mechanical circulatory support devices are efficiently model the effect of disease and assistance, they can also lend valuable insights into clinical procedures. This study demonstrates the use of a CVS-VAD model for an invasive procedure; hemodynamic ramp testing, in-silico. METHODS The CVS model is developed using validated models in literature, using Simscape™. An analytically derived pump model is calibrated for the HeartWare VAD. Dilated cardiomyopathy is used as an illustrative example of heart failure, and heart failure patients are created virtually by calibrating the model with requisite disease parameters obtained from published patient data. A clinically applied ramp study protocol is adopted whereby speed optimization is performed following clinically accepted hemodynamic normalization criteria. Trends in hemodynamic variables in response to pump speed increments are obtained. Optimal speed ranges are obtained for the three virtual patients based on target values of central venous pressure (CVP), pulmonary capillary wedge pressure (PCWP), cardiac output (CO), and mean arterial pressure (MAP) for hemodynamic stabilization. RESULTS Appreciable speed changes in the mild case (300 rpm), slight changes in the moderate case (100 rpm), and no changes in the simulated severe case are possible. CONCLUSION The study demonstrates a novel application of cardiovascular modeling using an open-source acausal model, which can be potentially beneficial for medical education and research.
Collapse
Affiliation(s)
- Khunsha Mehmood
- Department of Mechanical Engineering, Koç University, Istanbul, Turkey
| | - Munam Arshad
- Department of Mechanical Engineering, Koç University, Istanbul, Turkey
| | - Ismail Lazoglu
- Department of Mechanical Engineering, Koç University, Istanbul, Turkey
| | - Deniz Süha Küçükaksu
- Department of Cardiovascular Surgery, Başkent University Istanbul Health Application and Research Center, Istanbul, Turkey
| | - Vedat Bakuy
- Department of Cardiovascular Surgery, Başkent University Istanbul Health Application and Research Center, Istanbul, Turkey
| |
Collapse
|
3
|
Cui W, Wang T, Xu Z, Liu J, Simakov S, Liang F. A numerical study of the hemodynamic behavior and gas transport in cardiovascular systems with severe cardiac or cardiopulmonary failure supported by venoarterial extracorporeal membrane oxygenation. Front Bioeng Biotechnol 2023; 11:1177325. [PMID: 37229493 PMCID: PMC10203410 DOI: 10.3389/fbioe.2023.1177325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Venoarterial extracorporeal membrane oxygenation (VA-ECMO) has been extensively demonstrated as an effective means of bridge-to-destination in the treatment of patients with severe ventricular failure or cardiopulmonary failure. However, appropriate selection of candidates and management of patients during Extracorporeal membrane oxygenation (ECMO) support remain challenging in clinical practice, due partly to insufficient understanding of the complex influences of extracorporeal membrane oxygenation support on the native cardiovascular system. In addition, questions remain as to how central and peripheral venoarterial extracorporeal membrane oxygenation modalities differ with respect to their hemodynamic impact and effectiveness of compensatory oxygen supply to end-organs. In this work, we developed a computational model to quantitatively address the hemodynamic interaction between the extracorporeal membrane oxygenation and cardiovascular systems and associated gas transport. Model-based numerical simulations were performed for cardiovascular systems with severe cardiac or cardiopulmonary failure and supported by central or peripheral venoarterial extracorporeal membrane oxygenation. Obtained results revealed that: 1) central and peripheral venoarterial extracorporeal membrane oxygenation modalities had a comparable capacity for elevating arterial blood pressure and delivering oxygenated blood to important organs/tissues, but induced differential changes of blood flow waveforms in some arteries; 2) increasing the rotation speed of extracorporeal membrane oxygenation pump (ω) could effectively improve arterial blood oxygenation, with the efficiency being especially high when ω was low and cardiopulmonary failure was severe; 3) blood oxygen indices (i.e., oxygen saturation and partial pressure) monitored at the right radial artery could be taken as surrogates for diagnosing potential hypoxemia in other arteries irrespective of the modality of extracorporeal membrane oxygenation; and 4) Left ventricular (LV) overloading could occur when ω was high, but the threshold of ω for inducing clinically significant left ventricular overloading depended strongly on the residual cardiac function. In summary, the study demonstrated the differential hemodynamic influences while comparable oxygen delivery performance of the central and peripheral venoarterial extracorporeal membrane oxygenation modalities in the management of patients with severe cardiac or cardiopulmonary failure and elucidated how the status of arterial blood oxygenation and severity of left ventricular overloading change in response to variations in ω. These model-based findings may serve as theoretical references for guiding the application of venoarterial extracorporeal membrane oxygenation or interpreting in vivo measurements in clinical practice.
