1
|
Murmu A, Győrffy B. Artificial intelligence methods available for cancer research. Front Med 2024; 18:778-797. [PMID: 39115792 DOI: 10.1007/s11684-024-1085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/17/2024] [Indexed: 11/01/2024]
Abstract
Cancer is a heterogeneous and multifaceted disease with a significant global footprint. Despite substantial technological advancements for battling cancer, early diagnosis and selection of effective treatment remains a challenge. With the convenience of large-scale datasets including multiple levels of data, new bioinformatic tools are needed to transform this wealth of information into clinically useful decision-support tools. In this field, artificial intelligence (AI) technologies with their highly diverse applications are rapidly gaining ground. Machine learning methods, such as Bayesian networks, support vector machines, decision trees, random forests, gradient boosting, and K-nearest neighbors, including neural network models like deep learning, have proven valuable in predictive, prognostic, and diagnostic studies. Researchers have recently employed large language models to tackle new dimensions of problems. However, leveraging the opportunity to utilize AI in clinical settings will require surpassing significant obstacles-a major issue is the lack of use of the available reporting guidelines obstructing the reproducibility of published studies. In this review, we discuss the applications of AI methods and explore their benefits and limitations. We summarize the available guidelines for AI in healthcare and highlight the potential role and impact of AI models on future directions in cancer research.
Collapse
Affiliation(s)
- Ankita Murmu
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary
- National Laboratory for Drug Research and Development, Budapest, 1117, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, 1094, Hungary
| | - Balázs Győrffy
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, 1117, Hungary.
- Department of Bioinformatics, Semmelweis University, Budapest, 1094, Hungary.
- Department of Biophysics, University of Pecs, Pecs, 7624, Hungary.
| |
Collapse
|
2
|
Kuo PH, Li YH, Yau HT. Development of feline infectious peritonitis diagnosis system by using CatBoost algorithm. Comput Biol Chem 2024; 113:108227. [PMID: 39342699 DOI: 10.1016/j.compbiolchem.2024.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
This study employed machine learning techniques to predict the rate of feline infectious peritonitis (FIP) diagnoses, with a specific focus on mutations in the spike protein gene of the feline coronavirus (FCoV). FIP is a fatal viral disease affecting the peritoneum of cats and is primarily caused by mutations in FCoV. Its diagnosis largely relies on evaluations of various biomarkers and clinical symptoms. The current analysis of FCoV spike protein gene mutations exhibits certain limitations. To address this problem, the present study employed a large dataset-comprising information on FCoV copy numbers, spike protein mutation outcomes, and related clinical data-and used machine learning models to analyze the association between spike protein gene mutations and FIP diagnosis. Various algorithms were used to establish highly accurate predictive models, namely logistic regression, random forest, decision tree, neural network, support vector machine, gradient boosting tree, and categorical boosting (CatBoost) algorithms. The model obtained using the CatBoost algorithm was discovered to have accuracy of 0.9541. Accordingly, a highly accurate predictive model was developed to enable early diagnosis of FIP and improve the rate of survival in cats. The application of machine learning technology in this study yielded research findings that provide veterinarians with effective tools for managing and preventing FIP, a painful and deadly disease for cats. This study is a pioneering work in the systematic application of multiple machine learning models to the prediction of FIP and comparison of performance results to improve diagnostic accuracy and efficiency. This study is the first of its kind in the field of FIP.
Collapse
Affiliation(s)
- Ping-Huan Kuo
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Yu-Hsiang Li
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Her-Terng Yau
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
3
|
Cheng H, Li C, Lin C. Inclusion of blood pressure parameter increases predictive capability of severe obstructive sleep apnea: A decision tree approach. J Clin Hypertens (Greenwich) 2024; 26:1090-1097. [PMID: 39037154 PMCID: PMC11488309 DOI: 10.1111/jch.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Few studies included objective blood pressure (BP) to construct the predictive model of severe obstructive sleep apnea (OSA). This study used binary logistic regression model (BLRM) and the decision tree method (DTM) to constructed the predictive models for identifying severe OSA, and to compare the prediction capability between the two methods. Totally 499 adult patients with severe OSA and 1421 non-severe OSA controls examined at the Sleep Medicine Center of a tertiary hospital in southern Taiwan between October 2016 and April 2019 were enrolled. OSA was diagnosed through polysomnography. Data on BP, demographic characteristics, anthropometric measurements, comorbidity histories, and sleep questionnaires were collected. BLRM and DTM were separately applied to identify predictors of severe OSA. The performance of risk scores was assessed by area under the receiver operating characteristic curves (AUCs). In BLRM, body mass index (BMI) ≥27 kg/m2, and Snore Outcomes Survey score ≤55 were significant predictors of severe OSA (AUC 0.623). In DTM, mean SpO2 <96%, average systolic BP ≥135 mmHg, and BMI ≥39 kg/m2 were observed to effectively differentiate cases of severe OSA (AUC 0.718). The AUC for the predictive models produced by the DTM was higher in older adults than in younger adults (0.807 vs. 0.723) mainly due to differences in clinical predictive features. In conclusion, DTM, using a different set of predictors, seems more effective in identifying severe OSA than BLRM. Differences in predictors ascertained demonstrated the necessity for separately constructing predictive models for younger and older adults.
Collapse
Affiliation(s)
- Hsiang‐Ju Cheng
- Department of Family MedicineNational Cheng Kung University HospitalCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chung‐Yi Li
- Department of Public HealthCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Public HealthCollege of Public HealthChina Medical UniversityTaichungTaiwan
- Department of Healthcare AdministrationCollege of Medical and Health ScienceAsia UniversityTaichungTaiwan
| | - Cheng‐Yu Lin
- Department of OtolaryngologyNational Cheng Kung University Hospital, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Sleep Medicine CenterNational Cheng Kung University HospitalCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
4
|
Li KH, Chien CY, Tai SY, Chan LP, Chang NC, Wang LF, Ho KY, Lien YJ, Ho WH. Prognosis Prediction of Sudden Sensorineural Hearing Loss Using Ensemble Artificial Intelligence Learning Models. Otol Neurotol 2024; 45:759-764. [PMID: 38918073 DOI: 10.1097/mao.0000000000004241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
OBJECTIVE We used simple variables to construct prognostic prediction ensemble learning models for patients with sudden sensorineural hearing loss (SSNHL). STUDY DESIGN Retrospectively study. SETTING Tertiary medical center. PATIENTS 1,572 patients with SSNHL. INTERVENTION Prognostic. MAIN OUTCOME MEASURES We selected four variables, namely, age, days after onset of hearing loss, vertigo, and type of hearing loss. We also compared the accuracy between different ensemble learning models based on the boosting, bagging, AdaBoost, and stacking algorithms. RESULTS We enrolled 1,572 patients with SSNHL; 73.5% of them showed improving and 26.5% did not. Significant between-group differences were noted in terms of age ( p = 0.011), days after onset of hearing loss ( p < 0.001), and concurrent vertigo ( p < 0.001), indicating that the patients who showed improving to treatment were younger and had fewer days after onset and fewer vertigo symptoms. Among ensemble learning models, the AdaBoost algorithm, compared with the other algorithms, achieved higher accuracy (82.89%), higher precision (86.66%), a higher F1 score (89.20), and a larger area under the receiver operating characteristics curve (0.79), as indicated by test results of a dataset with 10 independent runs. Furthermore, Gini scores indicated that age and days after onset are two key parameters of the predictive model. CONCLUSIONS The AdaBoost model is an effective model for predicting SSNHL. The use of simple parameters can increase its practicality and applicability in remote medical care. Moreover, age may be a key factor influencing prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu-Jui Lien
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|
5
|
Mansoori A, Ghiasi Hafezi S, Ansari A, Arab Yousefabadi S, Kolahi Ahari R, Darroudi S, Eshaghnezhad M, Ferns G, Ghayour-Mobarhan M, Esmaily H, Effati S. Serum Zinc and Copper Concentrations and Dyslipidemia as Risk Factors of Cardiovascular Disease in Adults: Data Mining Techniques. Biol Trace Elem Res 2024:10.1007/s12011-024-04288-0. [PMID: 38956010 DOI: 10.1007/s12011-024-04288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
This study aimed to examine the relationship between serum cholesterol levels and the ratio of zinc (Zn) and copper (Cu) in the blood serum and the incidence of cardiovascular disease (CVD). In Phase I of the study, 9704 individuals between the age of 35 and 65 years were recruited. Phase II of the cohort study comprised 7561 participants who completed the 10-year follow-up. The variables which were measured at the baseline of the study included gender, age, systolic blood pressure (SBP), diastolic blood pressure (DBP); biochemical parameters including serum Cu, Zn, copper-zinc ratio (Cu/Zn), zinc-copper ratio (Zn/Cu); fasted lipid profile consisting of triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL) as well as fasting serum glucose, and triglycerides-glucose (TyG) index. Decision tree (DT) and logical regression (LR) models were applied to examine the relationship between the aforementioned factors and CVD. CVD was diagnosed in 837 individuals (378 males and 459 females) out of 7561 participants. According to the LR models, SBP, TC, HDL, age, Zn/Cu, and TyG index for males and SBP, age, TyG index, HDL, TC, Cu/Zn, and Cu for females had the highest correlation with CVD (p-value ≤ 0.033). Based on the DT algorithm, 88% of males with SPB < 129.66 mmHg, younger age (age < 53 years), TyG index < 9.53, 173 ≤ TC < 187 mg/dL, and HDL ≥ 32 mg/dL had the lowest risk of CVD. Also, 98% of females with SBP < 128 mmHg, TyG index < 9.68, age < 44, TC < 222 mg/dL, and HDL ≥ 63.7 mg/dL had the lowest risk of CVD. It can be concluded that the Zn/Cu for men and Cu/Zn for women, along with dyslipidemia and SBP, could significantly predict the risk of CVD in this cohort from northeastern Iran.
