1
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
2
|
Lai B, Yi Y, Yang X, Li X, Xu L, Yan Z, Yang L, Han R, Hu H, Duan X. Dynamic contrast-enhanced and diffusion-weighted MRI of cervical carcinoma: Correlations with Ki-67 proliferation status. Magn Reson Imaging 2024; 112:136-143. [PMID: 39029603 DOI: 10.1016/j.mri.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVES To investigate the association of quantitative parameter (apparent diffusion coefficient [ADC]) from diffusion-weighted imaging (DWI) and various quantitative and semiquantitative parameters from dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) with Ki-67 proliferation index (PI) in cervical carcinoma (CC). METHODS A total of 102 individuals with CC who received 3.0 T MRI examination (DWI and DCE MRI) between October 2016 and December 2022 were enrolled in our investigation. Two radiologists separately assessed the ADC parameter and various quantitative and semiquantitative parameters including (volume transfer constant [Ktrans], rate constant [kep], extravascular extracellular space volume fraction [ve], volume fraction of plasma [vp], time to peak [TTP], maximum concentration [MaxCon], maximal slope [MaxSlope] and area under curve [AUC]) for each tumor. Their association with Ki-67 PI was analyzed by Spearman association analysis. The discrepancy between low-proliferation and high-proliferation groups was subsequently analyzed. The receiver operating characteristic (ROC) curve analysis utilized to identify optimal cut-off points for significant parameters. RESULTS Both ADC (ρ = -0.457, p < 0.001) and Ktrans (ρ = -0.467, p < 0.001) indicated a strong negative association with Ki-67 PI. Ki-67 PI showed positive correlations with TTP, MaxCon, MaxSlope and AUC (ρ = 0.202, 0.231, 0.309, 0.235, respectively; all p values<0.05). Compared with the low-proliferation group, high-Ki-67 group presented a significantly lower ADC (0.869 ± 0.125 × 10-3 mm2/s vs. 1.149 ± 0.318 × 10-3 mm2/s; p < 0.001) and Ktrans (1.314 ± 1.162 min-1vs. 0.391 ± 0.390 min-1; p < 0.001), also significantly higher MaxCon values (0.756 ± 0.959 vs. 0.422 ± 0.341; p < 0.05) and AUC values (2.373 ± 3.012 vs. 1.273 ± 1.000; p < 0.05). The cut-offs of ADC, Ktrans, MaxCon and AUC for discrimating low- and high-Ki-67 groups were 0.920 × 10-3 mm2/s, 0.304 min-1, 0.209 and 1.918, respectively. CONCLUSIONS ADC, Ktrans, TTP, MaxCon, MaxSlope and AUC are associated with Ki-67 PI. ADC and Ktrans exhibited high performance to discriminate low and high Ki-67 status of CC.
Collapse
Affiliation(s)
- Bingjia Lai
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongju Yi
- Information Technology Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Xiaojun Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Xiumei Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Longjiahui Xu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Zhuoheng Yan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Lu Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Riyu Han
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China.
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
3
|
Zhou J, Hou Z, Tian C, Zhu Z, Ye M, Chen S, Yang H, Zhang X, Zhang B. Review of tracer kinetic models in evaluation of gliomas using dynamic contrast-enhanced imaging. Front Oncol 2024; 14:1380793. [PMID: 38947892 PMCID: PMC11211364 DOI: 10.3389/fonc.2024.1380793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Glioma is the most common type of primary malignant tumor of the central nervous system (CNS), and is characterized by high malignancy, high recurrence rate and poor survival. Conventional imaging techniques only provide information regarding the anatomical location, morphological characteristics, and enhancement patterns. In contrast, advanced imaging techniques such as dynamic contrast-enhanced (DCE) MRI or DCE CT can reflect tissue microcirculation, including tumor vascular hyperplasia and vessel permeability. Although several studies have used DCE imaging to evaluate gliomas, the results of data analysis using conventional tracer kinetic models (TKMs) such as Tofts or extended-Tofts model (ETM) have been ambiguous. More advanced models such as Brix's conventional two-compartment model (Brix), tissue homogeneity model (TH) and distributed parameter (DP) model have been developed, but their application in clinical trials has been limited. This review attempts to appraise issues on glioma studies using conventional TKMs, such as Tofts or ETM model, highlight advancement of DCE imaging techniques and provides insights on the clinical value of glioma management using more advanced TKMs.
