1
|
Song H, Yang Y, Li M, Tan T, Wang L, Zhang J, Chen J, Zhou Q. Enhancing precision in effective regurgitant orifice area estimation by transthoracic echocardiography for functional mitral regurgitation using computational fluid dynamics. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1995-2006. [PMID: 39136802 DOI: 10.1007/s10554-024-03219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/05/2024] [Indexed: 10/15/2024]
Abstract
Computational fluid dynamics (CFD) was used to identify factors influencing the accuracy of the hemispherical proximal isovelocity surface area (PISA) method in calculating the effective regurgitant orifice area (EROA) for patients with functional mitral regurgitation (FMR). Ninety-nine CFD models were constructed to investigate the impact of regurgitant orifice shape and leaflet tethering on the EROA calculation using the PISA method. The correction factors for regurgitation orifice shape (CFs) and for leaflet tethering (CFt) were derived by comparing the 2D PISA method and the actual orifice area. The correction formula was then tested in vivo via 2D transthoracic echocardiography with 3D transesophageal echocardiography of the vena contracta area (VCA) as a reference method in 62 patients with FMR. Based on the CFD simulation results, the two major factors for correcting the EROA calculation were vena contracta length (VCL) and coaptation depth (CD). The correction formula for the EROA was corrected effective regurgitant orifice area (CEROA) = EROA*CFs*CFt, where CFs = 0.59 × VCL(cm) + 0.6 × MR Vmax(cm/s)-0.63 × PISA R(cm)-1.51 and CFt = 0.4 × CD (cm) + 0.96. The correction formula was applied to FMR patients, and the bias and LOA between the CEROA and VCA (0.01 ± 0.13 cm2) were much smaller than those between the EROA and VCA (0.26 ± 0.32 cm2). The CFD-based correction formula improves the accuracy of the EROA calculation based on the hemispheric PISA method, possibly leading to more accurate and reliable data for treatment decision-making in FMR patients.
Collapse
Affiliation(s)
- Hongning Song
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Yuanting Yang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Mingqi Li
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Tuantuan Tan
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Liuqing Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Ji Zhang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Jinling Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
2
|
Drakoulas G, Gortsas T, Polyzos E, Tsinopoulos S, Pyl L, Polyzos D. An explainable machine learning-based probabilistic framework for the design of scaffolds in bone tissue engineering. Biomech Model Mechanobiol 2024; 23:987-1012. [PMID: 38416219 DOI: 10.1007/s10237-024-01817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/01/2024] [Indexed: 02/29/2024]
Abstract
Recently, 3D-printed biodegradable scaffolds have shown great potential for bone repair in critical-size fractures. The differentiation of the cells on a scaffold is impacted among other factors by the surface deformation of the scaffold due to mechanical loading and the wall shear stresses imposed by the interstitial fluid flow. These factors are in turn significantly affected by the material properties, the geometry of the scaffold, as well as the loading and flow conditions. In this work, a numerical framework is proposed to study the influence of these factors on the expected osteochondral cell differentiation. The considered scaffold is rectangular with a 0/90 lay-down pattern and a four-layered strut made of polylactic acid with a 5% steel particle content. The distribution of the different types of cells on the scaffold surface is estimated through a scalar stimulus, calculated by using a mechanobioregulatory model. To reduce the simulation time for the computation of the stimulus, a probabilistic machine learning (ML)-based reduced-order model (ROM) is proposed. Then, a sensitivity analysis is performed using the Shapley additive explanations to examine the contribution of the various parameters to the framework stimulus predictions. In a final step, a multiobjective optimization procedure is implemented using genetic algorithms and the ROM, aiming to identify the material parameters and loading conditions that maximize the percentage of surface area populated by bone cells while minimizing the area corresponding to the other types of cells and the resorption condition. The results of the performed analysis highlight the potential of using ROMs for the scaffold design, by dramatically reducing the simulation time while enabling the efficient implementation of sensitivity analysis and optimization procedures.
Collapse
Affiliation(s)
- George Drakoulas
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504, Rio, Greece.
| | - Theodore Gortsas
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504, Rio, Greece.
- Department of Mechanical Engineering, University of Peloponnese, 26334, Patras, Greece.
| | - Efstratios Polyzos
- Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
| | - Stephanos Tsinopoulos
- Department of Mechanical Engineering, University of Peloponnese, 26334, Patras, Greece
| | - Lincy Pyl
- Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
| | - Demosthenes Polyzos
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504, Rio, Greece
| |
Collapse
|
3
|
Seehanam S, Khrueaduangkham S, Sinthuvanich C, Sae-Ueng U, Srimaneepong V, Promoppatum P. Evaluating the effect of pore size for 3d-printed bone scaffolds. Heliyon 2024; 10:e26005. [PMID: 38375289 PMCID: PMC10875428 DOI: 10.1016/j.heliyon.2024.e26005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
The present study investigated the influence of pore size of strut-based Diamond and surface-based Gyroid structures for their suitability as medical implants. Samples were made additively from laser powder bed fusion process with a relative density of 0.3 and pore sizes ranging from 300 to 1300 μm. They were subsequently examined for their manufacturability and mechanical properties. In addition, non-Newtonian computational fluid dynamics and discrete phase models were conducted to assess pressure drop and cell seeding efficiency. The results showed that both Diamond and Gyroid had higher as-built densities with smaller pore sizes. However, Gyroid demonstrated better manufacturability as its relative density was closer to the as-designed one. In addition, based on mechanical testing, the elastic modulus was largely unaffected by pore size, but post-yielding behaviors differed, especially in Diamond. High mechanical sensitivity in Diamond could be explained partly by Finite Element simulations, which revealed stress localization in Diamond and more uniform stress distribution in Gyroid. Furthermore, we defined the product of the normalized specific surface, normalized pressure drop, and cell seeding efficiency as the indicator of an optimal pore size, in which this factor identified an optimal pore size of approximately 500 μm for both Diamond and Gyroid. Besides, based on such criterion, Gyroid exhibited greater applicability as bone scaffolds. In summary, this study provides comprehensive assessment of the effect of pore size and demonstrates the efficient estimation of an in-silico framework for evaluating lattice structures as medical implants, which could be applied to other lattice architectures.