Collapse
Affiliation(s)
- Amin Mansoori
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Somayeh Ghiasi Hafezi
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Arab Yousefabadi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rana Kolahi Ahari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Darroudi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Vascular and endovascular surgery research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Eshaghnezhad
- Department of Applied Mathematics, Faculty of Basic Sciences, Shahid Sattari University of Aeronautical Science and Technology, Tehran, Iran
| | - Gordon Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
- Social Determinants of Health Research Center, Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sohrab Effati
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
6
|
Bartolotta TV, Militello C, Prinzi F, Ferraro F, Rundo L, Zarcaro C, Dimarco M, Orlando AAM, Matranga D, Vitabile S. Artificial intelligence-based, semi-automated segmentation for the extraction of ultrasound-derived radiomics features in breast cancer: a prospective multicenter study. LA RADIOLOGIA MEDICA 2024; 129:977-988. [PMID: 38724697 PMCID: PMC11252191 DOI: 10.1007/s11547-024-01826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/29/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE To investigate the feasibility of an artificial intelligence (AI)-based semi-automated segmentation for the extraction of ultrasound (US)-derived radiomics features in the characterization of focal breast lesions (FBLs). MATERIAL AND METHODS Two expert radiologists classified according to US BI-RADS criteria 352 FBLs detected in 352 patients (237 at Center A and 115 at Center B). An AI-based semi-automated segmentation was used to build a machine learning (ML) model on the basis of B-mode US of 237 images (center A) and then validated on an external cohort of B-mode US images of 115 patients (Center B). RESULTS A total of 202 of 352 (57.4%) FBLs were benign, and 150 of 352 (42.6%) were malignant. The AI-based semi-automated segmentation achieved a success rate of 95.7% for one reviewer and 96% for the other, without significant difference (p = 0.839). A total of 15 (4.3%) and 14 (4%) of 352 semi-automated segmentations were not accepted due to posterior acoustic shadowing at B-Mode US and 13 and 10 of them corresponded to malignant lesions, respectively. In the validation cohort, the characterization made by the expert radiologist yielded values of sensitivity, specificity, PPV and NPV of 0.933, 0.9, 0.857, 0.955, respectively. The ML model obtained values of sensitivity, specificity, PPV and NPV of 0.544, 0.6, 0.416, 0.628, respectively. The combined assessment of radiologists and ML model yielded values of sensitivity, specificity, PPV and NPV of 0.756, 0.928, 0.872, 0.855, respectively. CONCLUSION AI-based semi-automated segmentation is feasible, allowing an instantaneous and reproducible extraction of US-derived radiomics features of FBLs. The combination of radiomics and US BI-RADS classification led to a potential decrease of unnecessary biopsy but at the expense of a not negligible increase of potentially missed cancers.
Collapse
Affiliation(s)
- Tommaso Vincenzo Bartolotta
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.
| | - Carmelo Militello
- Institute for High-Performance Computing and Networking (ICAR-CNR), Italian National Research Council, Palermo, Italy
| | - Francesco Prinzi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Fabiola Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Fisciano, SA, Italy
| | - Calogero Zarcaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | | | | | - Domenica Matranga
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Salvatore Vitabile
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Prinzi F, Orlando A, Gaglio S, Vitabile S. Interpretable Radiomic Signature for Breast Microcalcification Detection and Classification. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1038-1053. [PMID: 38351223 PMCID: PMC11169144 DOI: 10.1007/s10278-024-01012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 06/13/2024]
Abstract
Breast microcalcifications are observed in 80% of mammograms, and a notable proportion can lead to invasive tumors. However, diagnosing microcalcifications is a highly complicated and error-prone process due to their diverse sizes, shapes, and subtle variations. In this study, we propose a radiomic signature that effectively differentiates between healthy tissue, benign microcalcifications, and malignant microcalcifications. Radiomic features were extracted from a proprietary dataset, composed of 380 healthy tissue, 136 benign, and 242 malignant microcalcifications ROIs. Subsequently, two distinct signatures were selected to differentiate between healthy tissue and microcalcifications (detection task) and between benign and malignant microcalcifications (classification task). Machine learning models, namely Support Vector Machine, Random Forest, and XGBoost, were employed as classifiers. The shared signature selected for both tasks was then used to train a multi-class model capable of simultaneously classifying healthy, benign, and malignant ROIs. A significant overlap was discovered between the detection and classification signatures. The performance of the models was highly promising, with XGBoost exhibiting an AUC-ROC of 0.830, 0.856, and 0.876 for healthy, benign, and malignant microcalcifications classification, respectively. The intrinsic interpretability of radiomic features, and the use of the Mean Score Decrease method for model introspection, enabled models' clinical validation. In fact, the most important features, namely GLCM Contrast, FO Minimum and FO Entropy, were compared and found important in other studies on breast cancer.
Collapse
Affiliation(s)
- Francesco Prinzi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.
- Department of Computer Science and Technology, University of Cambridge, CB2 1TN, Cambridge, United Kingdom.
| | - Alessia Orlando
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital "Paolo Giaccone", Palermo, Italy
| | - Salvatore Gaglio
- Department of Engineering, University of Palermo, Palermo, Italy
- Institute for High-Performance Computing and Networking, National Research Council (ICAR-CNR), Palermo, Italy
| | - Salvatore Vitabile
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Holcroft S, Karangwa I, Little F, Behoor J, Bazirete O. Predictive Modelling of Postpartum Haemorrhage Using Early Risk Factors: A Comparative Analysis of Statistical and Machine Learning Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:600. [PMID: 38791814 PMCID: PMC11120995 DOI: 10.3390/ijerph21050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Postpartum haemorrhage (PPH) is a significant cause of maternal morbidity and mortality worldwide, particularly in low-resource settings. This study aimed to develop a predictive model for PPH using early risk factors and rank their importance in terms of predictive ability. The dataset was obtained from an observational case-control study in northern Rwanda. Various statistical models and machine learning techniques were evaluated, including logistic regression, logistic regression with elastic-net regularisation, Random Forests, Extremely Randomised Trees, and gradient-boosted trees with XGBoost. The Random Forest model, with an average sensitivity of 80.7%, specificity of 71.3%, and a misclassification rate of 12.19%, outperformed the other models, demonstrating its potential as a reliable tool for predicting PPH. The important predictors identified in this study were haemoglobin level during labour and maternal age. However, there were differences in PPH risk factor importance in different data partitions, highlighting the need for further investigation. These findings contribute to understanding PPH risk factors, highlight the importance of considering different data partitions and implementing cross-validation in predictive modelling, and emphasise the value of identifying the appropriate prediction model for the application. Effective PPH prediction models are essential for improving maternal health outcomes on a global scale. This study provides valuable insights for healthcare providers to develop predictive models for PPH to identify high-risk women and implement targeted interventions.
Collapse
Affiliation(s)
- Shannon Holcroft
- Department of Statistical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Innocent Karangwa
- Department of Statistical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Joelle Behoor
- Department of Statistical Sciences, University of Cape Town, Cape Town 7701, South Africa
| | - Oliva Bazirete
- College of Medicine and Health Sciences, University of Rwanda, Kigali 3296, Rwanda
| |
Collapse
|
9
|
Rashidmayvan M, Mansoori A, Aghasizadeh M, Dianati M, Barati S, Sahranavard T, Darroudi S, Ahari RK, Esmaily H, Ferns G, Sarabi MRM, Faridni R, Ghayour-Mobarhan M, Moohebati M. Prediction of cardiovascular disease risk by serum zinc and copper concentrations and anthropometric measurements. J Trace Elem Med Biol 2024; 83:127385. [PMID: 38278053 DOI: 10.1016/j.jtemb.2024.127385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION We aimed to investigate the association between cardiovascular disease (CVD) and various anthropometric indices, as well as the serum levels of copper (Cu) and zinc (Zn), copper-zinc ratio (Cu/Zn ratio) and zinc-copper ratio (Zn/Cu ratio), in a large population sample from northeastern Iranian. METHOD 9704 individuals aged 35 to 65 were enrolled in the first phase of the study. After a 10-year follow-up, 7560 participants were enrolled into the second phase. The variables used in this study included demographic characteristics, such as gender and age; biochemical parameters including: serum Zn, Cu, Cu/Zn ratio, and Zn/Cu ratio; anthropometric parameters including: waist circumference (WC), body mass index (BMI), and waist-to-hip ratio (WHR). The relationship between the aforementioned indices and CVD was examined using decision tree (DT) and logistic regression (LR) models. RESULTS A total of 837 individuals were diagnosed with CVD among the 7560 participants. LR analysis showed that BMI, age, WH zinc-copper ratio (Zn/Cu ratio), and serum Zn/Cu ratio were significantly associated the development of CVD in men, and WHR, age, BMI, serum Cu, and Cu/Zn ratio in women. DT analysis showed that, age was the most important predictor of CVD in both genders. 71% of women, older than 49 years, with a WHR≥ 0.89, serum Cu< 75 (µg/dl), BMI≥ 22.93 (kg/m2), and serum Cu≥ 14 (µg/dl), had the highest risk of CVD. In men, among those who were ≥ 53 years, with a WHR≥ 0.98, serum Zn/Cu ratio< 1.69, and BMI≥ 22.30, had the highest risk of CVD. CONCLUSION Among Iranian adult population, BMI, age, and WHR were one of the predictors of CVD for both genders. The Zn/Cu ratio was CVD predictor for men while Cu/Zn ratio was CVD predictor for women.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Amin Mansoori
- Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Aghasizadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Dianati
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sama Barati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Toktam Sahranavard
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Darroudi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Rana Kolahi Ahari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran; Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Brighton, United Kingdom
| | | | - Reyhaneh Faridni
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Moohebati
- Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Samuel O, Zewotir T, North D. Application of machine learning methods for predicting under-five mortality: analysis of Nigerian demographic health survey 2018 dataset. BMC Med Inform Decis Mak 2024; 24:86. [PMID: 38528495 DOI: 10.1186/s12911-024-02476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Under-five mortality remains a significant public health issue in developing countries. This study aimed to assess the effectiveness of various machine learning algorithms in predicting under-five mortality in Nigeria and identify the most relevant predictors. METHODS The study used nationally representative data from the 2018 Nigeria Demographic and Health Survey. The study evaluated the performance of the machine learning models such as the artificial neural network, k-nearest neighbourhood, Support Vector Machine, Naïve Bayes, Random Forest, and Logistic Regression using the true positive rate, false positive rate, accuracy, precision, F-measure, Matthew's correlation coefficient, and the Area Under the Receiver Operating Characteristics. RESULTS The study found that machine learning models can accurately predict under-five mortality, with the Random Forest and Artificial Neural Network algorithms emerging as the best models, both achieving an accuracy of 89.47% and an AUROC of 96%. The results show that under-five mortality rates vary significantly across different characteristics, with wealth index, maternal education, antenatal visits, place of delivery, employment status of the woman, number of children ever born, and region found to be the top determinants of under-five mortality in Nigeria. CONCLUSIONS The findings suggest that machine learning models can be useful in predicting U5M in Nigeria with high accuracy. The study emphasizes the importance of addressing social, economic, and demographic disparities among the population in Nigeria. The study's findings can inform policymakers and health workers about developing targeted interventions to reduce under-five mortality in Nigeria.