Collapse
Affiliation(s)
- Jianan Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zujun Hou
- The Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Chuanshuai Tian
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meiping Ye
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sixuan Chen
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huiquan Yang
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Gao A, Wang H, Zhang X, Wang T, Chen L, Hao J, Zhou R, Yang Z, Yue B, Hao D. Applying dynamic contrast-enhanced MRI tracer kinetic models to differentiate benign and malignant soft tissue tumors. Cancer Imaging 2024; 24:64. [PMID: 38773660 PMCID: PMC11107050 DOI: 10.1186/s40644-024-00710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/11/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND To explore the potential of different quantitative dynamic contrast-enhanced (qDCE)-MRI tracer kinetic (TK) models and qDCE parameters in discriminating benign from malignant soft tissue tumors (STTs). METHODS This research included 92 patients (41females, 51 males; age range 16-86 years, mean age 51.24 years) with STTs. The qDCE parameters (Ktrans, Kep, Ve, Vp, F, PS, MTT and E) for regions of interest of STTs were estimated by using the following TK models: Tofts (TOFTS), Extended Tofts (EXTOFTS), adiabatic tissue homogeneity (ATH), conventional compartmental (CC), and distributed parameter (DP). We established a comprehensive model combining the morphologic features, time-signal intensity curve shape, and optimal qDCE parameters. The capacities to identify benign and malignant STTs was evaluated using the area under the curve (AUC), degree of accuracy, and the analysis of the decision curve. RESULTS TOFTS-Ktrans, EXTOFTS-Ktrans, EXTOFTS-Vp, CC-Vp and DP-Vp demonstrated good diagnostic performance among the qDCE parameters. Compared with the other TK models, the DP model has a higher AUC and a greater level of accuracy. The comprehensive model (AUC, 0.936, 0.884-0.988) demonstrated superiority in discriminating benign and malignant STTs, outperforming the qDCE models (AUC, 0.899-0.915) and the traditional imaging model (AUC, 0.802, 0.712-0.891) alone. CONCLUSIONS Various TK models successfully distinguish benign from malignant STTs. The comprehensive model is a noninvasive approach incorporating morphological imaging aspects and qDCE parameters, and shows significant potential for further development.
Collapse
Affiliation(s)
- Aixin Gao
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China
| | - Hexiang Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China
| | - Xiuyun Zhang
- Department of Clinic Lab, Qingdao Cancer Hospital, Qingdao, Shandong, China
| | - Tongyu Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China
| | - Liuyang Chen
- Fisca Healthcare (nanjing) Co., Ltd, Nanjing, Jiangsu, China
| | - Jingwei Hao
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China
| | - Ruizhi Zhou
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China
| | - Zhitao Yang
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China
| | - Bin Yue
- Department of Bone Oncology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China.
| | - Dapeng Hao
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China.
| |
Collapse
|
5
|
Zhang L, Fan M, Li L. Deconvolution-Based Pharmacokinetic Analysis to Improve the Prediction of Pathological Information of Breast Cancer. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:13-24. [PMID: 38343210 DOI: 10.1007/s10278-023-00915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 03/02/2024]
Abstract
Pharmacokinetic (PK) parameters, revealing changes in the tumor microenvironment, are related to the pathological information of breast cancer. Tracer kinetic models (e.g., Tofts-Kety model) with a nonlinear least square solver are commonly used to estimate PK parameters. However, the method is sensitive to noise in images. To relieve the effects of noise, a deconvolution (DEC) method, which was validated on synthetic concentration-time series, was proposed to accurately calculate PK parameters from breast dynamic contrast-enhanced magnetic resonance imaging. A time-to-peak-based tumor partitioning method was used to divide the whole tumor into three tumor subregions with different kinetic patterns. Radiomic features were calculated from the tumor subregion and whole tumor-based PK parameter maps. The optimal features determined by the fivefold cross-validation method were used to build random forest classifiers to predict molecular subtypes, Ki-67, and tumor grade. The diagnostic performance evaluated by the area under the receiver operating characteristic curve (AUC) was compared between the subregion and whole tumor-based PK parameters. The results showed that the DEC method obtained more accurate PK parameters than the Tofts method. Moreover, the results showed that the subregion-based Ktrans (best AUCs = 0.8319, 0.7032, 0.7132, 0.7490, 0.8074, and 0.6950) achieved a better diagnostic performance than the whole tumor-based Ktrans (AUCs = 0.8222, 0.6970, 0.6511, 0.7109, 0.7620, and 0.5894) for molecular subtypes, Ki-67, and tumor grade. These findings indicate that DEC-based Ktrans in the subregion has the potential to accurately predict molecular subtypes, Ki-67, and tumor grade.