Collapse
Affiliation(s)
- Saran Seehanam
- Center for Lightweight Materials, Design, and Manufacturing, Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
| | - Suppakrit Khrueaduangkham
- Center for Lightweight Materials, Design, and Manufacturing, Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
| | - Chomdao Sinthuvanich
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Udom Sae-Ueng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Viritpon Srimaneepong
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patcharapit Promoppatum
- Center for Lightweight Materials, Design, and Manufacturing, Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
- OsseoLabs Co. Ltd., Bangkok, 10400, Thailand
| |
Collapse
|
4
|
Manescu (Paltanea) V, Paltanea G, Antoniac A, Gruionu LG, Robu A, Vasilescu M, Laptoiu SA, Bita AI, Popa GM, Cocosila AL, Silviu V, Porumb A. Mechanical and Computational Fluid Dynamic Models for Magnesium-Based Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:830. [PMID: 38399081 PMCID: PMC10890492 DOI: 10.3390/ma17040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Today, mechanical properties and fluid flow dynamic analysis are considered to be two of the most important steps in implant design for bone tissue engineering. The mechanical behavior is characterized by Young's modulus, which must have a value close to that of the human bone, while from the fluid dynamics point of view, the implant permeability and wall shear stress are two parameters directly linked to cell growth, adhesion, and proliferation. In this study, we proposed two simple geometries with a three-dimensional pore network dedicated to a manufacturing route based on a titanium wire waving procedure used as an intermediary step for Mg-based implant fabrication. Implant deformation under different static loads, von Mises stresses, and safety factors were investigated using finite element analysis. The implant permeability was computed based on Darcy's law following computational fluid dynamic simulations and, based on the pressure drop, was numerically estimated. It was concluded that both models exhibited a permeability close to the human trabecular bone and reduced wall shear stresses within the biological range. As a general finding, the proposed geometries could be useful in orthopedics for bone defect treatment based on numerical analyses because they mimic the trabecular bone properties.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Lucian Gheorghe Gruionu
- Faculty of Mechanics, University of Craiova, 13 Alexandru Ioan Cuza, RO-200585 Craiova, Romania;
| | - Alina Robu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Marius Vasilescu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Stefan Alexandru Laptoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Ana Iulia Bita
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Georgiana Maria Popa
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Andreea Liliana Cocosila
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Vlad Silviu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Anca Porumb
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania;
| |
Collapse
|
5
|
Elenskaya N, Tashkinov M, Vindokurov I, Pirogova Y, Silberschmidt VV. Understanding of trabecular-cortical transition zone: Numerical and experimental assessment of multi-morphology scaffolds. J Mech Behav Biomed Mater 2023; 147:106146. [PMID: 37774442 DOI: 10.1016/j.jmbbm.2023.106146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Applications of additive manufacturing (AM) in tissue engineering develop rapidly. AM offers layer-by-layer creation of complex objects, developed to restore functionality of, or replace, damaged tissues. Porous 3D-printed functional gradient structures are of particular interest: their special architecture makes it possible to simulate the heterogeneity of the replaced tissue and, by continuously changing the mechanical properties, to avoid the concentration of stresses that can be caused by abrupt geometric changes. Such structures also allow combinations of different types of unit cells and a smooth transition between them, making design of personalised scaffolds with optimal parameters for the replacement of damaged host tissue at the interface between tissues possible. This paper presents the results of development of scaffold structures with gradients of porosity and multi-morphology using unit cells based on triply periodic minimal surfaces (TPMS). The mechanical behaviour of additively manufactured scaffold prototypes made of polylactide acid (PLA) was studied under compressive loading. Strain fields on their surface were captured using the Vic-3d Micro-DIC digital image correlation system and compared with those obtained with detailed numerical simulations, employing elastic-plastic properties of PLA, obtained in experiments. The effect of gradient parameters and unit-cell morphology on the stress distribution in scaffolds was analysed. A smooth gradient transition between cells with different morphologies was found to reduce the probability of structural failure under intense compressive loading. A good agreement between numerical results and experimental data was achieved, which justifies application of the developed approach to design of personalised bone scaffolds.
Collapse
Affiliation(s)
- Nataliya Elenskaya
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia
| | - Mikhail Tashkinov
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia.
| | - Ilia Vindokurov
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia
| | - Yulia Pirogova
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia
| | | |
Collapse
|
6
|
Singh S, Yadav SK, Meena VK, Vashisth P, Kalyanasundaram D. Orthopedic Scaffolds: Evaluation of Structural Strength and Permeability of Fluid Flow via an Open Cell Neovius Structure for Bone Tissue Engineering. ACS Biomater Sci Eng 2023; 9:5900-5911. [PMID: 37702616 DOI: 10.1021/acsbiomaterials.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The ability of bone to regenerate itself through mechanobiological responses is its dynamic property. Mechanical cues from a neighboring environment produce the structural strain to promote blood flow and bone marrow mobility that in turn aids the bone regeneration process. Occurrences of these phenomena are crucial for the success of metallic scaffolds implanted in the host bone tissue. Thus, permeability and fluid flow-induced wall shear stress (WSS) are two parameters that directly influence cell bioactivities inside a scaffold and are crucial for effective bone tissue regeneration. Given that the scaffolds shall be implanted in the body, permeability assessment was carried out using non-Newtonian fluid. In this work, the triply periodic minimal surface scaffolds with Neovius architectures were fabricated by using selective laser melting technology. The estimation of fluid flow was carried out using computational fluid dynamics (CFD) analysis with a non-Newtonian blood fluid model. Further, the structural strength of various open cell Neovius lattices was evaluated using a static compression test, and in vitro cell culture using Alamar blue assay was evaluated. Results revealed that the values of intrinsic blood flow permeability of the three-dimensional (3D)-printed open cell porous scaffold with Neovius architecture were of the same order of magnitude as those of human bone, ranging from 0.0025 × 10-9 to 0.0152 × 10-9 m2. The structural elastic modulus and compressive strength of NOCL40, NOCL50, and NOCL60 lattices range from 3.27 to 3.71 GPa and 194 to 205 MPa, respectively. All of the values are comparable to the human bone, thus making these lattices a suitable alternative for orthopedic applications.