Collapse
Affiliation(s)
- Oduse Samuel
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, 4001, Durban, South Africa.
| | - Temesgen Zewotir
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, 4001, Durban, South Africa
| | - Delia North
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, 4001, Durban, South Africa
| |
Collapse
|
11
|
Prinzi F, Currieri T, Gaglio S, Vitabile S. Shallow and deep learning classifiers in medical image analysis. Eur Radiol Exp 2024; 8:26. [PMID: 38438821 PMCID: PMC10912073 DOI: 10.1186/s41747-024-00428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
An increasingly strong connection between artificial intelligence and medicine has enabled the development of predictive models capable of supporting physicians' decision-making. Artificial intelligence encompasses much more than machine learning, which nevertheless is its most cited and used sub-branch in the last decade. Since most clinical problems can be modeled through machine learning classifiers, it is essential to discuss their main elements. This review aims to give primary educational insights on the most accessible and widely employed classifiers in radiology field, distinguishing between "shallow" learning (i.e., traditional machine learning) algorithms, including support vector machines, random forest and XGBoost, and "deep" learning architectures including convolutional neural networks and vision transformers. In addition, the paper outlines the key steps for classifiers training and highlights the differences between the most common algorithms and architectures. Although the choice of an algorithm depends on the task and dataset dealing with, general guidelines for classifier selection are proposed in relation to task analysis, dataset size, explainability requirements, and available computing resources. Considering the enormous interest in these innovative models and architectures, the problem of machine learning algorithms interpretability is finally discussed, providing a future perspective on trustworthy artificial intelligence.Relevance statement The growing synergy between artificial intelligence and medicine fosters predictive models aiding physicians. Machine learning classifiers, from shallow learning to deep learning, are offering crucial insights for the development of clinical decision support systems in healthcare. Explainability is a key feature of models that leads systems toward integration into clinical practice. Key points • Training a shallow classifier requires extracting disease-related features from region of interests (e.g., radiomics).• Deep classifiers implement automatic feature extraction and classification.• The classifier selection is based on data and computational resources availability, task, and explanation needs.
Collapse
Affiliation(s)
- Francesco Prinzi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
- Department of Computer Science and Technology, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Tiziana Currieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Salvatore Gaglio
- Department of Engineering, University of Palermo, Palermo, Italy
- Institute for High-Performance Computing and Networking, National Research Council (ICAR-CNR), Palermo, Italy
| | - Salvatore Vitabile
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.
| |
Collapse
|
12
|
Ahmed MAO, Satar YA, Darwish EM, Zanaty EA. Synergistic integration of Multi-View Brain Networks and advanced machine learning techniques for auditory disorders diagnostics. Brain Inform 2024; 11:3. [PMID: 38219249 PMCID: PMC10788326 DOI: 10.1186/s40708-023-00214-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024] Open
Abstract
In the field of audiology, achieving accurate discrimination of auditory impairments remains a formidable challenge. Conditions such as deafness and tinnitus exert a substantial impact on patients' overall quality of life, emphasizing the urgent need for precise and efficient classification methods. This study introduces an innovative approach, utilizing Multi-View Brain Network data acquired from three distinct cohorts: 51 deaf patients, 54 with tinnitus, and 42 normal controls. Electroencephalogram (EEG) recording data were meticulously collected, focusing on 70 electrodes attached to an end-to-end key with 10 regions of interest (ROI). This data is synergistically integrated with machine learning algorithms. To tackle the inherently high-dimensional nature of brain connectivity data, principal component analysis (PCA) is employed for feature reduction, enhancing interpretability. The proposed approach undergoes evaluation using ensemble learning techniques, including Random Forest, Extra Trees, Gradient Boosting, and CatBoost. The performance of the proposed models is scrutinized across a comprehensive set of metrics, encompassing cross-validation accuracy (CVA), precision, recall, F1-score, Kappa, and Matthews correlation coefficient (MCC). The proposed models demonstrate statistical significance and effectively diagnose auditory disorders, contributing to early detection and personalized treatment, thereby enhancing patient outcomes and quality of life. Notably, they exhibit reliability and robustness, characterized by high Kappa and MCC values. This research represents a significant advancement in the intersection of audiology, neuroimaging, and machine learning, with transformative implications for clinical practice and care.
Collapse
Affiliation(s)
- Muhammad Atta Othman Ahmed
- Department of Computer Science, Faculty of Computers and Information, Luxor University, 85951, Luxor, Egypt.
| | - Yasser Abdel Satar
- Mathematics Department, Faculty of Science, Sohag University, 82511, Sohag, Egypt
| | - Eed M Darwish
- Physics Department, College of Science, Taibah University, Medina, 41411, Saudi Arabia
- Physics Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Elnomery A Zanaty
- Department of Computer Science, Faculty of Computers and Artificial Intelligence, Sohag University, 82511, Sohag, Egypt
| |
Collapse
|
13
|
Zheng D, Tang P, Lu D, Han L, Saberi S. A structured combination of ensemble classifier and filter-based feature selection to improve breast cancer diagnosis. J Cancer Res Clin Oncol 2023; 149:14519-14534. [PMID: 37567985 DOI: 10.1007/s00432-023-05238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Advances in technology have led to the emergence of computerized diagnostic systems as intelligent medical assistants. Machine learning approaches cannot replace professional humans, but they can change the treatment of diseases such as cancer and be used as medical assistants. BACKGROUND Breast cancer treatment can be very effective, especially when the disease is detected in the early stages. Feature selection and classification are common data mining techniques in machine learning that can provide breast cancer diagnosis with high speed, low cost and high precision. METHODOLOGY This paper proposes a new intelligent approach using an integrated filter-evolutionary search-based feature selection and an optimized ensemble classifier for breast cancer diagnosis. The selected features mainly relate to the viable solution as the selected features are successfully used in the breast cancer disease classification process. The proposed feature selection method selects the most informative features from the original feature set by integrating adaptive thresholder information gain-based feature selection and evolutionary gravity-search-based feature selection. Meanwhile, classification model is done by proposing a new intelligent multi-layer perceptron neural network-based ensemble classifier. RESULTS The simulation results show that the proposed method provides better performance compared to the state-of-the-art algorithms in terms of various criteria such as accuracy, sensitivity and specificity. Specifically, the proposed method achieves an average accuracy of 99.42% on WBCD, WDBC and WPBC datasets from Wisconsin database with only 56.7% of features. CONCLUSION Systems based on intelligent medical assistants configured with machine learning approaches are an important step toward helping doctors to detect breast cancer early.
Collapse
Affiliation(s)
- Dengru Zheng
- Cancer Center, Foshan Fuxing Chancheng Hospital, Foshan, 528000, Guangdong, China.
| | - Ping Tang
- Cancer Center, Foshan Fuxing Chancheng Hospital, Foshan, 528000, Guangdong, China
| | - Danping Lu
- Cancer Center, Foshan Fuxing Chancheng Hospital, Foshan, 528000, Guangdong, China
| | - Liangfu Han
- Cancer Center, Foshan Fuxing Chancheng Hospital, Foshan, 528000, Guangdong, China
| | - Sajjad Saberi
- Department of Computer Science, Khayyam University, Mashhad, Iran.
| |
Collapse
|
14
|
Shimizu M, Kimura S, Fujii H, Suzuki M, Nishizaki M, Sasano T. Machine Learning for Multi-Vessel Coronary Artery Disease Prediction on Electrocardiogram Gated Single-Photon Emission Computed Tomography. ANNALS OF NUCLEAR CARDIOLOGY 2023; 9:11-18. [PMID: 38058573 PMCID: PMC10696148 DOI: 10.17996/anc.22-00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 12/08/2023]
Abstract
Background: Single-photon emission computed tomography (SPECT) encounters difficulties in diagnosing severe multi-vessel coronary artery disease (svMVD) because of balanced ischemia. We estimated the predictive value of electrocardiogram-gated SPECT for svMVD and improved it using machine learning (ML). Methods and results: We enrolled consecutive 335 patients (median age, 74 years; 255 men) who underwent adenosine stress-gated SPECT (99mTechnesium) and coronary angiography. svMVD was defined as three-vessel disease or left main tract stenosis. Predictive models were constructed using statistical and ML methods. Eighteen cases (5%) showed svMVD, and diabetes, summed stress score (SSS), and the max difference among segmental time of stroke volume per cardiac cycle (MDSV: a parameter of left ventricular [LV] end-systolic dyssynchrony) on adenosine stress were independent significant predictors. The area under the receiver operating characteristic curve (AUC) of SSS and MDSV on stress were 0.759 and 0.763, respectively. Conversely, the extra trees classifier and light gradient boosting machine had improved AUC values of 0.826 and 0.870, respectively, and the MDSV on stress and diabetes showed high feature values in the ML models. Conclusion: ML on SPECT helped to improve the diagnostic performance of svMVD and diabetes, and the parameters of LV dyssynchrony played essential roles in the ML predictive models.
Collapse
Affiliation(s)
- Masato Shimizu
- Department of Cardiology, Yokohama Minami Kyosai Hospital, Yokohama, Japan
| | - Shigeki Kimura
- Department of Cardiology, Yokohama Minami Kyosai Hospital, Yokohama, Japan
| | - Hiroyuki Fujii
- Department of Cardiology, Yokohama Minami Kyosai Hospital, Yokohama, Japan
| | - Makoto Suzuki
- Department of Cardiology, Yokohama Minami Kyosai Hospital, Yokohama, Japan
| | | | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
15
|
Reshan MSA, Amin S, Zeb MA, Sulaiman A, Alshahrani H, Azar AT, Shaikh A. Enhancing Breast Cancer Detection and Classification Using Advanced Multi-Model Features and Ensemble Machine Learning Techniques. Life (Basel) 2023; 13:2093. [PMID: 37895474 PMCID: PMC10608611 DOI: 10.3390/life13102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most common cancer among women, making it essential to have an accurate and dependable system for diagnosing benign or malignant tumors. It is essential to detect this cancer early in order to inform subsequent treatments. Currently, fine needle aspiration (FNA) cytology and machine learning (ML) models can be used to detect and diagnose this cancer more accurately. Consequently, an effective and dependable approach needs to be developed to enhance the clinical capacity to diagnose this illness. This study aims to detect and divide BC into two categories using the Wisconsin Diagnostic Breast Cancer (WDBC) benchmark feature set and to select the fewest features to attain the highest accuracy. To this end, this study explores automated BC prediction using multi-model features and ensemble machine learning (EML) techniques. To achieve this, we propose an advanced ensemble technique, which incorporates voting, bagging, stacking, and boosting as combination techniques for the classifier in the proposed EML methods to distinguish benign breast tumors from malignant cancers. In the feature extraction process, we suggest a recursive feature elimination technique to find the most important features of the WDBC that are pertinent to BC detection and classification. Furthermore, we conducted cross-validation experiments, and the comparative results demonstrated that our method can effectively enhance classification performance and attain the highest value in six evaluation metrics, including precision, sensitivity, area under the curve (AUC), specificity, accuracy, and F1-score. Overall, the stacking model achieved the best average accuracy, at 99.89%, and its sensitivity, specificity, F1-score, precision, and AUC/ROC were 1.00%, 0.999%, 1.00%, 1.00%, and 1.00%, respectively, thus generating excellent results. The findings of this study can be used to establish a reliable clinical detection system, enabling experts to make more precise and operative decisions in the future. Additionally, the proposed technology might be used to detect a variety of cancers.