Collapse
Affiliation(s)
- Liangliang Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
- School of Computer and Information, Anqing Normal University, Anqing, 246133, China
| | - Ming Fan
- Institute of Intelligent Biomedicine, School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Lihua Li
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China.
- Institute of Intelligent Biomedicine, School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Zhang L, Fan M, Li L. Efficient estimation of pharmacokinetic parameters from breast dynamic contrast-enhanced MRI based on a convolutional neural network for predicting molecular subtypes. Phys Med Biol 2023; 68:245001. [PMID: 37983902 DOI: 10.1088/1361-6560/ad0e39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Objective. Tracer kinetic models allow for estimating pharmacokinetic (PK) parameters, which are related to pathological characteristics, from breast dynamic contrast-enhanced magnetic resonance imaging. However, existing tracer kinetic models subject to inaccuracy are time-consuming for PK parameters estimation. This study aimed to accurately and efficiently estimate PK parameters for predicting molecular subtypes based on convolutional neural network (CNN).Approach. A CNN integrating global and local features (GL-CNN) was trained using synthetic data where known PK parameters map was used as the ground truth, and subsequently used to directly estimate PK parameters (volume transfer constantKtransand flux rate constantKep) map. The accuracy assessed by the peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and concordance correlation coefficient (CCC) was compared between the GL-CNN and Tofts-based PK parameters in synthetic data. Radiomic features were calculated from the PK parameters map in 208 breast tumors. A random forest classifier was constructed to predict molecular subtypes using a discovery cohort (n= 144). The diagnostic performance evaluated on a validation cohort (n= 64) using the area under the receiver operating characteristic curve (AUC) was compared between the GL-CNN and Tofts-based PK parameters.Main results. The average PSNR (48.8884), SSIM (0.9995), and CCC (0.9995) between the GL-CNN-basedKtransmap and ground truth were significantly higher than those between the Tofts-basedKtransmap and ground truth. The GL-CNN-basedKtransobtained significantly better diagnostic performance (AUCs = 0.7658 and 0.8528) than the Tofts-basedKtransfor luminal B and HER2 tumors. The GL-CNN method accelerated the computation by speed approximately 79 times compared to the Tofts method for the whole breast of all patients.Significance. Our results indicate that the GL-CNN method can be used to accurately and efficiently estimate PK parameters for predicting molecular subtypes.