Collapse
Affiliation(s)
- Sonu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil Kumar Yadav
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vijay Kumar Meena
- Central Scientific Instruments Organization, Council of Scientific & Industrial Research, Chandigarh 160030, India
| | - Priya Vashisth
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Dinesh Kalyanasundaram
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
7
|
Azizi P, Drobek C, Budday S, Seitz H. Simulating the mechanical stimulation of cells on a porous hydrogel scaffold using an FSI model to predict cell differentiation. Front Bioeng Biotechnol 2023; 11:1249867. [PMID: 37799813 PMCID: PMC10549991 DOI: 10.3389/fbioe.2023.1249867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
3D-structured hydrogel scaffolds are frequently used in tissue engineering applications as they can provide a supportive and biocompatible environment for the growth and regeneration of new tissue. Hydrogel scaffolds seeded with human mesenchymal stem cells (MSCs) can be mechanically stimulated in bioreactors to promote the formation of cartilage or bone tissue. Although in vitro and in vivo experiments are necessary to understand the biological response of cells and tissues to mechanical stimulation, in silico methods are cost-effective and powerful approaches that can support these experimental investigations. In this study, we simulated the fluid-structure interaction (FSI) to predict cell differentiation on the entire surface of a 3D-structured hydrogel scaffold seeded with cells due to dynamic compressive load stimulation. The computational FSI model made it possible to simultaneously investigate the influence of both mechanical deformation and flow of the culture medium on the cells on the scaffold surface during stimulation. The transient one-way FSI model thus opens up significantly more possibilities for predicting cell differentiation in mechanically stimulated scaffolds than previous static microscale computational approaches used in mechanobiology. In a first parameter study, the impact of the amplitude of a sinusoidal compression ranging from 1% to 10% on the phenotype of cells seeded on a porous hydrogel scaffold was analyzed. The simulation results show that the number of cells differentiating into bone tissue gradually decreases with increasing compression amplitude, while differentiation into cartilage cells initially multiplied with increasing compression amplitude in the range of 2% up to 7% and then decreased. Fibrous cell differentiation was predicted from a compression of 5% and increased moderately up to a compression of 10%. At high compression amplitudes of 9% and 10%, negligible areas on the scaffold surface experienced high stimuli where no cell differentiation could occur. In summary, this study shows that simulation of the FSI system is a versatile approach in computational mechanobiology that can be used to study the effects of, for example, different scaffold designs and stimulation parameters on cell differentiation in mechanically stimulated 3D-structured scaffolds.
Collapse
Affiliation(s)
- Pedram Azizi
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Christoph Drobek
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Silvia Budday
- Department of Mechanical Engineering, Institute of Applied Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| |
Collapse
|
8
|
Ntousi O, Roumpi M, Siogkas P, Deligianni D, Fotiadis DI. Computational Fluid Dynamic Analysis of customised 3D-printed bone scaffolds with different architectures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083223 DOI: 10.1109/embc40787.2023.10340034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Through the recent years, tissue engineering has been proven as a solid substitute of autografts in the stimulation of bone tissue regeneration, through the development of three dimensional (3D) porous matrices, commonly known as scaffolds. In this work, we analysed two scaffold structures with 500μm pore size, by performing computational fluid dynamics simulations, to compare permeability, Wall Shear Stress (WSS), velocity and pressure distributions. Taking into account those parameters the geometry named as "PCL-50" was the best to anticipate showing a superior performance in supporting cell growth due to the improved flow characteristics in the scaffold.Clinical Relevance- Bone defects that require invasive surgical treatment with high risks in terms of success and effectiveness. Bone tissue engineering (BTE) in combination with the use of computational fluid dynamics (CFD) analysis tools aim to assist in designing optimal scaffolds that better promote bone growth and repair. The fluid dynamic characteristics of a porous scaffold plays a vital role in cell viability and cell growth, affecting the osteogenic performance of the scaffold.
Collapse
|
9
|
Seehanam S, Chanchareon W, Promoppatum P. Assessing the effect of manufacturing defects and non-Newtonian blood model on flow behaviors of additively manufactured Gyroid TPMS structures. Heliyon 2023; 9:e15711. [PMID: 37180920 PMCID: PMC10172759 DOI: 10.1016/j.heliyon.2023.e15711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
In the field of medical engineering, Triply Periodic Minimal Surfaces (TPMS) structures have been studied widely owing to their physical attributes similar to those of human bones. Computational Fluid Dynamics (CFD) is often used to reveal the interaction between structural architectures and flow fields. Nevertheless, a comprehensive study on the effect of manufacturing defects and non-Newtonian behavior on the fluid responses in TPMS scaffolds is still lacking. Therefore, the present study fabricated Gyroid TPMS with four relative densities from 0.1 to 0.4. Non-destructive techniques were used to examine surface roughness and geometric deviation. We found that the manufacturing defects had a minor effect on fluid responses. The pressure drop comparison between defect-containing and defect-free models could be differed up to 7%. The same comparison for the average shear stress showed a difference up to 23%, in which greater deviation between both models was observed at higher relative density. On the contrary, the viscosity model played a significant role in flow prediction. By comparing the Newtonian model with Carreau-Yasuda non-Newtonian model, the resulting pressure drop and average wall shear stress from non-Newtonian viscosity could be higher than those of the Newtonian model by more than a factor of two. In addition, we matched the fluid-induced shear stress from both viscosity models with desirable ranges of shear stresses for tissue growth obtained from the literature. Up to 70% from the Newtonian model fell within the desirable range while the matching stress reduced to lower than 8% for the non-Newtonian results. Furthermore, by correlating geometric features with physical outputs, the geometric deviation was seen associated with surface curvature while the local shear stress revealed a strong correlation with inclination angle. Overall, the present work emphasized the importance of the viscosity model for CFD analysis of the scaffolds, especially when resulting fluid-induced wall shear stress is of interest. In addition, the geometric correlation has introduced the alternative consideration of structural architectures from local perspectives, which could assist the further comparison and optimization among different porous scaffolds in the future.
