1
|
Bhagirath P, Campos FO, Zaidi HA, Chen Z, Elliott M, Gould J, Kemme MJB, Wilde AAM, Götte MJW, Postema PG, Prassl AJ, Neic A, Plank G, Rinaldi CA, Bishop MJ. Predicting postinfarct ventricular tachycardia by integrating cardiac MRI and advanced computational reentrant pathway analysis. Heart Rhythm 2024; 21:1962-1969. [PMID: 38670247 DOI: 10.1016/j.hrthm.2024.04.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Implantable cardiac defibrillator (ICD) implantation can protect against sudden cardiac death after myocardial infarction. However, improved risk stratification for device requirement is still needed. OBJECTIVE The purpose of this study was to improve assessment of postinfarct ventricular electropathology and prediction of appropriate ICD therapy by combining late gadolinium enhancement (LGE) and advanced computational modeling. METHODS ADAS 3D LV (ADAS LV Medical, Barcelona, Spain) and custom-made software were used to generate 3-dimensional patient-specific ventricular models in a prospective cohort of patients with a myocardial infarction (N = 40) having undergone LGE imaging before ICD implantation. Corridor metrics and 3-dimensional surface features were computed from LGE images. The Virtual Induction and Treatment of Arrhythmias (VITA) framework was applied to patient-specific models to comprehensively probe the vulnerability of the scar substrate to sustaining reentrant circuits. Imaging and VITA metrics, related to the numbers of induced ventricular tachycardias and their corresponding round trip times (RTTs), were compared with ICD therapy during follow-up. RESULTS Patients with an event (n = 17) had a larger interface between healthy myocardium and scar and higher VITA metrics. Cox regression analysis demonstrated a significant independent association with an event: interface (hazard ratio [HR] 2.79; 95% confidence interval [CI] 1.44-5.44; P < .01), unique ventricular tachycardias (HR 1.67; 95% CI 1.04-2.68; P = .03), mean RTT (HR 2.14; 95% CI 1.11-4.12; P = .02), and maximum RTT (HR 2.13; 95% CI 1.19-3.81; P = .01). CONCLUSION A detailed quantitative analysis of LGE-based scar maps, combined with advanced computational modeling, can accurately predict ICD therapy and could facilitate the early identification of high-risk patients in addition to left ventricular ejection fraction.
Collapse
MESH Headings
- Humans
- Tachycardia, Ventricular/physiopathology
- Tachycardia, Ventricular/therapy
- Tachycardia, Ventricular/etiology
- Tachycardia, Ventricular/diagnosis
- Male
- Female
- Myocardial Infarction/complications
- Myocardial Infarction/physiopathology
- Middle Aged
- Magnetic Resonance Imaging, Cine/methods
- Prospective Studies
- Defibrillators, Implantable
- Aged
- Death, Sudden, Cardiac/prevention & control
- Death, Sudden, Cardiac/etiology
- Imaging, Three-Dimensional
- Risk Assessment/methods
- Heart Ventricles/physiopathology
- Heart Ventricles/diagnostic imaging
Collapse
Affiliation(s)
- Pranav Bhagirath
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Fernando O Campos
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Hassan A Zaidi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Zhong Chen
- Department of Cardiology, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Mark Elliott
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Cardiology, St. Thomas' Hospital, London, United Kingdom
| | - Justin Gould
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Cardiology, St. Thomas' Hospital, London, United Kingdom
| | - Michiel J B Kemme
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Marco J W Götte
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Pieter G Postema
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Anton J Prassl
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | | | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria; NumeriCor GmbH, Graz, Austria
| | | | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Trayanova NA, Lyon A, Shade J, Heijman J. Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation. Physiol Rev 2024; 104:1265-1333. [PMID: 38153307 PMCID: PMC11381036 DOI: 10.1152/physrev.00017.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales, makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias, from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed, and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook toward potential future advances, including the combination of mechanistic modeling and machine learning/artificial intelligence, is provided. As the field of cardiology is embarking on a journey toward precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Aurore Lyon
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Julie Shade