Collapse
Affiliation(s)
- Liangliang Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
- School of Computer and Information, Anqing Normal University, Anqing, 246133, People's Republic of China
| | - Ming Fan
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Lihua Li
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
7
|
Guljaš S, Dupan Krivdić Z, Drežnjak Madunić M, Šambić Penc M, Pavlović O, Krajina V, Pavoković D, Šmit Takač P, Štefančić M, Salha T. Dynamic Contrast-Enhanced Study in the mpMRI of the Prostate-Unnecessary or Underutilised? A Narrative Review. Diagnostics (Basel) 2023; 13:3488. [PMID: 37998624 PMCID: PMC10670922 DOI: 10.3390/diagnostics13223488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
The aim of this review is to summarise recent scientific literature regarding the clinical use of DCE-MRI as a component of multiparametric resonance imaging of the prostate. This review presents the principles of DCE-MRI acquisition and analysis, the current role of DCE-MRI in clinical practice with special regard to its role in presently available categorisation systems, and an overview of the advantages and disadvantages of DCE-MRI described in the current literature. DCE-MRI is an important functional sequence that requires intravenous administration of a gadolinium-based contrast agent and gives information regarding the vascularity and capillary permeability of the lesion. Although numerous studies have confirmed that DCE-MRI has great potential in the diagnosis and monitoring of prostate cancer, its role is still inadequate in the PI-RADS categorisation. Moreover, there have been numerous scientific discussions about abandoning the intravenous application of gadolinium-based contrast as a routine part of MRI examination of the prostate. In this review, we summarised the recent literature on the advantages and disadvantages of DCE-MRI, focusing on an overview of currently available data on bpMRI and mpMRI, as well as on studies providing information on the potential better usability of DCE-MRI in improving the sensitivity and specificity of mpMRI examinations of the prostate.
Collapse
Affiliation(s)
- Silva Guljaš
- Clinical Department of Radiology, University Hospital Centre, 31000 Osijek, Croatia; (S.G.); (Z.D.K.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
| | - Zdravka Dupan Krivdić
- Clinical Department of Radiology, University Hospital Centre, 31000 Osijek, Croatia; (S.G.); (Z.D.K.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
| | - Maja Drežnjak Madunić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
- Department of Oncology, University Hospital Centre, 31000 Osijek, Croatia
| | - Mirela Šambić Penc
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
- Department of Oncology, University Hospital Centre, 31000 Osijek, Croatia
| | - Oliver Pavlović
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
- Department of Urology, University Hospital Centre, 31000 Osijek, Croatia
| | - Vinko Krajina
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
- Department of Urology, University Hospital Centre, 31000 Osijek, Croatia
| | - Deni Pavoković
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
- Department of Urology, University Hospital Centre, 31000 Osijek, Croatia
| | - Petra Šmit Takač
- Clinical Department of Surgery, Osijek University Hospital Centre, 31000 Osijek, Croatia;
| | - Marin Štefančić
- Department of Radiology, National Memorial Hospital Vukovar, 32000 Vukovar, Croatia;
| | - Tamer Salha
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.D.M.); (M.Š.P.); (O.P.); (V.K.); (D.P.)
- Department of Teleradiology and Artificial Intelligence, Health Centre Osijek-Baranja County, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
8
|
Wang S, Jiang T, Hu X, Hu H, Zhou X, Wei Y, Mao X, Zhao Z. Can the combination of DWI and T2WI radiomics improve the diagnostic efficiency of cervical squamous cell carcinoma? Magn Reson Imaging 2022; 92:197-202. [PMID: 35842193 DOI: 10.1016/j.mri.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND To investigate the value of MRI multi-sequence imaging model in differentiation of cervical squamous cell carcinoma (CSCC). METHODS A total of 104 CSCC patients confirmed with pathology were retrospectively enrolled. All patients underwent conventional MRI examination before treatment. The lesions were segmented using ITK-SNAP software manually and radiomics features were extracted by Artificial Intelligence Kit (AK) software. 396 tumor texture features were obtained and then the mRMR and Lasso algorithms were used to reduce the feature dimension. Three models including T2WI model, DWI model and Joint model (combined TWI and DWI) were constructed in training group and evaluated in validation group. and the receiver operator characteristics and calibration curve were used to evaluate the model performance. RESULTS The Joint model and T2WI model both showed a better diagnostic efficacy than single DWI model in differentiation of CSCC in training group (Joint model: AUC = 0.841; T2WI model: AUC = 0.804; DWI model: AUC = 0.732) and validation group (Joint model: AUC = 0.822; T2WI model: AUC = 0.791; DWI model: AUC = 0.724). But there was no statistical difference between Joint model and T2WI model by Delong test(P > 0.05). CONCLUSIONS The study suggested that the conventional T2WI sequence may be more suitable for prognosis evaluation of CSCC, which can provide a potential tool to facilitate the differential diagnosis of low-differentiation and high-differentiation CSCC.