Collapse
Affiliation(s)
- Mana Saleh Al Reshan
- Department of Information Systems, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia; (M.S.A.R.); (A.S.)
| | - Samina Amin
- Institute of Computing, Kohat University of Science and Technology, Kohat 26000, Pakistan; (S.A.); (M.A.Z.)
| | - Muhammad Ali Zeb
- Institute of Computing, Kohat University of Science and Technology, Kohat 26000, Pakistan; (S.A.); (M.A.Z.)
| | - Adel Sulaiman
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia; (A.S.); (H.A.)
| | - Hani Alshahrani
- Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia; (A.S.); (H.A.)
| | - Ahmad Taher Azar
- College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Automated Systems and Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Asadullah Shaikh
- Department of Information Systems, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia; (M.S.A.R.); (A.S.)
| |
Collapse
|
16
|
Usategui I, Barbado J, Torres AM, Cascón J, Mateo J. Machine learning, a new tool for the detection of immunodeficiency patterns in systemic lupus erythematosus. J Investig Med 2023; 71:742-752. [PMID: 37158077 DOI: 10.1177/10815589231171404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects several organs and causes variable clinical symptoms. Early diagnosis is currently the most effective way to save the lives of patients with SLE. But it is very difficult to detect in the early stages of the disease. Because of this, this study proposes a machine learning system to help diagnose patients with SLE. To carry out the research, the extreme gradient boosting method has been implemented due to its performance characteristics, as it allows high performance, scalability, accuracy, and low computational load. From this method we try to recognize patterns in the data obtained from patients, which allow the classification of SLE patients with high accuracy and differentiate these patients from controls. Several machine learning methods have been analyzed in this study. The proposed method achieves a higher prediction value of patients who may suffer from SLE than the rest of the compared systems. The proposed algorithm achieved an improvement in accuracy of 4.49% over k-Nearest Neighbors. As for the Support Vector Machine and Gaussian Naive Bayes (GNB) methods, they achieved a lower performance than the proposed one, reaching values of 83% and 81%, respectively. It should be noted that the proposed system showed a higher area under the curve (90%) and a balanced accuracy (90%) than the other machine learning methods. This study shows the usefulness of ML techniques for identifying and predicting SLE patients. These results demonstrate the possibility of developing automatic diagnostic support systems for SLE patients based on machine learning techniques.
Collapse
Affiliation(s)
- Iciar Usategui
- Internal Medicine Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Julia Barbado
- Autoimmune Diseases Unit, Río Hortega University Hospital, Valladolid, Spain
| | - Ana María Torres
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Joaquín Cascón
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Jorge Mateo
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
| |
Collapse
|
17
|
Recenti M, Gargiulo P, Chang M, Ko SB, Kim TJ, Ko SU. Predicting stroke, neurological and movement disorders using single and dual-task gait in Korean older population. Gait Posture 2023; 105:92-98. [PMID: 37515891 DOI: 10.1016/j.gaitpost.2023.07.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/19/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Single and motor or cognitive dual-gait analysis is often used in clinical settings to evaluate older adults affected by neurological and movement disorders or with a stroke history. Gait features are frequently investigated using Machine Learning (ML) with significant results that can help clinicians in diagnosis and rehabilitation. The present study aims to classify patients with stroke, neurological and movement disorders using ML to analyze gait characteristics and to understand the importance of the single and dual-task features among Korean older adults. METHODS A cohort of 122 non-hospitalized Korean older adult participated in a single and a cognitive dual-task gait performance analysis. The extracted temporal and spatial features, together with clinical data, were used as input for the binary classification using tree-based ML algorithms. A repeated-stratified 10-fold cross-validation was performed to better evaluate multiple classification metrics with a final feature importance analysis. RESULTS AND SIGNIFICANCE The best accuracy - maximum >90 % - for gait and neurological disorders classification was obtained with Random Forest. In the stroke classification a 91.7 % of maximum accuracy was reached, with a significant recall of 92 %. The feature importance analysis showed a substantial balance between single and dual-task, while clinical data did not show elevated importance. The current findings indicate that a cognitive dual-task gait performance is highly recommendable together with a single-task in the analysis of older population, particularly for patients with a history of stroke. The results could be useful to medical professionals in treating and diagnosing motor and neurological disorders, and to improve rehabilitation strategies for stroke patients. Furthermore, the results confirm the proficiency of the tree-based ML algorithms in biomedical data analysis. Finally, in the future, this research could be replicated with a non-Asian population dataset to deepen the understanding of gait differences between Asian-Korean population and other ethnicities.
Collapse
Affiliation(s)
- Marco Recenti
- Institute of Biomedical and Neural Engineering, Reykjavik University, Menntavegur 1, Reykjavik 102, Iceland; Department of Mechanical Engineering, Chonnam National University, 50 Daehak-ro, Yeosu, Jeonnam 550-749, South Korea.
| | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, Menntavegur 1, Reykjavik 102, Iceland; Department of Science, Landspitali University Hospital, Hringbraut 101, Reykjavík 101, Iceland
| | - Milan Chang
- The Icelandic Gerontological Research Institute, Landspitali University Hospital, Tungata 26, Reykjavik 101, Iceland
| | - Sang Bae Ko
- Department of Neurology and Critical Care, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul 03080, South Korea
| | - Tae Jung Kim
- Department of Neurology and Critical Care, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul 03080, South Korea
| | - Seung Uk Ko
- Department of Mechanical Engineering, Chonnam National University, 50 Daehak-ro, Yeosu, Jeonnam 550-749, South Korea
| |
Collapse
|
18
|
Azarpour A, Zendehboudi S. Hybrid Smart Strategies to Predict Amine Thermal Degradation in Industrial CO 2 Capture Processes. ACS OMEGA 2023; 8:26850-26870. [PMID: 37546602 PMCID: PMC10398869 DOI: 10.1021/acsomega.3c01475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
CO2 emission reduction is an essential step to achieve the climate change targets. Solvent-based post-combustion CO2 capture (PCC) processes are efficient to be retrofitted to the existing industrial operations/installations. Solvent degradation (and/or loss) is one of the main concerns in the PCC processes. In this study, the thermal degradation of monoethanolamine (MEA) is investigated through the utilization of hybrid connectionist strategies, including an artificial neural network-particle swarm optimization (ANN-PSO), a coupled simulated annealing-least squares support vector machine (CSA-LSSVM), and an adaptive neuro-fuzzy inference system (ANFIS). Moreover, gene expression programming (GEP) is employed to generate a correlation that relates the solvent concentration to the operating variables involved in the adverse phenomenon of solvent thermal degradation. The input variables are the MEA initial concentration, CO2 loading, temperature, and time, and the output variable is the remaining/final MEA concentration after the degradation phenomenon. According to the training and testing phases, the most accurate model is ANFIS, and the reliability/performance of its optimal network is assessed by the coefficient of determination (R2), mean squared error, and average absolute relative error percentage, which are 0.992, 0.066, and 2.745, respectively. This study reveals that the solvent initial concentration has the most significant impact, and temperature plays the second most influential effect on solvent degradation. The developed models can be used to predict the thermal degradation of any solvent in a solvent-based PCC process regardless of the complicated reactions involved in the degradation phenomenon. The models introduced in this study can be employed for the development of more accurate hybrid models to optimize the proposed systems in terms of cost, energy, and environmental prospects.
Collapse
|
19
|
Zou X, Zhai J, Qian S, Li A, Tian F, Cao X, Wang R. Improved breast ultrasound tumor classification using dual-input CNN with GAP-guided attention loss. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:15244-15264. [PMID: 37679179 DOI: 10.3934/mbe.2023682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Ultrasonography is a widely used medical imaging technique for detecting breast cancer. While manual diagnostic methods are subject to variability and time-consuming, computer-aided diagnostic (CAD) methods have proven to be more efficient. However, current CAD approaches neglect the impact of noise and artifacts on the accuracy of image analysis. To enhance the precision of breast ultrasound image analysis for identifying tissues, organs and lesions, we propose a novel approach for improved tumor classification through a dual-input model and global average pooling (GAP)-guided attention loss function. Our approach leverages a convolutional neural network with transformer architecture and modifies the single-input model for dual-input. This technique employs a fusion module and GAP operation-guided attention loss function simultaneously to supervise the extraction of effective features from the target region and mitigate the effect of information loss or redundancy on misclassification. Our proposed method has three key features: (i) ResNet and MobileViT are combined to enhance local and global information extraction. In addition, a dual-input channel is designed to include both attention images and original breast ultrasound images, mitigating the impact of noise and artifacts in ultrasound images. (ii) A fusion module and GAP operation-guided attention loss function are proposed to improve the fusion of dual-channel feature information, as well as supervise and constrain the weight of the attention mechanism on the fused focus region. (iii) Using the collected uterine fibroid ultrasound dataset to train ResNet18 and load the pre-trained weights, our experiments on the BUSI and BUSC public datasets demonstrate that the proposed method outperforms some state-of-the-art methods. The code will be publicly released at https://github.com/425877/Improved-Breast-Ultrasound-Tumor-Classification.
Collapse
Affiliation(s)
- Xiao Zou
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Jintao Zhai
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Shengyou Qian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Ang Li
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Feng Tian
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xiaofei Cao
- College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
| | - Runmin Wang
- College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
20
|
Ghazizadeh H, Shakour N, Ghoflchi S, Mansoori A, Saberi-Karimiam M, Rashidmayvan M, Ferns G, Esmaily H, Ghayour-Mobarhan M. Use of data mining approaches to explore the association between type 2 diabetes mellitus with SARS-CoV-2. BMC Pulm Med 2023; 23:203. [PMID: 37308948 DOI: 10.1186/s12890-023-02495-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Corona virus causes respiratory tract infections in mammals. The latest type of Severe Acute Respiratory Syndrome Corona-viruses 2 (SARS-CoV-2), Corona virus spread in humans in December 2019 in Wuhan, China. The purpose of this study was to investigate the relationship between type 2 diabetes mellitus (T2DM), and their biochemical and hematological factors with the level of infection with COVID-19 to improve the treatment and management of the disease. MATERIAL AND METHOD This study was conducted on a population of 13,170 including 5780 subjects with SARS-COV-2 and 7390 subjects without SARS-COV-2, in the age range of 35-65 years. Also, the associations between biochemical factors, hematological factors, physical activity level (PAL), age, sex, and smoking status were investigated with the COVID-19 infection. RESULT Data mining techniques such as logistic regression (LR) and decision tree (DT) algorithms were used to analyze the data. The results using the LR model showed that in biochemical factors (Model I) creatine phosphokinase (CPK) (OR: 1.006 CI 95% (1.006,1.007)), blood urea nitrogen (BUN) (OR: 1.039 CI 95% (1.033, 1.047)) and in hematological factors (Model II) mean platelet volume (MVP) (OR: 1.546 CI 95% (1.470, 1.628)) were significant factors associated with COVID-19 infection. Using the DT model, CPK, BUN, and MPV were the most important variables. Also, after adjustment for confounding factors, subjects with T2DM had higher risk for COVID-19 infection. CONCLUSION There was a significant association between CPK, BUN, MPV and T2DM with COVID-19 infection and T2DM appears to be important in the development of COVID-19 infection.