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Ciaccio EJ, Saluja DS, Peters NS, Yarmohammadi H. Role of activation signatures in re-entrant ventricular tachycardia circuits. J Cardiovasc Electrophysiol 2024; 35:267-277. [PMID: 38073065 DOI: 10.1111/jce.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Development of a rapid means to verify the ventricular tachycardia (VT) isthmus location from heart surface electrogram recordings would be a helpful tool for the electrophysiologist. METHOD Myocardial infarction was induced in 22 canines by left anterior descending coronary artery ligation under general anesthesia. After 3-5 days, VT was inducible via programmed electrical stimulation at the anterior left ventricular epicardial surface. Bipolar VT electrograms were acquired from 196 to 312 recording sites using a multielectrode array. Electrograms were marked for activation time, and activation maps were constructed. The activation signal, or signature, is defined as the cumulative number of recording sites that have activated per millisecond, and it was utilized to segment each circuit into inner and outer circuit pathways, and as an estimate of best ablation lesion location to prevent VT. RESULTS VT circuit components were differentiable by activation signals as: inner pathway (mean: 0.30 sites activating/ms) and outer pathway (mean: 2.68 sites activating/ms). These variables were linearly related (p < .001). Activation signal characteristics were dependent in part upon the isthmus exit site. The inner circuit pathway determined by the activation signal overlapped and often extended beyond the activation map isthmus location for each circuit. The best lesion location estimated by the activation signal would likely block an electrical impulse traveling through the isthmus, to prevent VT in all circuits. CONCLUSIONS The activation signal algorithm, simple to implement for real-time computer display, approximates the VT isthmus location and shape as determined from activation marking, and best ablation lesion location to prevent reinduction.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, Columbia University, New York, New York, USA
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Deepak S Saluja
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Hirad Yarmohammadi
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Bhagirath P. Post-ablation cardiac magnetic resonance in ventricular tachycardia ablation: shining light on dark cores and corridors. Eur Heart J Cardiovasc Imaging 2024; 25:199-200. [PMID: 37861369 PMCID: PMC10824471 DOI: 10.1093/ehjci/jead275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Affiliation(s)
- Pranav Bhagirath
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Westminster Bridge Rd, London SE1 7EH, UK
- Department of Cardiology, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam,The Netherlands
| |
Collapse
|
5
|
Bhagirath P, Campos FO, Postema PG, Kemme MJB, Wilde AAM, Prassl AJ, Neic A, Rinaldi CA, Götte MJW, Plank G, Bishop MJ. Arrhythmogenic vulnerability of re-entrant pathways in post-infarct ventricular tachycardia assessed by advanced computational modelling. Europace 2023; 25:euad198. [PMID: 37421339 PMCID: PMC10481251 DOI: 10.1093/europace/euad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023] Open
Abstract
AIMS Substrate assessment of scar-mediated ventricular tachycardia (VT) is frequently performed using late gadolinium enhancement (LGE) images. Although this provides structural information about critical pathways through the scar, assessing the vulnerability of these pathways for sustaining VT is not possible with imaging alone.This study evaluated the performance of a novel automated re-entrant pathway finding algorithm to non-invasively predict VT circuit and inducibility. METHODS Twenty post-infarct VT-ablation patients were included for retrospective analysis. Commercially available software (ADAS3D left ventricular) was used to generate scar maps from 2D-LGE images using the default 40-60 pixel-signal-intensity (PSI) threshold. In addition, algorithm sensitivity for altered thresholds was explored using PSI 45-55, 35-65, and 30-70. Simulations were performed on the Virtual Induction and Treatment of Arrhythmias (VITA) framework to identify potential sites of block and assess their vulnerability depending on the automatically computed round-trip-time (RTT). Metrics, indicative of substrate complexity, were correlated with VT-recurrence during follow-up. RESULTS Total VTs (85 ± 43 vs. 42 ± 27) and unique VTs (9 ± 4 vs. 5 ± 4) were significantly higher in patients with- compared to patients without recurrence, and were predictive of recurrence with area under the curve of 0.820 and 0.770, respectively. VITA was robust to scar threshold variations with no significant impact on total and unique VTs, and mean RTT between the four models. Simulation metrics derived from PSI 45-55 model had the highest number of parameters predictive for post-ablation VT-recurrence. CONCLUSION Advanced computational metrics can non-invasively and robustly assess VT substrate complexity, which may aid personalized clinical planning and decision-making in the treatment of post-infarction VT.