Collapse
Affiliation(s)
- Saran Seehanam
- Center for Lightweight Materials, Design, and Manufacturing, Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
| | - Wares Chanchareon
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Patcharapit Promoppatum
- Center for Lightweight Materials, Design, and Manufacturing, Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok, 10140, Thailand
- Corresponding author.
| |
Collapse
|
10
|
The Effect of Tortuosity on Permeability of Porous Scaffold. Biomedicines 2023; 11:biomedicines11020427. [PMID: 36830961 PMCID: PMC9953537 DOI: 10.3390/biomedicines11020427] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
In designing porous scaffolds, permeability is essential to consider as a function of cell migration and bone tissue regeneration. Good permeability has been achieved by mimicking the complexity of natural cancellous bone. In this study, a porous scaffold was developed according to the morphological indices of cancellous bone (porosity, specific surface area, thickness, and tortuosity). The computational fluid dynamics method analyzes the fluid flow through the scaffold. The permeability values of natural cancellous bone and three types of scaffolds (cubic, octahedron pillar, and Schoen's gyroid) were compared. The results showed that the permeability of the Negative Schwarz Primitive (NSP) scaffold model was similar to that of natural cancellous bone, which was in the range of 2.0 × 10-11 m2 to 4.0 × 10-10 m2. In addition, it was observed that the tortuosity parameter significantly affected the scaffold's permeability and shear stress values. The tortuosity value of the NSP scaffold was in the range of 1.5-2.8. Therefore, tortuosity can be manipulated by changing the curvature of the surface scaffold radius to obtain a superior bone tissue engineering construction supporting cell migration and tissue regeneration. This parameter should be considered when making new scaffolds, such as our NSP. Such efforts will produce a scaffold architecturally and functionally close to the natural cancellous bone, as demonstrated in this study.
Collapse
|
11
|
Wang L, Wang J, Chen Q, Li Q, Mendieta JB, Li Z. How getting twisted in scaffold design can promote bone regeneration: A fluid-structure interaction evaluation. J Biomech 2022; 145:111359. [PMID: 36334321 DOI: 10.1016/j.jbiomech.2022.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Bone tissue engineering (BTE) uses engineering principles to repair large bone defects, which requires effective mass transport ability of scaffolds to support cellular activities during bone regeneration. Since the implanted BTE scaffolds keep deforming under physiological loading which influences the fluid flow and mass transport within the scaffold and surrounding tissue, thus, scaffold design needs to consider the mass transport behavior under the physiological loading. This work proposed a novel twist scaffold, and its mass transport efficiency under physiological loading conditions was evaluated by a fluid-structure interaction analysis. The results showed that compared to the non-twist scaffold, the twist scaffold could form a rotating flow under the physiological loading, which enhanced the mass transport and generated more appropriate wall shear stress (WSS) to promote bone regeneration. This highlighted the better mass transport efficiency of the twist scaffold. Therefore, getting twist may be a promising design strategy for future BTE scaffolds, and the fluid-structure interaction approach may be a more reliable method for bone regeneration studies in either in vivo or in vitro systems.
Collapse
Affiliation(s)
- Luping Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiaqiu Wang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Qiang Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Qiwei Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jessica Benitez Mendieta
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Zhiyong Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
12
|
Albadawi M, Abuouf Y, Elsagheer S, Sekiguchi H, Ookawara S, Ahmed M. Influence of Rigid-Elastic Artery Wall of Carotid and Coronary Stenosis on Hemodynamics. Bioengineering (Basel) 2022; 9:708. [PMID: 36421109 PMCID: PMC9687628 DOI: 10.3390/bioengineering9110708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/18/2023] Open
Abstract
Cardiovascular system abnormalities can result in serious health complications. By using the fluid-structure interaction (FSI) procedure, a comprehensive realistic approach can be employed to accurately investigate blood flow coupled with arterial wall response. The hemodynamics was investigated in both the coronary and carotid arteries based on the arterial wall response. The hemodynamics was estimated based on the numerical simulation of a comprehensive three-dimensional non-Newtonian blood flow model in elastic and rigid arteries. For stenotic right coronary artery (RCA), it was found that the maximum value of wall shear stress (WSS) for the FSI case is higher than the rigid wall. On the other hand, for the stenotic carotid artery (CA), it was found that the maximum value of WSS for the FSI case is lower than the rigid wall. Moreover, at the peak systole of the cardiac cycle (0.38 s), the maximum percentage of arterial wall deformation was found to be 1.9%. On the other hand, for the stenotic carotid artery, the maximum percentage of arterial wall deformation was found to be 0.46%. A comparison between FSI results and those obtained by rigid wall arteries is carried out. Findings indicate slight differences in results for large-diameter arteries such as the carotid artery. Accordingly, the rigid wall assumption is plausible in flow modeling for relatively large diameters such as the carotid artery. Additionally, the FSI approach is essential in flow modeling in small diameters.
Collapse
Affiliation(s)
- Muhamed Albadawi
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan
- Engineering Mathematics and Physics Department, Faculty of Engineering, Alexandria University, Alexandria 5424041, Egypt
| | - Yasser Abuouf
- Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 5424041, Egypt
| | - Samir Elsagheer
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Faculty of Engineering, Aswan University, Aswan 81528, Egypt
| | - Hidetoshi Sekiguchi
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shinichi Ookawara
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mahmoud Ahmed
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City 5221241, Egypt
- Mechanical Engineering Department, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
13
|
Pires THV, Dunlop JWC, Castro APG, Fernandes PR. Wall Shear Stress Analysis and Optimization in Tissue Engineering TPMS Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7375. [PMID: 36295440 PMCID: PMC9612273 DOI: 10.3390/ma15207375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
When designing scaffolds for bone tissue engineering (BTE), the wall shear stress (WSS), due to the fluid flow inside the scaffold, is an important factor to consider as it influences the cellular process involved in new tissue formation. The present work analyzed the average WSS in Schwartz diamond (SD) and gyroid (SG) scaffolds with different surface topologies and mesh elements using computational fluid dynamics (CFD) analysis. It was found that scaffold meshes with a smooth surface topology with tetrahedral elements had WSS levels 35% higher than the equivalent scaffold with a non-smooth surface topology with hexahedral elements. The present work also investigated the possibility of implementing the optimization algorithm simulated annealing to aid in the design of BTE scaffolds with a specific average WSS, with the outputs showing that the algorithm was able to reach WSS levels in the vicinity of 5 mPa (physiological range) within the established limit of 100 iterations. This proved the efficacy of combining CFD and optimization methods in the design of BTE scaffolds.