Collapse
Affiliation(s)
- Hamideh Ghazizadeh
- The Hospital for Sick Children, CALIPER Program, Division of Clinical Biochemistry, Pediatric Laboratory Medicine, Toronto, ON, Canada
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Shakour
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Ghoflchi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mansoori
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Saberi-Karimiam
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Rashidmayvan
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Gordon Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Tuerhong A, Silamujiang M, Xianmuxiding Y, Wu L, Mojarad M. An ensemble classifier method based on teaching-learning-based optimization for breast cancer diagnosis. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04861-5. [PMID: 37202580 DOI: 10.1007/s00432-023-04861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Epidemiological studies show that breast cancer is the most common cancer in women in the world. Breast cancer treatment can be very effective, especially when the disease is detected in the early stages. The goal can be achieved by using large-scale breast cancer data with the machine learning models METHODS: This paper proposes a new intelligent approach using an optimized ensemble classifier for breast cancer diagnosis. The classification is done by proposing a new intelligent Group Method of Data Handling (GMDH) neural network-based ensemble classifier. This method improves the performance of the machine learning technique by using a Teaching-Learning-Based Optimization (TLBO) algorithm to optimize the hyperparameters of the classifier. Meanwhile, we use TLBO as an evolutionary method to address the problem of appropriate feature selection in breast cancer data. RESULTS The simulation results show that the proposed method has a better accuracy between 7 and 26% compared to the best results of the existing equivalent algorithms. CONCLUSION According to the obtained results, we suggest the proposed algorithm as an intelligent medical assistant system for breast cancer diagnosis.
Collapse
Affiliation(s)
- Adila Tuerhong
- Department of Cardio-Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Mutalipu Silamujiang
- Department of Traumatic Orthopedic, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830002, Xinjiang, China
| | - Yilixiati Xianmuxiding
- Department of Emergency, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Li Wu
- Department of Cardio-Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| | - Musa Mojarad
- Department of Computer Engineering, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran.
| |
Collapse
|
22
|
Jain S, Naicker D, Raj R, Patel V, Hu YC, Srinivasan K, Jen CP. Computational Intelligence in Cancer Diagnostics: A Contemporary Review of Smart Phone Apps, Current Problems, and Future Research Potentials. Diagnostics (Basel) 2023; 13:diagnostics13091563. [PMID: 37174954 PMCID: PMC10178016 DOI: 10.3390/diagnostics13091563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is a dangerous and sometimes life-threatening disease that can have several negative consequences for the body, is a leading cause of mortality, and is becoming increasingly difficult to detect. Each form of cancer has its own set of traits, symptoms, and therapies, and early identification and management are important for a positive prognosis. Doctors utilize a variety of approaches to detect cancer, depending on the kind and location of the tumor. Imaging tests such as X-rays, Computed Tomography scans, Magnetic Resonance Imaging scans, and Positron Emission Tomography (PET) scans, which may provide precise pictures of the body's interior structures to spot any abnormalities, are some of the tools that doctors use to diagnose cancer. This article evaluates computational-intelligence approaches and provides a means to impact future work by focusing on the relevance of machine learning and deep learning models such as K Nearest Neighbour (KNN), Support Vector Machine (SVM), Naïve Bayes, Decision Tree, Deep Neural Network, Deep Boltzmann machine, and so on. It evaluates information from 114 studies using Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). This article explores the advantages and disadvantages of each model and provides an outline of how they are used in cancer diagnosis. In conclusion, artificial intelligence shows significant potential to enhance cancer imaging and diagnosis, despite the fact that there are a number of clinical issues that need to be addressed.
Collapse
Affiliation(s)
- Somit Jain
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Dharmik Naicker
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Ritu Raj
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Vedanshu Patel
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Yuh-Chung Hu
- Department of Mechanical and Electromechanical Engineering, National ILan University, Yilan 26047, Taiwan
| | - Kathiravan Srinivasan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Chun-Ping Jen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan
| |
Collapse
|
23
|
Ou SM, Tsai MT, Lee KH, Tseng WC, Yang CY, Chen TH, Bin PJ, Chen TJ, Lin YP, Sheu WHH, Chu YC, Tarng DC. Prediction of the risk of developing end-stage renal diseases in newly diagnosed type 2 diabetes mellitus using artificial intelligence algorithms. BioData Min 2023; 16:8. [PMID: 36899426 PMCID: PMC10007785 DOI: 10.1186/s13040-023-00324-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVES Type 2 diabetes mellitus (T2DM) imposes a great burden on healthcare systems, and these patients experience higher long-term risks for developing end-stage renal disease (ESRD). Managing diabetic nephropathy becomes more challenging when kidney function starts declining. Therefore, developing predictive models for the risk of developing ESRD in newly diagnosed T2DM patients may be helpful in clinical settings. METHODS We established machine learning models constructed from a subset of clinical features collected from 53,477 newly diagnosed T2DM patients from January 2008 to December 2018 and then selected the best model. The cohort was divided, with 70% and 30% of patients randomly assigned to the training and testing sets, respectively. RESULTS The discriminative ability of our machine learning models, including logistic regression, extra tree classifier, random forest, gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and light gradient boosting machine were evaluated across the cohort. XGBoost yielded the highest area under the receiver operating characteristic curve (AUC) of 0.953, followed by extra tree and GBDT, with AUC values of 0.952 and 0.938 on the testing dataset. The SHapley Additive explanation summary plot in the XGBoost model illustrated that the top five important features included baseline serum creatinine, mean serum creatine within 1 year before the diagnosis of T2DM, high-sensitivity C-reactive protein, spot urine protein-to-creatinine ratio and female gender. CONCLUSIONS Because our machine learning prediction models were based on routinely collected clinical features, they can be used as risk assessment tools for developing ESRD. By identifying high-risk patients, intervention strategies may be provided at an early stage.
Collapse
Affiliation(s)
- Shuo-Ming Ou
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuo-Hua Lee
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Cheng Tseng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Yu Yang
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tz-Heng Chen
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pin-Jie Bin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzeng-Ji Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Family Medicine, Taipei Veterans General Hospital, Hsinchu Branch, Hsinchu, Taiwan.,Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yao-Ping Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan.,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wayne Huey-Herng Sheu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Molecular and Genetic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Yuan-Chia Chu
- Information Management Office, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan. .,Big Data Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 11217, Taiwan. .,School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
24
|
Ensemble Learning, Deep Learning-Based and Molecular Descriptor-Based Quantitative Structure-Activity Relationships. Molecules 2023; 28:molecules28052410. [PMID: 36903654 PMCID: PMC10005768 DOI: 10.3390/molecules28052410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
A deep learning-based quantitative structure-activity relationship analysis, namely the molecular image-based DeepSNAP-deep learning method, can successfully and automatically capture the spatial and temporal features in an image generated from a three-dimensional (3D) structure of a chemical compound. It allows building high-performance prediction models without extracting and selecting features because of its powerful feature discrimination capability. Deep learning (DL) is based on a neural network with multiple intermediate layers that makes it possible to solve highly complex problems and improve the prediction accuracy by increasing the number of hidden layers. However, DL models are too complex when it comes to understanding the derivation of predictions. Instead, molecular descriptor-based machine learning has clear features owing to the selection and analysis of features. However, molecular descriptor-based machine learning has some limitations in terms of prediction performance, calculation cost, feature selection, etc., while the DeepSNAP-deep learning method outperforms molecular descriptor-based machine learning due to the utilization of 3D structure information and the advanced computer processing power of DL.
Collapse
|
25
|
AI-Powered Diagnosis of Skin Cancer: A Contemporary Review, Open Challenges and Future Research Directions. Cancers (Basel) 2023; 15:cancers15041183. [PMID: 36831525 PMCID: PMC9953963 DOI: 10.3390/cancers15041183] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Skin cancer continues to remain one of the major healthcare issues across the globe. If diagnosed early, skin cancer can be treated successfully. While early diagnosis is paramount for an effective cure for cancer, the current process requires the involvement of skin cancer specialists, which makes it an expensive procedure and not easily available and affordable in developing countries. This dearth of skin cancer specialists has given rise to the need to develop automated diagnosis systems. In this context, Artificial Intelligence (AI)-based methods have been proposed. These systems can assist in the early detection of skin cancer and can consequently lower its morbidity, and, in turn, alleviate the mortality rate associated with it. Machine learning and deep learning are branches of AI that deal with statistical modeling and inference, which progressively learn from data fed into them to predict desired objectives and characteristics. This survey focuses on Machine Learning and Deep Learning techniques deployed in the field of skin cancer diagnosis, while maintaining a balance between both techniques. A comparison is made to widely used datasets and prevalent review papers, discussing automated skin cancer diagnosis. The study also discusses the insights and lessons yielded by the prior works. The survey culminates with future direction and scope, which will subsequently help in addressing the challenges faced within automated skin cancer diagnosis.
Collapse
|
26
|
Guo Z, Xu M, Yang Y, Li Y, Wu H, Zhu Z, Zhao Y. CED: A case-level explainable paramedical diagnosis via AdaGBDT. Comput Biol Med 2023; 153:106500. [PMID: 36592608 DOI: 10.1016/j.compbiomed.2022.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/30/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The rapid growth of medical data has greatly promoted the wide exploitation of machine learning for paramedical diagnosis. Inversely proportional to their performance, most machine learning models generally suffer from the lack of explainability, especially the local explainability of the model, that is, the case-specific explainability. MATERIALS AND METHODS In this paper, we proposed a GBDT (Gradient Boosting Decision Tree)-based explainable model for case-specific paramedical diagnostics, and mainly make the following contributions: (1) an adaptive gradient boosting decision tree (AdaGBDT) model is proposed to boost the path-mining for decision effectively; (2) to learn a case-specific feature importance embedding for a specific patient, the bi-side mutual information is applied to characterize the backtracking on the decision path; (3) through the collaborative decision-making by globally explainable AdaGBDT with case-based reasoning (CBR) in the case-specific metric space, some hard cases can be identified by the means of visualized interpretation. The performance of our model is evaluated on the Wisconsin diagnostic breast cancer dataset and the UCI heart disease dataset. RESULTS Experiments conducted on two datasets show that our AdaGBDT achieves the best performance, with the F1-value of 0.9647 and 0.8405 respectively. Moreover, a series of experimental analyses and case studies further illustrate the excellent performance of feature importance embedding. CONCLUSION The proposed case-specific explainable paramedical diagnosis via AdaGBDT has excellent predictive performance, with both promising case-level and consistent global explainability.