Collapse
Affiliation(s)
- Pranav Bhagirath
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, London SE1 7EH, UK
- Department of Cardiology, St Thomas' Hospital, London SE1 7EH, UK
| | - Fernando O Campos
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, London SE1 7EH, UK
| | - Pieter G Postema
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Michiel J B Kemme
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A M Wilde
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Anton J Prassl
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Aurel Neic
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | | | - Marco J W Götte
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, London SE1 7EH, UK
| |
Collapse
|
6
|
Whitaker J, Baum TE, Qian P, Prassl AJ, Plank G, Blankstein R, Cochet H, Sauer WH, Bishop MJ, Tedrow U. Frequency Domain Analysis of Endocardial Electrograms for Detection of Nontransmural Myocardial Fibrosis in Nonischemic Cardiomyopathy. JACC Clin Electrophysiol 2023; 9:923-935. [PMID: 36669900 DOI: 10.1016/j.jacep.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Voltage mapping in nonischemic cardiomyopathy can fail to identify midmyocardial substrate for ventricular arrhythmias, an important cause of ablation failure. OBJECTIVES The aim of this study was to assess whether frequency domain analysis of endocardial left ventricular electrograms (EGMs) can better predict the presence of midmyocardial fibrosis (MMF) compared with voltage amplitude. METHODS Nonischemic cardiomyopathy patients undergoing ventricular tachycardia ablation with registered preprocedural cardiac computed tomography and late iodine enhancement were included. Presence of fibrosis at each EGM site was assessed. Bipolar and unipolar EGMs were transformed to the frequency domain using multitaper spectral analysis. Singular value decomposition of the EGM frequency spectrum was used within a supervised machine learning process to select features to predict the presence of MMF and compare against predictions using voltage amplitude. RESULTS Thirteen patients were included (median age 57 years [IQR: 28-73 years], median ejection fraction 40% [IQR: 15%-57%]). A total of 6,015 EGM pairs were processed: 2,459 EGM pairs in MMF areas and 3,556 EGM pairs in non-MMF areas. Supervised classifiers were trained with stratified k-fold cross-validation within patients. The distribution of mean area under the curve metrics using frequency features, f, was significantly greater than voltage feature area under the curve metrics, v, (mean f = 0.841 [95% CI: 0.789-0.884] vs mean v = 0.591 [95% CI: 0.530-0.658]; P < 0.001), indicating that frequency-trained classifiers better predicted the presence of MMF. CONCLUSIONS These data indicate the promising discriminatory value of endocardial EGM frequency content in the assessment of concealed myocardial substrate. Further studies are needed to investigate the importance of the specific frequency features identified.
Collapse
Affiliation(s)
- John Whitaker
- Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Taylor E Baum
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Anton J Prassl
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Ron Blankstein
- Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Hubert Cochet
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, Pessac, France
| | - William H Sauer
- Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | | | - Usha Tedrow
- Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Sung E, Prakosa A, Kyranakis S, Berger RD, Chrispin J, Trayanova NA. Wavefront directionality and decremental stimuli synergistically improve identification of ventricular tachycardia substrate: insights from personalized computational heart models. Europace 2023; 25:223-235. [PMID: 36006658 PMCID: PMC10103576 DOI: 10.1093/europace/euac140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/16/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Multiple wavefront pacing (MWP) and decremental pacing (DP) are two electroanatomic mapping (EAM) strategies that have emerged to better characterize the ventricular tachycardia (VT) substrate. The aim of this study was to assess how well MWP, DP, and their combination improve identification of electrophysiological abnormalities on EAM that reflect infarct remodelling and critical VT sites. METHODS AND RESULTS Forty-eight personalized computational heart models were reconstructed using images from post-infarct patients undergoing VT ablation. Paced rhythms were simulated by delivering an initial (S1) and an extra-stimulus (S2) from one of 100 locations throughout each heart model. For each pacing, unipolar signals were computed along the myocardial surface to simulate substrate EAM. Six EAM features were extracted and compared with the infarct remodelling and critical VT sites. Concordance of S1 EAM features between different maps was lower in hearts with smaller amounts of remodelling. Incorporating S1 EAM features from multiple maps greatly improved the detection of remodelling, especially in hearts with less remodelling. Adding S2 EAM features from multiple maps decreased the number of maps required to achieve the same detection accuracy. S1 EAM features from multiple maps poorly identified critical VT sites. However, combining S1 and S2 EAM features from multiple maps paced near VT circuits greatly improved identification of critical VT sites. CONCLUSION Electroanatomic mapping with MWP is more advantageous for characterization of substrate in hearts with less remodelling. During substrate EAM, MWP and DP should be combined and delivered from locations proximal to a suspected VT circuit to optimize identification of the critical VT site.