Collapse
Affiliation(s)
- Subo Wang
- Department of Radiology, Shaoxing Hospital of Trational medicine, Shaoxing 312000, Zhejiang Province, China.
| | - Tingchong Jiang
- Department of Radiology, Shaoxing Hospital of Trational medicine, Shaoxing 312000, Zhejiang Province, China
| | - Xi Hu
- Department of Radiology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | | | - Xiaoming Mao
- Department of Radiology, Shaoxing Hospital of Trational medicine, Shaoxing 312000, Zhejiang Province, China.
| | - Zhenhua Zhao
- Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, China.
| |
Collapse
|
9
|
Shrestha P, Poudyal B, Yadollahi S, E. Wright D, V. Gregory A, D. Warner J, Korfiatis P, C. Green I, L. Rassier S, Mariani A, Kim B, K. Laughlin-Tommaso S, L. Kline T. A systematic review on the use of artificial intelligence in gynecologic imaging – Background, state of the art, and future directions. Gynecol Oncol 2022; 166:596-605. [PMID: 35914978 DOI: 10.1016/j.ygyno.2022.07.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Machine learning, deep learning, and artificial intelligence (AI) are terms that have made their way into nearly all areas of medicine. In the case of medical imaging, these methods have become the state of the art in nearly all areas from image reconstruction to image processing and automated analysis. In contrast to other areas, such as brain and breast imaging, the impacts of AI have not been as strongly felt in gynecologic imaging. In this review article, we: (i) provide a background of clinically relevant AI concepts, (ii) describe methods and approaches in computer vision, and (iii) highlight prior work related to image classification tasks utilizing AI approaches in gynecologic imaging. DATA SOURCES A comprehensive search of several databases from each database's inception to March 18th, 2021, English language, was conducted. The databases included Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, and Daily, Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, and Ovid Cochrane Database of Systematic Reviews and ClinicalTrials.gov. METHODS OF STUDY SELECTION We performed an extensive literature review with 61 articles curated by three reviewers and subsequent sorting by specialists using specific inclusion and exclusion criteria. TABULATION, INTEGRATION, AND RESULTS We summarize the literature grouped by each of the three most common gynecologic malignancies: endometrial, cervical, and ovarian. For each, a brief introduction encapsulating the AI methods, imaging modalities, and clinical parameters in the selected articles is presented. We conclude with a discussion of current developments, trends and limitations, and suggest directions for future study. CONCLUSION This review article should prove useful for collaborative teams performing research studies targeted at the incorporation of radiological imaging and AI methods into gynecological clinical practice.
Collapse
|
10
|
Amini Farsani Z, Schmid VJ. Maximum Entropy Technique and Regularization Functional for Determining the Pharmacokinetic Parameters in DCE-MRI. J Digit Imaging 2022; 35:1176-1188. [PMID: 35618849 PMCID: PMC9582183 DOI: 10.1007/s10278-022-00646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 10/31/2022] Open
Abstract
This paper aims to solve the arterial input function (AIF) determination in dynamic contrast-enhanced MRI (DCE-MRI), an important linear ill-posed inverse problem, using the maximum entropy technique (MET) and regularization functionals. In addition, estimating the pharmacokinetic parameters from a DCE-MR image investigations is an urgent need to obtain the precise information about the AIF-the concentration of the contrast agent on the left ventricular blood pool measured over time. For this reason, the main idea is to show how to find a unique solution of linear system of equations generally in the form of [Formula: see text] named an ill-conditioned linear system of equations after discretization of the integral equations, which appear in different tomographic image restoration and reconstruction issues. Here, a new algorithm is described to estimate an appropriate probability distribution function for AIF according to the MET and regularization functionals for the contrast agent concentration when applying Bayesian estimation approach to estimate two different pharmacokinetic parameters. Moreover, by using the proposed approach when analyzing simulated and real datasets of the breast tumors according to pharmacokinetic factors, it indicates that using Bayesian inference-that infer the uncertainties of the computed solutions, and specific knowledge of the noise and errors-combined with the regularization functional of the maximum entropy problem, improved the convergence behavior and led to more consistent morphological and functional statistics and results. Finally, in comparison to the proposed exponential distribution based on MET and Newton's method, or Weibull distribution via the MET and teaching-learning-based optimization (MET/TLBO) in the previous studies, the family of Gamma and Erlang distributions estimated by the new algorithm are more appropriate and robust AIFs.