Collapse
Affiliation(s)
- Zhenyu Guo
- Institute of Information Science, Beijing Jiaotong University, Beijing, China; Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China
| | - Muhao Xu
- Institute of Information Science, Beijing Jiaotong University, Beijing, China; Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China
| | - Yuchen Yang
- Department of Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Youru Li
- Institute of Information Science, Beijing Jiaotong University, Beijing, China; Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China
| | - Haiyan Wu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhenfeng Zhu
- Institute of Information Science, Beijing Jiaotong University, Beijing, China; Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China.
| | - Yao Zhao
- Institute of Information Science, Beijing Jiaotong University, Beijing, China; Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, China
| |
Collapse
|
27
|
Jakhar AK, Gupta A, Singh M. SELF: a stacked-based ensemble learning framework for breast cancer classification. EVOLUTIONARY INTELLIGENCE 2023. [DOI: 10.1007/s12065-023-00824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Lai JP, Lin YL, Lin HC, Shih CY, Wang YP, Pai PF. Tree-Based Machine Learning Models with Optuna in Predicting Impedance Values for Circuit Analysis. MICROMACHINES 2023; 14:265. [PMID: 36837965 PMCID: PMC9960110 DOI: 10.3390/mi14020265] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The transmission characteristics of the printed circuit board (PCB) ensure signal integrity and support the entire circuit system, with impedance matching being critical in the design of high-speed PCB circuits. Because the factors affecting impedance are closely related to the PCB production process, circuit designers and manufacturers must work together to adjust the target impedance to maintain signal integrity. Five machine learning models, including decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost), categorical boosting (CatBoost), and light gradient boosting machine (LightGBM), were used to forecast target impedance values. Furthermore, the Optuna algorithm is used to determine forecasting model hyperparameters. This study applied tree-based machine learning techniques with Optuna to predict impedance. The results revealed that five tree-based machine learning models with Optuna can generate satisfying forecasting accuracy in terms of three measurements, including mean absolute percentage error (MAPE), root mean square error (RMSE), and coefficient of determination (R2). Meanwhile, the LightGBM model with Optuna outperformed the other models. In addition, by using Optuna to tune the parameters of machine learning models, the accuracy of impedance matching can be increased. Thus, the results of this study suggest that the tree-based machine learning techniques with Optuna are a viable and promising alternative for predicting impedance values for circuit analysis.
Collapse
Affiliation(s)
- Jung-Pin Lai
- PhD Program in Strategy and Development of Emerging Industries, National Chi Nan University, Puli Nantou 54561, Taiwan
| | - Ying-Lei Lin
- PhD Program in Strategy and Development of Emerging Industries, National Chi Nan University, Puli Nantou 54561, Taiwan
| | - Ho-Chuan Lin
- Siliconware Precision Industries Co., Ltd. No. 123, Sec. 3, Dafeng Rd., Dafeng Vil., Tanzi Dist., Taichung City 42749, Taiwan
| | - Chih-Yuan Shih
- Siliconware Precision Industries Co., Ltd. No. 123, Sec. 3, Dafeng Rd., Dafeng Vil., Tanzi Dist., Taichung City 42749, Taiwan
| | - Yu-Po Wang
- Siliconware Precision Industries Co., Ltd. No. 123, Sec. 3, Dafeng Rd., Dafeng Vil., Tanzi Dist., Taichung City 42749, Taiwan
| | - Ping-Feng Pai
- PhD Program in Strategy and Development of Emerging Industries, National Chi Nan University, Puli Nantou 54561, Taiwan
- Department of Information Management, National Chi Nan University, Puli Nantou 54561, Taiwan
| |
Collapse
|
29
|
Smart paradigm to predict copper surface area of Cu/ZnO/Al2O3 catalyst based on synthesis parameters. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Chen X, Aljrees T, Umer M, Saidani O, Almuqren L, Mzoughi O, Ishaq A, Ashraf I. Cervical cancer detection using K nearest neighbor imputer and stacked ensemble learningmodel. Digit Health 2023; 9:20552076231203802. [PMID: 37799501 PMCID: PMC10548812 DOI: 10.1177/20552076231203802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Objective Cervical cancer stands as a leading cause of mortality among women in developing nations. To ensure the reduction of its adverse consequences, the primary protocols to be adhered to involve early detection and treatment under the guidance of expert medical professionals. An effective approach for identifying this form of malignancy involves the examination of Pap smear images. However, in the context of automating cervical cancer detection, many of the existing datasets frequently exhibit missing data points, a factor that can substantially impact the effectiveness of machine learning models. Methods In response to these hurdles, this research introduces an automated system designed to predict cervical cancer with a dual focus: adeptly managing missing data while attaining remarkable accuracy. The system's core is built upon a stacked ensemble voting classifier model, which amalgamates three distinct machine learning models, all harmoniously integrated with the KNN Imputer to address the issue of missing values. Results The model put forth attains an accuracy of 99.41%, precision of 97.63%, recall of 95.96%, and an F1 score of 96.76% when incorporating the KNN imputation method. The investigation conducts a comparative analysis, contrasting the performance of this model with seven alternative machine learning algorithms in two scenarios: one where missing values are eliminated, and another employing KNN imputation. This study offers validation of the effectiveness of the proposed model in comparison to current state-of-the-art methodologies. Conclusions This research delves into the challenge of handling missing data in the dataset utilized for cervical cancer detection. The findings have the potential to assist healthcare professionals in achieving early detection and enhancing the quality of care provided to individuals affected by cervical cancer.
Collapse
Affiliation(s)
- Xiaoyuan Chen
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, P.R. China
| | - Turki Aljrees
- Department College of Computer Science and Engineering, University of Hafr Al-Batin, Hafar Al-Batin, Saudi Arabia
| | - Muhammad Umer
- Department of Computer Science & Information Technology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Oumaima Saidani
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Latifah Almuqren
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Olfa Mzoughi
- Department of Computer Science, College of Sciences and Humanities-Aflaj, Prince Sattam bin Abdulaziz University, Aflaj, Saudi Arabia
| | - Abid Ishaq
- Department of Computer Science & Information Technology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Imran Ashraf
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
31
|
Wang S, Wang J, Zhu MX, Tan Q. Machine learning for the prediction of minor amputation in University of Texas grade 3 diabetic foot ulcers. PLoS One 2022; 17:e0278445. [PMID: 36472981 PMCID: PMC9725167 DOI: 10.1371/journal.pone.0278445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Minor amputations are performed in a large proportion of patients with diabetic foot ulcers (DFU) and early identification of the outcome of minor amputations facilitates medical decision-making and ultimately reduces major amputations and deaths. However, there are currently no clinical predictive tools for minor amputations in patients with DFU. We aim to establish a predictive model based on machine learning to quickly identify patients requiring minor amputation among newly admitted patients with DFU. Overall, 362 cases with University of Texas grade (UT) 3 DFU were screened from tertiary care hospitals in East China. We utilized the synthetic minority oversampling strategy to compensate for the disparity in the initial dataset. A univariable analysis revealed nine variables to be included in the model: random blood glucose, years with diabetes, cardiovascular diseases, peripheral arterial diseases, DFU history, smoking history, albumin, creatinine, and C-reactive protein. Then, risk prediction models based on five machine learning algorithms: decision tree, random forest, logistic regression, support vector machine, and extreme gradient boosting (XGBoost) were independently developed with these variables. After evaluation, XGBoost earned the highest score (accuracy 0.814, precision 0.846, recall 0.767, F1-score 0.805, and AUC 0.881). For convenience, a web-based calculator based on our data and the XGBoost algorithm was established (https://dfuprediction.azurewebsites.net/). These findings imply that XGBoost can be used to develop a reliable prediction model for minor amputations in patients with UT3 DFU, and that our online calculator will make it easier for clinicians to assess the risk of minor amputations and make proactive decisions.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Burns and Plastic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinwan Wang
- School of Information Management, Nanjing University, Nanjing, China
| | - Mark Xuefang Zhu
- School of Information Management, Nanjing University, Nanjing, China
- * E-mail: (MXZ); (QT)
| | - Qian Tan
- Department of Burns and Plastic Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- * E-mail: (MXZ); (QT)
| |
Collapse
|
32
|
Han L, Yin Z. A hybrid breast cancer classification algorithm based on meta-learning and artificial neural networks. Front Oncol 2022; 12:1042964. [DOI: 10.3389/fonc.2022.1042964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of breast cancer in women has surpassed that of lung cancer as the world’s leading new cancer case. Regular screening and measures become an effective way to prevent breast cancer and also provide a good foundation for later treatment. Women should receive regular checkups in the hospital after reaching a certain age. The use of computer-aided technology can improve the accuracy and efficiency of physicians’ decision-making. Data pre-processing is required before data analysis, and 16 features are selected using a correlation-based feature selection method. In this paper, meta-learning and Artificial Neural Networks (ANN) are combined to create a hybrid algorithm. The proposed hybrid algorithm for predicting breast cancer was attempted to achieve 98.74% accuracy and 98.02% F1-score by creating a combination of various meta-learning models whose output was used as input features for creating ANN models. Therefore, the hybrid algorithm proposed in this paper can obtain better prediction results than a single model.
Collapse
|
33
|
Zhang F, Zhang Y, Zhu X, Chen X, Du H, Zhang X. PregGAN: A prognosis prediction model for breast cancer based on conditional generative adversarial networks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:107026. [PMID: 35872384 DOI: 10.1016/j.cmpb.2022.107026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Generative adversarial network (GAN) is able to learn from a set of training data and generate new data with the same characteristics as the training data. Based on the characteristics of GAN, this paper developed its capability as a tool of disease prognosis prediction, and proposed a prognostic model PregGAN based on conditional generative adversarial network (CGAN). METHODS The idea of PregGAN is to generate the prognosis prediction results based on the clinical data of patients. PregGAN added the clinical data as conditions to the training process. Conditions were used as the input to the generator along with noises. The generator synthesized new samples using the noises vectors and the conditions. In order to solve the mode collapse problem during PregGAN training, Wasserstein distance and gradient penalty strategy were used to make the training process more stable. RESULTS In the prognosis prediction experiments using the METABRIC breast cancer dataset, PregGAN achieved good results, with the average accurate (ACC) of 90.6% and the average AUC (area under curve) of 0.946. CONCLUSIONS Experimental results show that PregGAN is a reliable prognosis predictive model for breast cancer. Due to the strong ability of probability distribution learning, PregGAN can also be used for the prognosis prediction of other diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China; Henan Engineering Laboratory of Spatial Information Processing, Henan University, Kaifeng 475004, China
| | - Yingqi Zhang
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China
| | - Xiaoke Zhu
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China
| | - Xiaopan Chen
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China
| | - Haishun Du
- School of Artificial Intelligence, Henan University, Kaifeng 475004, China
| | - Xinhong Zhang
- School of Software, Henan University, Kaifeng 475004, China.
| |
Collapse
|
34
|
Machine learning of microvolt-level 12-lead electrocardiogram can help distinguish takotsubo syndrome and acute anterior myocardial infarction. CARDIOVASCULAR DIGITAL HEALTH JOURNAL 2022; 3:179-188. [PMID: 36046427 PMCID: PMC9422059 DOI: 10.1016/j.cvdhj.2022.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
|
35
|
Moslehi S, Rabiei N, Soltanian AR, Mamani M. Application of machine learning models based on decision trees in classifying the factors affecting mortality of COVID-19 patients in Hamadan, Iran. BMC Med Inform Decis Mak 2022; 22:192. [PMID: 35871639 PMCID: PMC9308952 DOI: 10.1186/s12911-022-01939-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/20/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Due to the high mortality of COVID-19 patients, the use of a high-precision classification model of patient's mortality that is also interpretable, could help reduce mortality and take appropriate action urgently. In this study, the random forest method was used to select the effective features in COVID-19 mortality and the classification was performed using logistic model tree (LMT), classification and regression tree (CART), C4.5, and C5.0 tree based on important features. METHODS In this retrospective study, the data of 2470 COVID-19 patients admitted to hospitals in Hamadan, west Iran, were used, of which 75.02% recovered and 24.98% died. To classify, at first among the 25 demographic, clinical, and laboratory findings, features with a relative importance more than 6% were selected by random forest. Then LMT, C4.5, C5.0, and CART trees were developed and the accuracy of classification performance was evaluated with recall, accuracy, and F1-score criteria for training, test, and total datasets. At last, the best tree was developed and the receiver operating characteristic curve and area under the curve (AUC) value were reported. RESULTS The results of this study showed that among demographic and clinical features gender and age, and among laboratory findings blood urea nitrogen, partial thromboplastin time, serum glutamic-oxaloacetic transaminase, and erythrocyte sedimentation rate had more than 6% relative importance. Developing the trees using the above features revealed that the CART with the values of F1-score, Accuracy, and Recall, 0.8681, 0.7824, and 0.955, respectively, for the test dataset and 0.8667, 0.7834, and 0.9385, respectively, for the total dataset had the best performance. The AUC value obtained for the CART was 79.5%. CONCLUSIONS Finding a highly accurate and qualified model for interpreting the classification of a response that is considered clinically consequential is critical at all stages, including treatment and immediate decision making. In this study, the CART with its high accuracy for diagnosing and classifying mortality of COVID-19 patients as well as prioritizing important demographic, clinical, and laboratory findings in an interpretable format, risk factors for prognosis of COVID-19 patients mortality identify and enable immediate and appropriate decisions for health professionals and physicians.