Collapse
Affiliation(s)
- Tiago H. V. Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - John W. C. Dunlop
- MorphoPhysics Group, Department of the Chemistry and Physics of Materials, University of Salzburg, 5020 Salzburg, Austria
| | - André P. G. Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- ESTSetúbal, Instituto Politécnico de Setúbal, 2914-761 Setúbal, Portugal
| | - Paulo R. Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
14
|
Pazhouhnia Z, Beheshtizadeh N, Namini MS, Lotfibakhshaiesh N. Portable hand-held bioprinters promote in situ tissue regeneration. Bioeng Transl Med 2022; 7:e10307. [PMID: 36176625 PMCID: PMC9472017 DOI: 10.1002/btm2.10307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 12/17/2022] Open
Abstract
Three-dimensional bioprinting, as a novel technique of fabricating engineered tissues, is positively correlated with the ultimate goal of regenerative medicine, which is the restoration, reconstruction, and repair of lost and/or damaged tissue function. The progressive trend of this technology resulted in developing the portable hand-held bioprinters, which could be used quite easily by surgeons and physicians. With the advent of portable hand-held bioprinters, the obstacles and challenges of utilizing statistical bioprinters could be resolved. This review attempts to discuss the advantages and challenges of portable hand-held bioprinters via in situ tissue regeneration. All the tissues that have been investigated by this approach were reviewed, including skin, cartilage, bone, dental, and skeletal muscle regeneration, while the tissues that could be regenerated via this approach are targeted in the authors' perspective. The design and applications of hand-held bioprinters were discussed widely, and the marketed printers were introduced. It has been prospected that these facilities could ameliorate translating the regenerative medicine science from the bench to the bedside actively.
Collapse
Affiliation(s)
- Zahra Pazhouhnia
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Beheshtizadeh
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Mojdeh Salehi Namini
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
- Regenerative Medicine group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| |
Collapse
|
15
|
Fluid Flow Analysis of Integrated Porous Bone Scaffold and Cancellous Bone at Different Skeletal Sites: In Silico Study. Transp Porous Media 2022. [DOI: 10.1007/s11242-022-01849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Omar AM, Hassan MH, Daskalakis E, Ates G, Bright CJ, Xu Z, Powell EJ, Mirihanage W, Bartolo PJDS. Geometry-Based Computational Fluid Dynamic Model for Predicting the Biological Behavior of Bone Tissue Engineering Scaffolds. J Funct Biomater 2022; 13:104. [PMID: 35997442 PMCID: PMC9397055 DOI: 10.3390/jfb13030104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/05/2023] Open
Abstract
The use of biocompatible and biodegradable porous scaffolds produced via additive manufacturing is one of the most common approaches in tissue engineering. The geometric design of tissue engineering scaffolds (e.g., pore size, pore shape, and pore distribution) has a significant impact on their biological behavior. Fluid flow dynamics are important for understanding blood flow through a porous structure, as they determine the transport of nutrients and oxygen to cells and the flushing of toxic waste. The aim of this study is to investigate the impact of the scaffold architecture, pore size and distribution on its biological performance using Computational Fluid Dynamics (CFD). Different blood flow velocities (BFV) induce wall shear stresses (WSS) on cells. WSS values above 30 mPa are detrimental to their growth. In this study, two scaffold designs were considered: rectangular scaffolds with uniform square pores (300, 350, and 450 µm), and anatomically designed circular scaffolds with a bone-like structure and pore size gradient (476-979 µm). The anatomically designed scaffolds provided the best fluid flow conditions, suggesting a 24.21% improvement in the biological performance compared to the rectangular scaffolds. The numerical observations are aligned with those of previously reported biological studies.
Collapse
Affiliation(s)
- Abdalla M. Omar
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Evangelos Daskalakis
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Gokhan Ates
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Charlie J. Bright
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Zhanyan Xu
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Emily J. Powell
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Wajira Mirihanage
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| | - Paulo J. D. S. Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
17
|
Rashia Begum S, Saravana Kumar M, Vasumathi M, Umar Farooq M, Pruncu CI. Revealing the compressive and flow properties of novel bone scaffold structure manufactured by selective laser sintering technique. Proc Inst Mech Eng H 2022; 236:9544119211070412. [PMID: 35014560 DOI: 10.1177/09544119211070412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Additive manufacturing is revolutionizing the field of medical sciences through its key application in the development of bone scaffolds. During scaffold fabrication, achieving a good level of porosity for enhanced mechanical strength is very challenging. The bone scaffolds should hold both the porosity and load withstanding capacity. In this research, a novel structure was designed with the aim of the evaluation of flexible porosity. A CAD model was generated for the novel structure using specific input parameters, whereas the porosity was controlled by varying the input parameters. Poly Amide (PA 2200) material was used for the fabrication of bone scaffolds, which is a biocompatible material. To fabricate a novel structure for bone scaffolds, a Selective Laser Sintering machine (SLS) was used. The displacement under compression loads was observed using a Universal Testing Machine (UTM). In addition to this, numerical analysis of the components was also carried out. The compressive stiffness found through the analysis enables the verification of the load withstanding capacity of the specific bone scaffold model. The experimental porosity was compared with the theoretical porosity and showed almost 29% to 30% reductions when compared to the theoretical porosity. Structural analysis was carried out using ANSYS by changing the geometry. Computational Fluid Dynamics (CFD) analysis was carried out using ANSYS FLUENT to estimate the blood pressure and Wall Shear Stress (WSS). From the CFD analysis, maximum pressure of 1.799 Pa was observed. Though the porosity was less than 50%, there was not much variation of WSS. The achievement from this study endorses the great potential of the proposed models which can successfully be adapted for the required bone implant applications.