Collapse
Affiliation(s)
- Zahra Amini Farsani
- Bayesian Imaging and Spatial Statistics Group, Institute of Statistics, Ludwig-Maximilian-Universität München, Ludwigstraße 33, 80539, Munich, Germany. .,Statistics Department, School of Science, Lorestan University, 68151-44316, Khorramabad, Iran.
| | - Volker J Schmid
- Bayesian Imaging and Spatial Statistics Group, Institute of Statistics, Ludwig-Maximilian-Universität München, Ludwigstraße 33, 80539, Munich, Germany
| |
Collapse
|
11
|
Macchia G, Ferrandina G, Patarnello S, Autorino R, Masciocchi C, Pisapia V, Calvani C, Iacomini C, Cesario A, Boldrini L, Gui B, Rufini V, Gambacorta MA, Scambia G, Valentini V. Multidisciplinary Tumor Board Smart Virtual Assistant in Locally Advanced Cervical Cancer: A Proof of Concept. Front Oncol 2022; 11:797454. [PMID: 35047408 PMCID: PMC8761664 DOI: 10.3389/fonc.2021.797454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
Aim The first prototype of the “Multidisciplinary Tumor Board Smart Virtual Assistant” is presented, aimed to (i) Automated classification of clinical stage starting from different free-text diagnostic reports; (ii) Resolution of inconsistencies by identifying controversial cases drawing the clinician’s attention to particular cases worthy for multi-disciplinary discussion; (iii) Support environment for education and knowledge transfer to junior staff; (iv) Integrated data-driven decision making and standardized language and interpretation. Patients and Method Data from patients affected by Locally Advanced Cervical Cancer (LACC), FIGO stage IB2-IVa, treated between 2015 and 2018 were extracted. Magnetic Resonance (MR), Gynecologic examination under general anesthesia (EAU), and Positron Emission Tomography–Computed Tomography (PET-CT) performed at the time of diagnosis were the items from the Electronic Health Records (eHRs) considered for analysis. An automated extraction of eHR that capture the patient’s data before the diagnosis and then, through Natural Language Processing (NLP), analysis and categorization of all data to transform source information into structured data has been performed. Results In the first round, the system has been used to retrieve all the eHR for the 96 patients with LACC. The system has been able to classify all patients belonging to the training set and - through the NLP procedures - the clinical features were analyzed and classified for each patient. A second important result was the setup of a predictive model to evaluate the patient’s staging (accuracy of 94%). Lastly, we created a user-oriented operational tool targeting the MTB who are confronted with the challenge of large volumes of patients to be diagnosed in the most accurate way. Conclusion This is the first proof of concept concerning the possibility of creating a smart virtual assistant for the MTB. A significant benefit could come from the integration of these automated methods in the collaborative, crucial decision stages.