Collapse
Affiliation(s)
- Eric Sung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Adityo Prakosa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Stephen Kyranakis
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ronald D Berger
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Jonathan Chrispin
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
8
|
Campos FO, Neic A, Mendonca Costa C, Whitaker J, O'Neill M, Razavi R, Rinaldi CA, DanielScherr, Niederer SA, Plank G, Bishop MJ. An automated near-real time computational method for induction and treatment of scar-related ventricular tachycardias. Med Image Anal 2022; 80:102483. [PMID: 35667328 PMCID: PMC10114098 DOI: 10.1016/j.media.2022.102483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023]
Abstract
Catheter ablation is currently the only curative treatment for scar-related ventricular tachycardias (VTs). However, not only are ablation procedures long, with relatively high risk, but success rates are punitively low, with frequent VT recurrence. Personalized in-silico approaches have the opportunity to address these limitations. However, state-of-the-art reaction diffusion (R-D) simulations of VT induction and subsequent circuits used for in-silico ablation target identification require long execution times, along with vast computational resources, which are incompatible with the clinical workflow. Here, we present the Virtual Induction and Treatment of Arrhythmias (VITA), a novel, rapid and fully automated computational approach that uses reaction-Eikonal methodology to induce VT and identify subsequent ablation targets. The rationale for VITA is based on finding isosurfaces associated with an activation wavefront that splits in the ventricles due to the presence of an isolated isthmus of conduction within the scar; once identified, each isthmus may be assessed for their vulnerability to sustain a reentrant circuit, and the corresponding exit site automatically identified for potential ablation targeting. VITA was tested on a virtual cohort of 7 post-infarcted porcine hearts and the results compared to R-D simulations. Using only a standard desktop machine, VITA could detect all scar-related VTs, simulating activation time maps and ECGs (for clinical comparison) as well as computing ablation targets in 48 minutes. The comparable VTs probed by the R-D simulations took 68.5 hours on 256 cores of high-performance computing infrastructure. The set of lesions computed by VITA was shown to render the ventricular model VT-free. VITA could be used in near real-time as a complementary modality aiding in clinical decision-making in the treatment of post-infarction VTs.