Collapse
Affiliation(s)
- S Rashia Begum
- Department of Mechanical Engineering, College of Engineering, Anna University, Chennai, Tamil Nadu, India
| | - M Saravana Kumar
- Department of Production Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - M Vasumathi
- Department of Mechanical Engineering, College of Engineering, Anna University, Chennai, Tamil Nadu, India
| | | | - Catalin I Pruncu
- Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow, Scotland, UK
- Department of Mechanical Engineering, Imperial College London, London, UK
| |
Collapse
|
18
|
Pires T, Dunlop JWC, Fernandes PR, Castro APG. Challenges in computational fluid dynamics applications for bone tissue engineering. Proc Math Phys Eng Sci 2022; 478:20210607. [PMID: 35153613 PMCID: PMC8791047 DOI: 10.1098/rspa.2021.0607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone injuries or defects that require invasive surgical treatment are a serious clinical issue, particularly when it comes to treatment success and effectiveness. Accordingly, bone tissue engineering (BTE) has been researching the use of computational fluid dynamics (CFD) analysis tools to assist in designing optimal scaffolds that better promote bone growth and repair. This paper aims to offer a comprehensive review of recent studies that use CFD analysis in BTE. The mechanical and fluidic properties of a given scaffold are coupled to each other via the scaffold architecture, meaning an optimization of one may negatively affect the other. For example, designs that improve scaffold permeability normally result in a decreased average wall shear stress. Linked with these findings, it appears there are very few studies in this area that state a specific application for their scaffolds and those that do are focused on in vitro bioreactor environments. Finally, this review also demonstrates a scarcity of studies that combine CFD with optimization methods to improve scaffold design. This highlights an important direction of research for the development of the next generation of BTE scaffolds.
Collapse
Affiliation(s)
- Tiago Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - John W C Dunlop
- MorphoPhysics Group, Department of the Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | | | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
19
|
Abuouf Y, AlBadawi M, Ookawara S, Ahmed M. Effect of guidewire insertion in fractional flow reserve procedure for real geometry using computational fluid dynamics. Biomed Eng Online 2021; 20:95. [PMID: 34583689 PMCID: PMC8479905 DOI: 10.1186/s12938-021-00935-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Coronary artery disease is an abnormal contraction of the heart supply blood vessel. It limits the oxygenated blood flow to the heart. Thus, diagnosing its severity helps physicians to select the appropriate treatment plan. Fractional flow reserve (FFR) is the most accurate method to pinpoint the stenosis severity. However, inserting the guidewire across stenosis may cause a false overestimation of severity. METHODS To estimate the errors due to guidewire insertion, reconstructed three-dimensional coronary artery geometry from a patient-specific scan is used. A comprehensive three-dimensional blood flow model is developed. Blood is considered non-Newtonian and the flow is pulsatile. The model is numerically simulated using realistic boundary conditions. RESULTS The FFR value is calculated and compared with the actual flow ratio. Additionally, the ratio between pressure drop and distal dynamic pressure (CDP) is studied. The obtained results for each case are compared and analyzed with the case without a guidewire. It was found that placing the guidewire leads to overestimating the severity of moderate stenosis. It reduces the FFR value from 0.43 to 0.33 with a 23.26% error compared to 0.44 actual flow ratio and the CDP increases from 5.31 to 7.2 with a 35.6% error. FFR value in mild stenosis does not have a significant change due to placing the guidewire. The FFR value decreases from 0.83 to 0.82 compared to the 0.83 actual flow ratio. CONCLUSION Consequently, physicians should consider these errors while deciding the treatment plan.
Collapse
Affiliation(s)
- Yasser Abuouf
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), Postal Code 21934, New Borg El-Arab City, P.O. Box 179, Alexandria, Egypt. .,Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt.
| | - Muhamed AlBadawi
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), Postal Code 21934, New Borg El-Arab City, P.O. Box 179, Alexandria, Egypt.,Engineering Mathematics and Physics Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - Shinichi Ookawara
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Mahmoud Ahmed
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), Postal Code 21934, New Borg El-Arab City, P.O. Box 179, Alexandria, Egypt.,Mechanical Engineering Department, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
20
|
Zhao F, Xiong Y, Ito K, van Rietbergen B, Hofmann S. Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 9:736489. [PMID: 34595161 PMCID: PMC8476750 DOI: 10.3389/fbioe.2021.736489] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Mechanobiology research is for understanding the role of mechanics in cell physiology and pathology. It will have implications for studying bone physiology and pathology and to guide the strategy for regenerating both the structural and functional features of bone. Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a three-dimensional (3D) culturing environment. Such scaffolds usually have different pore geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore geometries can affect the internal micro-mechanical environment that the cells experience when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical environment on cells, researchers can tune either the applied load and/or the design of the scaffold pore geometries. This review will provide information on how the micro-mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is affected by various scaffold pore geometries within different bioreactors. It shall allow researchers to estimate/quantify the micro-mechanical environment according to the already known pore geometry information, or to find a suitable pore geometry according to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial intelligent - assisted techniques, which can achieve an automatic design of solid porous scaffold geometry for tuning/optimising the micro-mechanical environment are suggested.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
21
|
Paz C, Suárez E, Gil C, Parga O. Numerical modelling of osteocyte growth on different bone tissue scaffolds. Comput Methods Biomech Biomed Engin 2021; 25:641-655. [PMID: 34459293 DOI: 10.1080/10255842.2021.1972290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most common solution for the regeneration or replacement of damaged bones is the implantation of prostheses comprising ceramic or metallic materials. However, these implants are known to cause problems such as post-operative infections, collapse of the prosthesis, and lack of osseointegration. Consequently, bone tissue engineering was established because of the limitations of such implants. Osteogenic implants offer promising solutions for bone regeneration; however, three-dimensional scaffolds should be used as supportive structures. It is challenging to correctly design these structures and their compositions or properties to provide a microenvironment that promotes tissue regeneration and expedites bone formation. Computational fluid dynamics can be used to model the main phenomena that occur in bioreactors, such as cell metabolism, nutrient transport, and cell culture growth, or to model the influence of several key mechanisms related to the fluid medium, in particular, the wall shear stress. In this work, a new numerical bone cell growth model was developed, which considered the oxygen and nutrient consumption as well as the wall shear stress effect on cell proliferation. The model was implemented using 35 three-dimensional scaffolds of different porosities, and the effect of the main geometrical parameters involved in each scaffold type was analysed. The porosity plays an important role, however, a similar porosity did not guarantee similar shear stress or cell growth among the scaffolds. Randomised trabecular scaffolds, that more closely resembled trabecular bone, showed the highest cell growth values, so these are the best candidates for cell growth in a bioreactor.