Collapse
Affiliation(s)
- Samad Moslehi
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Niloofar Rabiei
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Reza Soltanian
- Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Street of Shahid Fahmideh, P.O. BOX: 6517838736, Hamadan, Iran
| | - Mojgan Mamani
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
36
|
Wang J. Prediction of postoperative recovery in patients with acoustic neuroma using machine learning and SMOTE-ENN techniques. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:10407-10423. [PMID: 36032000 DOI: 10.3934/mbe.2022487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acoustic neuroma is a common benign tumor that is frequently associated with postoperative complications such as facial nerve dysfunction, which greatly affects the physical and mental health of patients. In this paper, clinical data of patients with acoustic neuroma treated with microsurgery by the same operator at Xiangya Hospital of Central South University from June 2018 to March 2020 are used as the study object. Machine learning and SMOTE-ENN techniques are used to accurately predict postoperative facial nerve function recovery, thus filling a gap in auxiliary diagnosis within the field of facial nerve treatment in acoustic neuroma. First, raw clinical data are processed and dependent variables are identified based on clinical context and data characteristics. Secondly, data balancing is corrected using the SMOTE-ENN technique. Finally, XGBoost is selected to construct a prediction model for patients' postoperative recovery, and is also compared with a total of four machine learning models, LR, SVM, CART, and RF. We find that XGBoost can most accurately predict the postoperative facial nerve function recovery, with a prediction accuracy of 90.0% and an AUC value of 0.90. CART, RF, and XGBoost can further select the more important preoperative indicators and provide therapeutic assistance to physicians, thereby improving the patient's postoperative recovery. The results show that machine learning and SMOTE-ENN techniques can handle complex clinical data and achieve accurate predictions.
Collapse
Affiliation(s)
- Jianing Wang
- School of Mathematics and Statistics, Central South University, Changsha 410083, China
| |
Collapse
|
37
|
Pei Q, Luo Y, Chen Y, Li J, Xie D, Ye T. Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis. Clin Chem Lab Med 2022; 60:1974-1983. [PMID: 35771735 DOI: 10.1515/cclm-2022-0291] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022]
Abstract
Artificial Intelligence (AI) is a branch of computer science that includes research in robotics, language recognition, image recognition, natural language processing, and expert systems. AI is poised to change medical practice, and oncology is not an exception to this trend. As the matter of fact, lung cancer has the highest morbidity and mortality worldwide. The leading cause is the complexity of associating early pulmonary nodules with neoplastic changes and numerous factors leading to strenuous treatment choice and poor prognosis. AI can effectively enhance the diagnostic efficiency of lung cancer while providing optimal treatment and evaluating prognosis, thereby reducing mortality. This review seeks to provide an overview of AI relevant to all the fields of lung cancer. We define the core concepts of AI and cover the basics of the functioning of natural language processing, image recognition, human-computer interaction and machine learning. We also discuss the most recent breakthroughs in AI technologies and their clinical application regarding diagnosis, treatment, and prognosis in lung cancer. Finally, we highlight the future challenges of AI in lung cancer and its impact on medical practice.
Collapse
Affiliation(s)
- Qin Pei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yanan Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yiyu Chen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Jingyuan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Dan Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
38
|
Shape-Based Breast Lesion Classification Using Digital Tomosynthesis Images: The Role of Explainable Artificial Intelligence. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Computer-aided diagnosis (CAD) systems can help radiologists in numerous medical tasks including classification and staging of the various diseases. The 3D tomosynthesis imaging technique adds value to the CAD systems in diagnosis and classification of the breast lesions. Several convolutional neural network (CNN) architectures have been proposed to classify the lesion shapes to the respective classes using a similar imaging method. However, not only is the black box nature of these CNN models questionable in the healthcare domain, but so is the morphological-based cancer classification, concerning the clinicians. As a result, this study proposes both a mathematically and visually explainable deep-learning-driven multiclass shape-based classification framework for the tomosynthesis breast lesion images. In this study, authors exploit eight pretrained CNN architectures for the classification task on the previously extracted regions of interests images containing the lesions. Additionally, the study also unleashes the black box nature of the deep learning models using two well-known perceptive explainable artificial intelligence (XAI) algorithms including Grad-CAM and LIME. Moreover, two mathematical-structure-based interpretability techniques, i.e., t-SNE and UMAP, are employed to investigate the pretrained models’ behavior towards multiclass feature clustering. The experimental results of the classification task validate the applicability of the proposed framework by yielding the mean area under the curve of 98.2%. The explanability study validates the applicability of all employed methods, mainly emphasizing the pros and cons of both Grad-CAM and LIME methods that can provide useful insights towards explainable CAD systems.
Collapse
|
39
|
Zhang Y, Zhu G, Li K, Li F, Huang L, Duan M, Zhou F. HLAB: learning the BiLSTM features from the ProtBert-encoded proteins for the class I HLA-peptide binding prediction. Brief Bioinform 2022; 23:6581432. [PMID: 35514183 PMCID: PMC9487590 DOI: 10.1093/bib/bbac173] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Human Leukocyte Antigen (HLA) is a type of molecule residing on the surfaces of most human cells and exerts an essential role in the immune system responding to the invasive items. The T cell antigen receptors may recognize the HLA-peptide complexes on the surfaces of cancer cells and destroy these cancer cells through toxic T lymphocytes. The computational determination of HLA-binding peptides will facilitate the rapid development of cancer immunotherapies. This study hypothesized that the natural language processing-encoded peptide features may be further enriched by another deep neural network. The hypothesis was tested with the Bi-directional Long Short-Term Memory-extracted features from the pretrained Protein Bidirectional Encoder Representations from Transformers-encoded features of the class I HLA (HLA-I)-binding peptides. The experimental data showed that our proposed HLAB feature engineering algorithm outperformed the existing ones in detecting the HLA-I-binding peptides. The extensive evaluation data show that the proposed HLAB algorithm outperforms all the seven existing studies on predicting the peptides binding to the HLA-A*01:01 allele in AUC and achieves the best average AUC values on the six out of the seven k-mers (k=8,9,...,14, respectively represent the prediction task of a polypeptide consisting of k amino acids) except for the 9-mer prediction tasks. The source code and the fine-tuned feature extraction models are available at http://www.healthinformaticslab.org/supp/resources.php.
Collapse
Affiliation(s)
- Yaqi Zhang
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Gancheng Zhu
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Kewei Li
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Fei Li
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Lan Huang
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Meiyu Duan
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Fengfeng Zhou
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
40
|
Feng Y, Yang X, Qiu D, Zhang H, Wei D, Liu J. PCXRNet: Pneumonia diagnosis from Chest X-Ray Images using Condense attention block and Multiconvolution attention block. IEEE J Biomed Health Inform 2022; 26:1484-1495. [PMID: 35120015 DOI: 10.1109/jbhi.2022.3148317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has become a global pandemic. Many recognition approaches based on convolutional neural networks have been proposed for COVID-19 chest X-ray images. However, only a few of them make good use of the potential inter- and intra-relationships of feature maps. Considering the limitation mentioned above, this paper proposes an attention-based convolutional neural network, called PCXRNet, for diagnosis of pneumonia using chest X-ray images. To utilize the information from the channels of the feature maps, we added a novel condense attention module (CDSE) that comprised of two steps: condensation step and squeeze-excitation step. Unlike traditional channel attention modules, CDSE first downsamples the feature map channel by channel to condense the information, followed by the squeeze-excitation step, in which the channel weights are calculated. To make the model pay more attention to informative spatial parts in every feature map, we proposed a multi-convolution spatial attention module (MCSA). It reduces the number of parameters and introduces more nonlinearity. The CDSE and MCSA complement each other in series to tackle the problem of redundancy in feature maps and provide useful information from and between feature maps. We used the ChestXRay2017 dataset to explore the internal structure of PCXRNet, and the proposed network was applied to COVID-19 diagnosis. Additional experiments were conducted on a tuberculosis dataset to verify the effectiveness of PCXRNet. As a result, the network achieves an accuracy of 94.619%, recall of 94.753%, precision of 95.286%, and F1-score of 94.996% on the COVID-19 dataset.
Collapse
|
41
|
Adhikary S, Ghosh A. Dynamic time warping approach for optimized locomotor impairment detection using biomedical signal processing. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Zare M, Zendehboudi S, Abdi MA. Deterministic tools to estimate induction time for methane hydrate formation in the presence of Luvicap 55 W solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Lin S, Lin Y, Wu K, Wang Y, Feng Z, Duan M, Liu S, Fan Y, Huang L, Zhou F. FeCO3, constructing the network biomarkers using the inter-feature correlation coefficients and its application in detecting high-order breast cancer biomarkers. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220124123303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
This study aims to formulate the inter-feature correlation as the engineered features.
Background:
Modern biotechnologies tend to generate a huge number of characteristics of a sample, while an OMIC dataset usually has a few dozens or hundreds of samples due to the high costs of generating the OMIC data. So many bio-OMIC studies assumed the inter-feature independence and selected a feature with a high phenotype-association.
Objective:
However, many features are closely associated with each other due to their physical or functional interactions, which may be utilized as a new view of features.
Method:
This study proposed a feature engineering algorithm based on the correlation coefficients (FeCO3) by utilizing the correlations between a given sample and a few reference samples. A comprehensive evaluation was carried out for the proposed FeCO3 network features using 24 bio-OMIC datasets.