Collapse
Affiliation(s)
- Wenhao Cui
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tianqi Wang
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhuoming Xu
- Cardiac Intensive Care Unit, Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinlong Liu
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sergey Simakov
- Department of Computational Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
4
|
Gil A, Navarro R, Quintero P, Mares A. Hemocompatibility and hemodynamic comparison of two centrifugal LVADs: HVAD and HeartMate3. Biomech Model Mechanobiol 2023; 22:871-883. [PMID: 36648697 PMCID: PMC10167126 DOI: 10.1007/s10237-022-01686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023]
Abstract
Mechanical circulatory support using ventricular assist devices is a common technique for treating patients suffering from advanced heart failure. The latest generation of devices is characterized by centrifugal turbopumps which employ magnetic levitation bearings to ensure a gap clearance between moving and static parts. Despite the increasing use of these devices as a destination therapy, several long-term complications still exist regarding their hemocompatibility. The blood damage associated with different pump designs has been investigated profoundly in the literature, while the hemodynamic performance has been hardly considered. This work presents a novel comparison between the two main devices of the latest generation-HVAD and HM3-from both perspectives, hemodynamic performance and blood damage. Computational fluid dynamics simulations are performed to model the considered LVADs, and computational results are compared to experimental measurements of pressure head to validate the model. Enhanced performance and hemocompatibility are detected for HM3 owing to its design incorporating more conventional blades and larger gap clearances.
Collapse
Affiliation(s)
- Antonio Gil
- CMT-Motores Térmicos, Universitat Politècnica de València, Camino de Vera, S/N, 46022, Valencia, Spain
| | - Roberto Navarro
- CMT-Motores Térmicos, Universitat Politècnica de València, Camino de Vera, S/N, 46022, Valencia, Spain
| | - Pedro Quintero
- CMT-Motores Térmicos, Universitat Politècnica de València, Camino de Vera, S/N, 46022, Valencia, Spain
| | - Andrea Mares
- CMT-Motores Térmicos, Universitat Politècnica de València, Camino de Vera, S/N, 46022, Valencia, Spain.
| |
Collapse
|
5
|
Evaluation of Different Cannulation Strategies for Aortic Arch Surgery Using a Cardiovascular Numerical Simulator. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010060. [PMID: 36671632 PMCID: PMC9854437 DOI: 10.3390/bioengineering10010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Aortic disease has a significant impact on quality of life. The involvement of the aortic arch requires the preservation of blood supply to the brain during surgery. Deep hypothermic circulatory arrest is an established technique for this purpose, although neurological injury remains high. Additional techniques have been used to reduce risk, although controversy still remains. A three-way cannulation approach, including both carotid arteries and the femoral artery or the ascending aorta, has been used successfully for aortic arch replacement and redo procedures. We developed circuits of the circulation to simulate blood flow during this type of cannulation set up. The CARDIOSIM© cardiovascular simulation platform was used to analyse the effect on haemodynamic and energetic parameters and the benefit derived in terms of organ perfusion pressure and flow. Our simulation approach based on lumped-parameter modelling, pressure-volume analysis and modified time-varying elastance provides a theoretical background to a three-way cannulation strategy for aortic arch surgery with correlation to the observed clinical practice.