Collapse
Affiliation(s)
- Concepción Paz
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España.,Biofluids Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Eduardo Suárez
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España.,Biofluids Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Christian Gil
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España
| | - Oscar Parga
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España
| |
Collapse
|
22
|
Delepierre G, Vanderfleet OM, Niinivaara E, Zakani B, Cranston ED. Benchmarking Cellulose Nanocrystals Part II: New Industrially Produced Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8393-8409. [PMID: 34250804 DOI: 10.1021/acs.langmuir.1c00550] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The demand for industrially produced cellulose nanocrystals (CNCs) has been growing since 2012, when CelluForce Inc. opened its inaugural demonstration plant with a production capacity of 1 tonne per day. Currently, there are 10 industrial CNC producers worldwide, each producing a unique material. Thus, academic researchers and commercial users alike must consider the properties of all available CNCs and carefully select the material which will optimize the performance of their desired application. To support these efforts, this article presents a thorough characterization of four new industrially produced CNCs including sulfated CNCs from NORAM Engineering and Constructors Ltd. (in cooperation with InnoTech Alberta and Alberta-Pacific Forest Industries Inc.) and Melodea Ltd., as well as carboxylated CNCs from Anomera Inc. and Blue Goose Biorefineries Inc. These materials were benchmarked against typical lab-made, sulfated CNCs. While all CNCs were similar in size, shape, crystallinity, and suspension quality, the sulfated CNCs had a higher surface charge density than their carboxylated counterparts, leading to higher colloidal stability. Additionally, significant differences in the rheological profiles of aqueous CNC suspensions, as well as CNC thermal stability and self-assembly behavior, were observed. As such, this article highlights both the subtle and significant differences between five CNC types and acts as a guide for end-users looking to optimize the performance of CNC-based materials.
Collapse
Affiliation(s)
- Gwendoline Delepierre
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Oriana M Vanderfleet
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Elina Niinivaara
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-0076 Aalto, Espoo, Finland
| | - Behzad Zakani
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
23
|
Pires T, Santos J, Ruben RB, Gouveia BP, Castro APG, Fernandes PR. Numerical-experimental analysis of the permeability-porosity relationship in triply periodic minimal surfaces scaffolds. J Biomech 2021; 117:110263. [PMID: 33493715 DOI: 10.1016/j.jbiomech.2021.110263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/19/2023]
Abstract
Bone Tissue Engineering has been focusing on improving the current methods for bone repair, being the use of scaffolds presented as an upgrade to traditional surgery techniques. Scaffolds are artificially porous matrices, meant to promote cell seeding and proliferation, being these properties influenced by the permeability of the structure. This work employed experimental pressure drop tests and Computational Fluid Dynamics models to assess permeability (and fluid streamlines) within different triply periodic minimal surfaces scaffold geometries (Schwarz D, Gyroid and Schwarz P). The pressure outputs from the computational analysis presented a good correlation with the experimental results, with R2 equal to 0.903; they have also shown that a lower porosity may not mean a lower permeability if the geometry is altered, such as the difference between 60% porous Gyroid scaffolds (8.1*10-9 mm2) and 70% porous Schwarz D scaffolds (7.1*10-9 mm2). Fluid streamlines revealed how the Gyroid geometries are the most appropriate design for most bone tissue engineering applications, due to their consistent fluid permeation, followed by Schwarz D. The Schwarz P geometries have shown flat streamlines and significant variation of the permeability with the porosity (an increase of 10% in their porosity lead to an increase in the permeability from 5.1*10-9 mm2 to 11.7*10-9 mm2), which would imply a poor environment for cell seeding and proliferation.
Collapse
Affiliation(s)
- Tiago Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Santos
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rui B Ruben
- ESTG, CDRSP, Polytechnic Institute of Leiria, Leiria, Portugal
| | - Bárbara P Gouveia
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Paulo R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Abuouf Y, Ookawara S, Ahmed M. Analysis of the effect of guidewire position on stenosis diagnosis using computational fluid dynamics. Comput Biol Med 2020; 121:103777. [PMID: 32568672 DOI: 10.1016/j.compbiomed.2020.103777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fractional flow reserve is an accurate method for diagnosing stenosis. The difficulty in using this procedure lies in placing the guidewire precisely at the blood vessel centerline. Owing to the long distance between the insertion point and the stenosis, a guidewire inclination can occur. Therefore, the main objective of this study is to investigate how the measured pressure in a blood vessel varies with the guidewire position. METHODS A three-dimensional model of blood flow is developed and numerically simulated. Two positions and two inclination angles from the blood vessel centerline and three throat diameters are investigated. The predicted results are validated using the available experimental data. The predicted results and actual measurements are observed to agree well with each other. RESULTS The pressure drop coefficient (CDP) increases because of guidewire insertion. When the guidewire is placed at inclined positions in moderate stenosis, the values of CDP are 66 and 68, depending on the inclination angle; the errors in CDP are 69% and 76%, respectively. At a high flow rate, the errors are reduced to 67% and 70%, respectively. The error in the CDP ranges from 42% to 61% when the guidewire is placed parallel to the centerline. For severe stenosis, the CDP is nearly the same at all positions and varies between 240 and 250; without a guidewire, the CDP is 163. CONCLUSIONS The findings confirmed that practitioners should be aware of the guidewire position during the operation. The displacement of the guidewire should be estimated, and the corresponding error must be considered.