Result:
The experimental data suggested that the newly calculated FeCO3 network features tended to achieve better classification performances than the original features, using the same popular feature selection and classification algorithms. The FeCO3 network features were also consistently supported by the literature. FeCO3 was utilized to investigate the high-order engineered biomarkers of breast cancer, and detected the PBX2 gene (Pre-B-Cell Leukemia Transcription Factor 2) as one of the candidate breast cancer biomarkers. Although the two methylated residues cg14851325 (Pvalue=8.06e-2) and cg16602460 (Pvalue=1.19e-1) within PBX2 did not have statistically significant association with breast cancers, the high-order inter-feature correlations showed a significant association with breast cancers.
Conclusion:
The proposed FeCO3 network features calculated the high-order inter-feature correlations as novel features, and may facilitate the investigations of complex diseases from this new perspective. The source code is available in FigShare at 10.6084/m9.figshare.13550051 or the web site http://www.healthinformaticslab.org/supp/ .
Collapse
Affiliation(s)
- Shenggeng Lin
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqi Lin
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Kexin Wu
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Yueying Wang
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Zixuan Feng
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Meiyu Duan
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Shuai Liu
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Yusi Fan
- College of Software, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Lan Huang
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Fengfeng Zhou
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
44
|
Jiang F, Zhu Q, Tian T. Breast Cancer Detection Based on Modified Harris Hawks Optimization and Extreme Learning Machine Embedded with Feature Weighting. Neural Process Lett 2022. [DOI: 10.1007/s11063-021-10700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Varzaneh ZA, Orooji A, Erfannia L, Shanbehzadeh M. A new COVID-19 intubation prediction strategy using an intelligent feature selection and K-NN method. INFORMATICS IN MEDICINE UNLOCKED 2022; 28:100825. [PMID: 34977330 PMCID: PMC8712462 DOI: 10.1016/j.imu.2021.100825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Predicting severe respiratory failure due to COVID-19 can help triage patients to higher levels of care, resource allocation and decrease morbidity and mortality. The need for this research derives from the increasing demand for innovative technologies to overcome complex data analysis and decision-making tasks in critical care units. Hence the aim of our paper is to present a new algorithm for selecting the best features from the dataset and developing Machine Learning(ML) based models to predict the intubation risk of hospitalized COVID-19 patients. Methods In this retrospective single-center study, the data of 1225 COVID-19 patients from February 9, 2020, to July 20, 2021, were analyzed by several ML algorithms which included, Decision Tree(DT), Support Vector Machine (SVM), Multilayer perceptron (MLP), and K-Nearest Neighbors(K-NN). First, the most important predictors were identified using the Horse herd Optimization Algorithm (HOA). Then, by comparing the ML algorithms' performance using some evaluation criteria, the best performing one was identified. Results Predictive models were trained using 12 validated features. Also, it found that proposed DT-based predictive model enables a reasonable level of accuracy (=93%) in predicting the risk of intubation among hospitalized COVID-19 patients. Conclusions The experimental results demonstrate the effectiveness of the proposed meta-heuristic feature selection technique in combining with DT model in predicting intubation risk for hospitalized patients with COVID-19. The proposed model have the potential to inform frontline clinicians with quantitative and non-invasive tool to assess illness severity and to identify high risk patients.
Collapse
Affiliation(s)
- Zahra Asghari Varzaneh
- Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Azam Orooji
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Science (NKUMS), North Khorasan, Iran
| | - Leila Erfannia
- Department of Health Information Management, School of Management and Medical Informatics, Health Human Resources Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shanbehzadeh
- Department of Health Information Technology, School of Paramedical, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
46
|
Kovacs D, Msanga DR, Mshana SE, Bilal M, Oravcova K, Matthews L. Developing practical clinical tools for predicting neonatal mortality at a neonatal intensive care unit in Tanzania. BMC Pediatr 2021; 21:537. [PMID: 34852794 PMCID: PMC8638252 DOI: 10.1186/s12887-021-03012-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Neonatal mortality remains high in Tanzania at approximately 20 deaths per 1000 live births. Low birthweight, prematurity, and asphyxia are associated with neonatal mortality; however, no studies have assessed the value of combining underlying conditions and vital signs to provide clinicians with early warning of infants at risk of mortality. The aim of this study was to identify risk factors (including vital signs) associated with neonatal mortality in the neonatal intensive care unit (NICU) in Bugando Medical Centre (BMC), Mwanza, Tanzania; to identify the most accurate generalised linear model (GLM) or decision tree for predicting mortality; and to provide a tool that provides clinically relevant cut-offs for predicting mortality that is easily used by clinicians in a low-resource setting. METHODS In total, 165 neonates were enrolled between November 2019 and March 2020, of whom 80 (48.5%) died. We competed the performance of GLMs and decision trees by resampling the data to create training and test datasets and comparing their accuracy at correctly predicting mortality. RESULTS GLMs always outperformed decision trees. The best fitting GLM showed that (for standardised risk factors) temperature (OR 0.61, 95% CI 0.40-0.90), birthweight (OR 0.33, 95% CI 0.20-0.52), and oxygen saturation (OR 0.66, 95% CI 0.45-0.94) were negatively associated with mortality, while heart rate (OR 1.59, 95% CI 1.10-2.35) and asphyxia (OR 3.23, 95% 1.25-8.91) were risk factors. To identify the tool that balances accuracy and with ease of use in a low-resource clinical setting, we compared the best fitting GLM with simpler versions, and identified the three-variable GLM with temperature, heart rate, and birth weight as the best candidate. For this tool, cut-offs were identified using receiver operator characteristic (ROC) curves with the optimal cut-off for mortality prediction corresponding to 76.3% sensitivity and 68.2% specificity. The final tool is graphical, showing cut-offs that depend on birthweight, heart rate, and temperature. CONCLUSIONS Underlying conditions and vital signs can be combined into simple graphical tools that improve upon the current guidelines and are straightforward to use by clinicians in a low-resource setting.
Collapse
Affiliation(s)
- Dory Kovacs
- Boyd Orr Centre for Population and Ecosystem Health and Institute of Biodiversity, Animal health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Delfina R Msanga
- Department of Paediatrics and Child Health, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Muhammad Bilal
- Boyd Orr Centre for Population and Ecosystem Health and Institute of Biodiversity, Animal health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Katarina Oravcova
- Boyd Orr Centre for Population and Ecosystem Health and Institute of Biodiversity, Animal health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Louise Matthews
- Boyd Orr Centre for Population and Ecosystem Health and Institute of Biodiversity, Animal health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
47
|
Makond B, Wang KJ, Wang KM. Benchmarking prognosis methods for survivability - A case study for patients with contingent primary cancers. Comput Biol Med 2021; 138:104888. [PMID: 34610552 DOI: 10.1016/j.compbiomed.2021.104888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND There is an increasing number of patients with a first primary cancer who are diagnosed with a second primary cancer, but prognosis methods to predict the survivability of a patient with multiple primary cancers have not been fully benchmarked. METHODS This study investigated the five-year survivability prognosis performances of six machine learning approaches. These approaches are: artificial neural network, decision tree (DT), logistic regression, support vector machine, naïve Bayes (NB), and Bayesian network (BN). A synthetic minority over-sampling technique (SMOTE) was used to solve the imbalanced problem, and a nationwide cancer patient database containing 7,845 subjects in Taiwan was used as a sample source. Ten primary and secondary cancers and their key variables affecting the survivability of the patients were identified. RESULTS All the models using SMOTE improved sensitivity and specificity significantly. NB has the highest performance in terms of accuracy and specificity, whereas BN has the highest performance in terms of sensitivity. Further, the computational time and the power of knowledge representation of NB, BN, and DT outperformed the others. CONCLUSIONS Selecting the appropriate prognosis models to predict survivability of patients with two contingent primary cancers can aid precise prediction and can support appropriate treatment advice.
Collapse
Affiliation(s)
- Bunjira Makond
- Faculty of Commerce and Management, Prince of Songkla University, Trang, Thailand.
| | - Kung-Jeng Wang
- Department of Industrial Management National Taiwan University of Science and Technology, Taipei, 106, ROC, Taiwan.
| | - Kung-Min Wang
- Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, R.O.C, Taiwan.
| |
Collapse
|
48
|
Tang L, Liu G. The novel approach of temporal dependency complexity analysis of heart rate variability in obstructive sleep apnea. Comput Biol Med 2021; 135:104632. [PMID: 34265554 DOI: 10.1016/j.compbiomed.2021.104632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022]
Abstract
Obstructive sleep apnea (OSA) is a serious sleep disorder, which leads to changes in autonomic nerve function and increases the risk of cardiovascular disease. Heart rate variability (HRV) has been widely used as a non-invasive method for assessing the autonomic nervous system (ANS). We proposed the two-dimensional sample entropy of the coarse-grained Gramian angular summation field image (CgSampEn2D) index. It is a new index for HRV analysis based on the temporal dependency complexity. In this study, we used 60 electrocardiogram (ECG) records from the Apnea-ECG database of PhysioNet (20 healthy records and 40 OSA records). These records were divided into 5-min segments. Compared with the classical indices low-to-high frequency power ratio (LF/HF) and sample entropy (SampEn), CgSampEn2D utilizes the correlation information between different time intervals in the RR sequences and preserves the temporal dependency of the RR sequences, which improves the OSA detection performance significantly. The OSA screening accuracy of CgSampEn2D (93.3%) is higher than that of LF/HF (80.0%) and SampEn (73.3%). Additionally, CgSampEn2D has a significant association with the apnea-hypopnea index (AHI) (R = -0.740, p = 0). CgSampEn2D reflects the complexity of the OSA autonomic nerve more comprehensively and provides a novel idea for the screening of OSA disease.
Collapse
Affiliation(s)
- Lan Tang
- The School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Guanzheng Liu
- The School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
49
|
Xiong Y, Ye M, Wu C. Cancer Classification with a Cost-Sensitive Naive Bayes Stacking Ensemble. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5556992. [PMID: 33986823 PMCID: PMC8093037 DOI: 10.1155/2021/5556992] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/17/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and higher generalization performance. To achieve higher quality cancer classification, in this study, the fast correlation-based feature selection (FCBF) method was used to preprocess the data to eliminate irrelevant and redundant features. Then, the classification was carried out in the stacking ensemble learner. A library for support vector machine (LIBSVM), K-nearest neighbor (KNN), decision tree C4.5 (C4.5), and random forest (RF) were used as the primary learners of the stacking ensemble. Given the imbalanced characteristics of cancer gene expression data, the embedding cost-sensitive naive Bayes was used as the metalearner of the stacking ensemble, which was represented as CSNB stacking. The proposed CSNB stacking method was applied to nine cancer datasets to further verify the classification performance of the model. Compared with other classification methods, such as single classifier algorithms and ensemble algorithms, the experimental results showed the effectiveness and robustness of the proposed method in processing different types of cancer data. This method may therefore help guide cancer diagnosis and research.
Collapse
Affiliation(s)
- Yueling Xiong
- School of Medical Information, Wannan Medical College, Wuhu 241002, China
| | - Mingquan Ye
- School of Medical Information, Wannan Medical College, Wuhu 241002, China
| | - Changrong Wu
- School of Computer and Information, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|