Collapse
|
6
|
Shahidi N, Pan M, Safaei S, Tran K, Crampin EJ, Nickerson DP. Hierarchical semantic composition of biosimulation models using bond graphs. PLoS Comput Biol 2021; 17:e1008859. [PMID: 33983945 PMCID: PMC8148364 DOI: 10.1371/journal.pcbi.1008859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
Simulating complex biological and physiological systems and predicting their behaviours under different conditions remains challenging. Breaking systems into smaller and more manageable modules can address this challenge, assisting both model development and simulation. Nevertheless, existing computational models in biology and physiology are often not modular and therefore difficult to assemble into larger models. Even when this is possible, the resulting model may not be useful due to inconsistencies either with the laws of physics or the physiological behaviour of the system. Here, we propose a general methodology for composing models, combining the energy-based bond graph approach with semantics-based annotations. This approach improves model composition and ensures that a composite model is physically plausible. As an example, we demonstrate this approach to automated model composition using a model of human arterial circulation. The major benefit is that modellers can spend more time on understanding the behaviour of complex biological and physiological systems and less time wrangling with model composition.
Collapse
Affiliation(s)
- Niloofar Shahidi
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Michael Pan
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
| | - Soroush Safaei
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Edmund J. Crampin
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
| | - David P. Nickerson
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
De Lazzari B, Iacovoni A, Mottaghy K, Capoccia M, Badagliacca R, Vizza CD, De Lazzari C. ECMO Assistance during Mechanical Ventilation: Effects Induced on Energetic and Haemodynamic Variables. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 202:106003. [PMID: 33618144 PMCID: PMC9754723 DOI: 10.1016/j.cmpb.2021.106003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Simulation in cardiovascular medicine may help clinicians understand the important events occurring during mechanical ventilation and circulatory support. During the COVID-19 pandemic, a significant number of patients have required hospital admission to tertiary referral centres for concomitant mechanical ventilation and extracorporeal membrane oxygenation (ECMO). Nevertheless, the management of ventilated patients on circulatory support can be quite challenging. Therefore, we sought to review the management of these patients based on the analysis of haemodynamic and energetic parameters using numerical simulations generated by a software package named CARDIOSIM©. METHODS New modules of the systemic circulation and ECMO were implemented in CARDIOSIM© platform. This is a modular software simulator of the cardiovascular system used in research, clinical and e-learning environment. The new structure of the developed modules is based on the concept of lumped (0-D) numerical modelling. Different ECMO configurations have been connected to the cardiovascular network to reproduce Veno-Arterial (VA) and Veno-Venous (VV) ECMO assistance. The advantages and limitations of different ECMO cannulation strategies have been considered. We have used literature data to validate the effects of a combined ventilation and ECMO support strategy. RESULTS The results have shown that our simulations reproduced the typical effects induced during mechanical ventilation and ECMO assistance. We focused our attention on ECMO with triple cannulation such as Veno-Ventricular-Arterial (VV-A) and Veno-Atrial-Arterial (VA-A) configurations to improve the hemodynamic and energetic conditions of a virtual patient. Simulations of VV-A and VA-A assistance with and without mechanical ventilation have generated specific effects on cardiac output, coupling of arterial and ventricular elastance for both ventricles, mean pulmonary pressure, external work and pressure volume area. CONCLUSION The new modules of the systemic circulation and ECMO support allowed the study of the effects induced by concomitant mechanical ventilation and circulatory support. Based on our clinical experience during the COVID-19 pandemic, numerical simulations may help clinicians with data analysis and treatment optimisation of patients requiring both mechanical ventilation and circulatory support.
Collapse
Affiliation(s)
| | | | | | - Massimo Capoccia
- Royal Brompton Hospital, Royal Brompton & Harefield NHS Foundation Trust, UK; Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK.
| | - Roberto Badagliacca
- Department of Cardiovascular Respiratory Nephrologic and Geriatric Sciences, Sapienza University of Rome, Italy.
| | - Carmine Dario Vizza
- Department of Cardiovascular Respiratory Nephrologic and Geriatric Sciences, Sapienza University of Rome, Italy.
| | - Claudio De Lazzari
- National Research Council, Institute of Clinical Physiology (IFC-CNR), Rome, Italy; Teaching University Geomedi, Tbilisi, Georgia.
| |
Collapse
|