Collapse
Affiliation(s)
- Yasser Abuouf
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City, Postal Code 21934, Alexandria, Egypt.
| | - Shinichi Ookawara
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City, Postal Code 21934, Alexandria, Egypt; Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Mahmoud Ahmed
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City, Postal Code 21934, Alexandria, Egypt; Mechanical Engineering Department, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
25
|
Mahammod BP, Barua E, Deb P, Deoghare AB, Pandey KM. Investigation of Physico-mechanical Behavior, Permeability and Wall Shear Stress of Porous HA/PMMA Composite Bone Scaffold. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04467-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Baron C, Nguyen VH, Naili S, Guivier-Curien C. Interaction of ultrasound waves with bone remodelling: a multiscale computational study. Biomech Model Mechanobiol 2020; 19:1755-1764. [DOI: 10.1007/s10237-020-01306-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
|
27
|
Keslerová R, Řezníček H, Padělek T. Numerical solution of flow in bypass for generalized Newtonian fluids. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1391/1/012101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Arjunan A, Demetriou M, Baroutaji A, Wang C. Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. J Mech Behav Biomed Mater 2019; 102:103517. [PMID: 31877520 DOI: 10.1016/j.jmbbm.2019.103517] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/08/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023]
Abstract
Critically engineered stiffness and strength of a scaffold are crucial for managing maladapted stress concentration and reducing stress shielding. At the same time, suitable porosity and permeability are key to facilitate biological activities associated with bone growth and nutrient delivery. A systematic balance of all these parameters are required for the development of an effective bone scaffold. Traditionally, the approach has been to study each of these parameters in isolation without considering their interdependence to achieve specific properties at a certain porosity. The purpose of this study is to undertake a holistic investigation considering the stiffness, strength, permeability, and stress concentration of six scaffold architectures featuring a 68.46-90.98% porosity. With an initial target of a tibial host segment, the permeability was characterised using Computational Fluid Dynamics (CFD) in conjunction with Darcy's law. Following this, Ashby's criterion, experimental tests, and Finite Element Method (FEM) were employed to study the mechanical behaviour and their interdependencies under uniaxial compression. The FE model was validated and further extended to study the influence of stress concentration on both the stiffness and strength of the scaffolds. The results showed that the pore shape can influence permeability, stiffness, strength, and the stress concentration factor of Ti6Al4V bone scaffolds. Furthermore, the numerical results demonstrate the effect to which structural performance of highly porous scaffolds deviate, as a result of the Selective Laser Melting (SLM) process. In addition, the study demonstrates that stiffness and strength of bone scaffold at a targeted porosity is linked to the pore shape and the associated stress concentration allowing to exploit the design freedom associated with SLM.
Collapse
Affiliation(s)
- Arun Arjunan
- School of Engineering, University of Wolverhampton, Telford, TF2 9NT, UK.
| | - Marios Demetriou
- School of Engineering, University of Wolverhampton, Telford, TF2 9NT, UK
| | - Ahmad Baroutaji
- School of Engineering, University of Wolverhampton, Telford, TF2 9NT, UK
| | - Chang Wang
- Department of Engineering and Design, University of Sussex, Brighton, BN1 9RH, UK
| |
Collapse
|
29
|
Zhao F, Melke J, Ito K, van Rietbergen B, Hofmann S. A multiscale computational fluid dynamics approach to simulate the micro-fluidic environment within a tissue engineering scaffold with highly irregular pore geometry. Biomech Model Mechanobiol 2019; 18:1965-1977. [PMID: 31201621 PMCID: PMC6825226 DOI: 10.1007/s10237-019-01188-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Mechanical stimulation can regulate cellular behavior, e.g., differentiation, proliferation, matrix production and mineralization. To apply fluid-induced wall shear stress (WSS) on cells, perfusion bioreactors have been commonly used in tissue engineering experiments. The WSS on cells depends on the nature of the micro-fluidic environment within scaffolds under medium perfusion. Simulating the fluidic environment within scaffolds will be important for gaining a better insight into the actual mechanical stimulation on cells in a tissue engineering experiment. However, biomaterial scaffolds used in tissue engineering experiments typically have highly irregular pore geometries. This complexity in scaffold geometry implies high computational costs for simulating the precise fluidic environment within the scaffolds. In this study, we propose a low-computational cost and feasible technique for quantifying the micro-fluidic environment within the scaffolds, which have highly irregular pore geometries. This technique is based on a multiscale computational fluid dynamics approach. It is demonstrated that this approach can capture the WSS distribution in most regions within the scaffold. Importantly, the central process unit time needed to run the model is considerably low.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Johanna Melke
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands. .,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
30
|
Effect of scaffold architecture on cell seeding efficiency: A discrete phase model CFD analysis. Comput Biol Med 2019; 109:62-69. [PMID: 31035072 DOI: 10.1016/j.compbiomed.2019.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/20/2019] [Accepted: 04/20/2019] [Indexed: 12/22/2022]
Abstract
Within perfusion cell culture systems, scaffold architecture is able to control important biological parameters such as permeability and fluid flow-induced shear stress. As well, one of the main factors affecting the final fate of this process as well as optimal cell differentiation and proliferation in these systems is initial adhesion of cells to scaffolds. In this study, the effect of scaffold architecture on the adhesion of the cells was computationally investigated. For this purpose, four scaffold models including double-diamond, gyroid, FR-D, and Schwarz-primitive were designed using triply periodic minimal surface (TPMS) geometry with a constant porosity of 80%. As well, the inlet velocity of zero to simulate static cell culture and three different inlet velocities for modeling the dynamic cell culture conditions were also selected. The results showed that cell culture efficiency of scaffolds could be changed up to seven times from architecture to architecture under the same conditions. The efficiency of cell culture in scaffolds with tortuous architecture was also reported higher than those with relatively straight microchannels. In terms of culture methods, unlike dynamic cell culture model in which almost a homogeneous cell distribution was observed in static cell culture simulation, more cells adhered, but they had agglomerated in the scaffold entrance regions and had failed to reach all regions. The results of this study shed more light on the selection and design of scaffold architecture for optimal cell culture in tissue engineering.
Collapse
|
31
|
Ali D, Sen S. Computational Fluid Dynamics Study of the Effects of Surface Roughness on Permeability and Fluid Flow-Induced Wall Shear Stress in Scaffolds. Ann Biomed Eng 2018; 46:2023-2035. [DOI: 10.1007/s10439-018-2101-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/17/2018] [Indexed: 12/23/2022]
|