Collapse
Affiliation(s)
- Fernando O Campos
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | | | - Caroline Mendonca Costa
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Guy's and St. Thomas' NHS Foundation Trust, Cardiovascular Directorate
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Guy's and St. Thomas' NHS Foundation Trust, Cardiovascular Directorate
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Christopher A Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Guy's and St. Thomas' NHS Foundation Trust, Cardiovascular Directorate
| | - DanielScherr
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gernot Plank
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Graham AJ, Orini M, Zacur E, Dhillon G, Jones D, Prabhu S, Pugliese F, Lowe M, Ahsan S, Earley MJ, Chow A, Sporton S, Dhinoja M, Hunter RJ, Schilling RJ, Lambiase PD. Assessing Noninvasive Delineation of Low-Voltage Zones Using ECG Imaging in Patients With Structural Heart Disease. JACC Clin Electrophysiol 2022; 8:426-436. [PMID: 35450597 DOI: 10.1016/j.jacep.2021.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study sought to assess the association between electrocardiographic imaging (ECGI) parameters and voltage from simultaneous electroanatomic mapping (EAM). BACKGROUND ECGI offers noninvasive assessment of electrophysiologic features relevant for mapping ventricular arrhythmia and its substrate, but the accuracy of ECGI in the delineation of scar is unclear. METHODS Sixteen patients with structural heart disease underwent simultaneous ECGI (CardioInsight, Medtronic) and contact EAM (CARTO, Biosense-Webster) during ventricular tachycardia catheter ablation, with 7 mapped epicardially. ECGI and EAM geometries were coregistered using anatomic landmarks. ECGI points were paired to the closest site on the EAM within 10 mm. The association between EAM voltage and ECGI features from reconstructed epicardial unipolar electrograms was assessed by mixed-effects regression models. The classification of low-voltage regions was performed using receiver-operating characteristic analysis. RESULTS A total of 9,541 ECGI points (median: 596; interquartile range: 377-737 across patients) were paired to an EAM site. Epicardial EAM voltage was associated with ECGI features of signal fractionation and local repolarization dispersion (N = 7; P < 0.05), but they poorly classified sites with bipolar voltage of <1.5 mV or <0.5 mV thresholds (median area under the curve across patients: 0.50-0.62). No association was found between bipolar EAM voltage and low-amplitude reconstructed epicardial unipolar electrograms or ECGI-derived bipolar electrograms. Similar results were found in the combined cohort (n = 16), including endocardial EAM voltage compared to epicardial ECGI features (n = 9). CONCLUSIONS Despite a statistically significant association between ECGI features and EAM voltage, the accuracy of the delineation of low-voltage zones was modest. This may limit ECGI use for pr-procedural substrate analysis in ventricular tachycardia ablation, but it could provide value in risk assessment for ventricular arrhythmias.
Collapse
Affiliation(s)
- Adam J Graham
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Michele Orini
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Ernesto Zacur
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Gurpreet Dhillon
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Daniel Jones
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Sandeep Prabhu
- Department of Cardiology, The Alfred Hospital, Melbourne, Australia
| | - Francesca Pugliese
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Martin Lowe
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Syed Ahsan
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Mark J Earley
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Anthony Chow
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Simon Sporton
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Mehul Dhinoja
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Ross J Hunter
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Richard J Schilling
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre, Barts Health National Health Service Trust, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
10
|
Gionti V, Scacchi S, Colli Franzone P, Pavarino LF, Dore R, Storti C. Role of Scar and Border Zone Geometry on the Genesis and Maintenance of Re-Entrant Ventricular Tachycardia in Patients With Previous Myocardial Infarction. Front Physiol 2022; 13:834747. [PMID: 35399271 PMCID: PMC8989182 DOI: 10.3389/fphys.2022.834747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
In patients with healed myocardial infarction, the left ventricular ejection fraction is characterized by low sensitivity and specificity in the prediction of future malignant arrhythmias. Thus, there is the need for new parameters in daily practice to perform arrhythmic risk stratification. The aim of this study is to identify some features of proarrhythmic geometric configurations of scars and border zones (BZ), by means of numerical simulations based on left ventricular models derived from post myocardial infarction patients. Two patients with similar clinical characteristics were included in this study. Both patients exhibited left ventricular scars characterized by subendo- and subepicardial BZ and a transmural BZ isthmus. The scar of patient #1 was significantly larger than that of patient #2, whereas the transmural BZ isthmus and the subdendo- and subepicardial BZs of patient #2 were thicker than those of patient #1. Patient #1 was positive at electrophysiologic testing, whereas patient #2 was negative. Based on the cardiac magnetic resonance (CMR) data, we developed a geometric model of the left ventricles of the two patients, taking into account the position, extent, and topological features of scars and BZ. The numerical simulations were based on the anisotropic monodomain model of electrocardiology. In the model of patient #1, sustained ventricular tachycardia (VT) was inducible by an S2 stimulus delivered at any of the six stimulation sites considered, while in the model of patient #2 we were not able to induce sustained VT. In the model of patient #1, making the subendo- and subepicardial BZs as thick as those of patient #2 did not affect the inducibility and maintenance of VT. On the other hand, in the model of patient #2, making the subendo- and subepicardial BZs as thin as those of patient #1 yielded sustained VT. In conclusion, the results show that the numerical simulations have an effective predictive capability in discriminating patients at high arrhythmic risk. The extent of the infarct scar and the presence of transmural BZ isthmuses and thin subendo- and subepicardial BZs promote sustained VT.