Collapse
Affiliation(s)
- Gabriella Macchia
- Radiation Oncology Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Gabriella Ferrandina
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Department of Woman, Child and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Patarnello
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Rosa Autorino
- Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Carlotta Masciocchi
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Pisapia
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Cristina Calvani
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Chiara Iacomini
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alfredo Cesario
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Luca Boldrini
- Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Benedetta Gui
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vittoria Rufini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Antonietta Gambacorta
- Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giovanni Scambia
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Department of Woman, Child and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincenzo Valentini
- Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
12
|
Modified Maximum Entropy Method and Estimating the AIF via DCE-MRI Data Analysis. ENTROPY 2022; 24:e24020155. [PMID: 35205451 PMCID: PMC8871336 DOI: 10.3390/e24020155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Background: For the kinetic models used in contrast-based medical imaging, the assignment of the arterial input function named AIF is essential for the estimation of the physiological parameters of the tissue via solving an optimization problem. Objective: In the current study, we estimate the AIF relayed on the modified maximum entropy method. The effectiveness of several numerical methods to determine kinetic parameters and the AIF is evaluated—in situations where enough information about the AIF is not available. The purpose of this study is to identify an appropriate method for estimating this function. Materials and Methods: The modified algorithm is a mixture of the maximum entropy approach with an optimization method, named the teaching-learning method. In here, we applied this algorithm in a Bayesian framework to estimate the kinetic parameters when specifying the unique form of the AIF by the maximum entropy method. We assessed the proficiency of the proposed method for assigning the kinetic parameters in the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), when determining AIF with some other parameter-estimation methods and a standard fixed AIF method. A previously analyzed dataset consisting of contrast agent concentrations in tissue and plasma was used. Results and Conclusions: We compared the accuracy of the results for the estimated parameters obtained from the MMEM with those of the empirical method, maximum likelihood method, moment matching (“method of moments”), the least-square method, the modified maximum likelihood approach, and our previous work. Since the current algorithm does not have the problem of starting point in the parameter estimation phase, it could find the best and nearest model to the empirical model of data, and therefore, the results indicated the Weibull distribution as an appropriate and robust AIF and also illustrated the power and effectiveness of the proposed method to estimate the kinetic parameters.
Collapse
|
13
|
Chandran V, Sumithra MG, Karthick A, George T, Deivakani M, Elakkiya B, Subramaniam U, Manoharan S. Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using Colposcopy Images. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5584004. [PMID: 33997017 PMCID: PMC8112909 DOI: 10.1155/2021/5584004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
Traditional screening of cervical cancer type classification majorly depends on the pathologist's experience, which also has less accuracy. Colposcopy is a critical component of cervical cancer prevention. In conjunction with precancer screening and treatment, colposcopy has played an essential role in lowering the incidence and mortality from cervical cancer over the last 50 years. However, due to the increase in workload, vision screening causes misdiagnosis and low diagnostic efficiency. Medical image processing using the convolutional neural network (CNN) model shows its superiority for the classification of cervical cancer type in the field of deep learning. This paper proposes two deep learning CNN architectures to detect cervical cancer using the colposcopy images; one is the VGG19 (TL) model, and the other is CYENET. In the CNN architecture, VGG19 is adopted as a transfer learning for the studies. A new model is developed and termed as the Colposcopy Ensemble Network (CYENET) to classify cervical cancers from colposcopy images automatically. The accuracy, specificity, and sensitivity are estimated for the developed model. The classification accuracy for VGG19 was 73.3%. Relatively satisfied results are obtained for VGG19 (TL). From the kappa score of the VGG19 model, we can interpret that it comes under the category of moderate classification. The experimental results show that the proposed CYENET exhibited high sensitivity, specificity, and kappa scores of 92.4%, 96.2%, and 88%, respectively. The classification accuracy of the CYENET model is improved as 92.3%, which is 19% higher than the VGG19 (TL) model.
Collapse
Affiliation(s)
- Venkatesan Chandran
- Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India
| | - M. G. Sumithra
- Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India
| | - Alagar Karthick
- Renewable Energy Lab, Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Avinashi road, Coimbatore, 641407 Tamilnadu, India
| | - Tony George
- Department of Electrical and Electronics Engineering, Adi Shankara Institute of Engineering and Technology Mattoor, Kalady, Kerala 683574, India
| | - M. Deivakani
- Department of Electronics and Communication Engineering, PSNA College of Engineering and Technology, Dindigul, 624622 Tamilnadu, India
| | - Balan Elakkiya
- Department of Electronics and Communication Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Tamilnadu 600062, India
| | - Umashankar Subramaniam
- Department of Communications and Networks, Renewable Energy Lab, College of Engineering, Prince, Sultan University, Riyadh 12435, Saudi Arabia
| | - S. Manoharan
- Department of Computer Science, School of Informatics and Electrical Engineering, Institute of Technology, Ambo University, Ambo, Post Box No. 19, Ethiopia
| |
Collapse
|