Collapse
Affiliation(s)
- Vincenzo Gionti
- Divisione di Cardiologia, Istituto di Cura Città di Pavia, Pavia, Italy
| | - Simone Scacchi
- Dipartimento di Matematica, Università degli Studi di Milano, Milan, Italy
- *Correspondence: Simone Scacchi
| | | | - Luca F. Pavarino
- Dipartimento di Matematica, Università degli Studi di Pavia, Pavia, Italy
| | - Roberto Dore
- Divisione di Cardiologia, Istituto di Cura Città di Pavia, Pavia, Italy
| | - Cesare Storti
- Divisione di Cardiologia, Istituto di Cura Città di Pavia, Pavia, Italy
| |
Collapse
|
11
|
Ciaccio EJ, Anter E, Coromilas J, Wan EY, Yarmohammadi H, Wit AL, Peters NS, Garan H. Structure and function of the ventricular tachycardia isthmus. Heart Rhythm 2022; 19:137-153. [PMID: 34371192 DOI: 10.1016/j.hrthm.2021.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022]
Abstract
Catheter ablation of postinfarction reentrant ventricular tachycardia (VT) has received renewed interest owing to the increased availability of high-resolution electroanatomic mapping systems that can describe the VT circuits in greater detail, and the emergence and need to target noninvasive external beam radioablation. These recent advancements provide optimism for improving the clinical outcome of VT ablation in patients with postinfarction and potentially other scar-related VTs. The combination of analyses gleaned from studies in swine and canine models of postinfarction reentrant VT, and in human studies, suggests the existence of common electroanatomic properties for reentrant VT circuits. Characterizing these properties may be useful for increasing the specificity of substrate mapping techniques and for noninvasive identification to guide ablation. Herein, we describe properties of reentrant VT circuits that may assist in elucidating the mechanisms of onset and maintenance, as well as a means to localize and delineate optimal catheter ablation targets.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom.
| | - Elad Anter
- Department of Cardiovascular Medicine, Cardiac Electrophysiology, Cleveland Clinic, Cleveland, Ohio
| | - James Coromilas
- Department of Medicine, Division of Cardiovascular Disease and Hypertension, Rutgers University, New Brunswick, New Jersey
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Hirad Yarmohammadi
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Andrew L Wit
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
12
|
Sung E, Etoz S, Zhang Y, Trayanova NA. Whole-heart ventricular arrhythmia modeling moving forward: Mechanistic insights and translational applications. BIOPHYSICS REVIEWS 2021; 2:031304. [PMID: 36281224 PMCID: PMC9588428 DOI: 10.1063/5.0058050] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Ventricular arrhythmias are the primary cause of sudden cardiac death and one of the leading causes of mortality worldwide. Whole-heart computational modeling offers a unique approach for studying ventricular arrhythmias, offering vast potential for developing both a mechanistic understanding of ventricular arrhythmias and clinical applications for treatment. In this review, the fundamentals of whole-heart ventricular modeling and current methods of personalizing models using clinical data are presented. From this foundation, the authors summarize recent advances in whole-heart ventricular arrhythmia modeling. Efforts in gaining mechanistic insights into ventricular arrhythmias are discussed, in addition to other applications of models such as the assessment of novel therapeutics. The review emphasizes the unique benefits of computational modeling that allow for insights that are not obtainable by contemporary experimental or clinical means. Additionally, the clinical impact of modeling is explored, demonstrating how patient care is influenced by the information gained from ventricular arrhythmia models. The authors conclude with future perspectives about the direction of whole-heart ventricular arrhythmia modeling, outlining how advances in neural network methodologies hold the potential to reduce computational expense and permit for efficient whole-heart modeling.
Collapse
Affiliation(s)
- Eric Sung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sevde Etoz
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yingnan Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Author to whom correspondence should be addressed: . Tel.: 410-516-4375
| |
Collapse
|