1
|
Fu Y, Liu Y, Zhong C, Heidari AA, Liu L, Yu S, Chen H, Wu P. An enhanced machine learning-based prognostic prediction model for patients with AECOPD on invasive mechanical ventilation. iScience 2024; 27:111230. [PMID: 39640592 PMCID: PMC11617955 DOI: 10.1016/j.isci.2024.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) causes irreversible airflow limitations, increasing global morbidity and mortality. Acute exacerbations (AECOPDs) worsen symptoms and may require mechanical ventilation, leading to complications. Understanding factors affecting AECOPD prognosis during mechanical ventilation is crucial. Inspired by rime ice physics, the RIME algorithm has been proposed but it had limitations in feature selection and solution space exploration. We improve RIME by adding a dispersed foraging mechanism and differential crossover operator, creating DDRIME. Our study analyzes patient data to identify factors related to invasive mechanical ventilation in AECOPD. DDRIME's performance is tested against RIME on 83 functions and 12 public datasets for feature selection. It outperformed most algorithms, with bDDRIME_KNN showing high accuracy in predicting AECOPD outcomes. Key indicators-chronic heart failure (CHF), D-dimer (D-D), fungal infection (FI), and pectoral muscle area (PMA)-predicted prognosis with >0.98 accuracy. bDDRIME is thus a valuable tool for predicting AECOPD patients' outcomes on mechanical ventilation.
Collapse
Affiliation(s)
- Yujie Fu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yining Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chuyue Zhong
- The First Clinical College, Wenzhou Medical University, Wenzhou 325000, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Sudan Yu
- Department of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou 325035, China
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
2
|
Zhou X, Chen Y, Gui W, Heidari AA, Cai Z, Wang M, Chen H, Li C. Enhanced differential evolution algorithm for feature selection in tuberculous pleural effusion clinical characteristics analysis. Artif Intell Med 2024; 153:102886. [PMID: 38749310 DOI: 10.1016/j.artmed.2024.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/17/2024] [Accepted: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Tuberculous pleural effusion poses a significant threat to human health due to its potential for severe disease and mortality. Without timely treatment, it may lead to fatal consequences. Therefore, early identification and prompt treatment are crucial for preventing problems such as chronic lung disease, respiratory failure, and death. This study proposes an enhanced differential evolution algorithm based on colony predation and dispersed foraging strategies. A series of experiments conducted on the IEEE CEC 2017 competition dataset validated the global optimization capability of the method. Additionally, a binary version of the algorithm is introduced to assess the algorithm's ability to address feature selection problems. Comprehensive comparisons of the effectiveness of the proposed algorithm with 8 similar algorithms were conducted using public datasets with feature sizes ranging from 10 to 10,000. Experimental results demonstrate that the proposed method is an effective feature selection approach. Furthermore, a predictive model for tuberculous pleural effusion is established by integrating the proposed algorithm with support vector machines. The performance of the proposed model is validated using clinical records collected from 140 tuberculous pleural effusion patients, totaling 10,780 instances. Experimental results indicate that the proposed model can identify key correlated indicators such as pleural effusion adenosine deaminase, temperature, white blood cell count, and pleural effusion color, aiding in the clinical feature analysis of tuberculous pleural effusion and providing early warning for its treatment and prediction.
Collapse
Affiliation(s)
- Xinsen Zhou
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China.
| | - Yi Chen
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China.
| | - Wenyong Gui
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Zhennao Cai
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China.
| | - Mingjing Wang
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325000, China.
| | - Huiling Chen
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China.
| | - Chengye Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
3
|
Zhang Z, Zhou H, Shi X, Ran R, Tian C, Zhou F. Quality-driven deep cross-supervised learning network for semi-supervised medical image segmentation. Comput Biol Med 2024; 176:108609. [PMID: 38772056 DOI: 10.1016/j.compbiomed.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/31/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Semi-supervised medical image segmentation presents a compelling approach to streamline large-scale image analysis, alleviating annotation burdens while maintaining comparable performance. Despite recent strides in cross-supervised training paradigms, challenges persist in addressing sub-network disagreement and training efficiency and reliability. In response, our paper introduces a novel cross-supervised learning framework, Quality-driven Deep Cross-supervised Learning Network (QDC-Net). QDC-Net incorporates both an evidential sub-network and an vanilla sub-network, leveraging their complementary strengths to effectively handle disagreement. To enable the reliability and efficiency of semi-supervised training, we introduce a real-time quality estimation of the model's segmentation performance and propose a directional cross-training approach through the design of directional weights. We further design a truncated form of sample-wise loss weighting to mitigate the impact of inaccurate predictions and collapsed samples in semi-supervised training. Extensive experiments on LA and Pancreas-CT datasets demonstrate that QDC-Net surpasses other state-of-the-art methods in semi-supervised medical image segmentation. Code release is available at https://github.com/Medsemiseg.
Collapse
Affiliation(s)
- Zhenxi Zhang
- The Ministry of Education, Key Laboratory of Electronic Information Counter-measure and Simulation, Xidian University, Xi'an 710071, China; School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Heng Zhou
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Xiaoran Shi
- The Ministry of Education, Key Laboratory of Electronic Information Counter-measure and Simulation, Xidian University, Xi'an 710071, China; School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Ran Ran
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, China; Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, China; Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Chunna Tian
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Feng Zhou
- The Ministry of Education, Key Laboratory of Electronic Information Counter-measure and Simulation, Xidian University, Xi'an 710071, China; School of Electronic Engineering, Xidian University, Xi'an 710071, China.
| |
Collapse
|
4
|
Peng Y, Yi X, Zhang D, Zhang L, Tian Y, Zhou Z. ConvMedSegNet: A multi-receptive field depthwise convolutional neural network for medical image segmentation. Comput Biol Med 2024; 176:108559. [PMID: 38759586 DOI: 10.1016/j.compbiomed.2024.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
In order to achieve highly precise medical image segmentation, this paper presents ConvMedSegNet, a novel convolutional neural network designed with a U-shaped architecture that seamlessly integrates two crucial modules: the multi-receptive field depthwise convolution module (MRDC) and the guided fusion module (GF). The MRDC module's primary function is to capture texture information of varying sizes through multi-scale convolutional layers. This information is subsequently utilized to enhance the correlation of global feature data by expanding the network's width. This strategy adeptly preserves the inherent inductive biases of convolution while concurrently amplifying the network's ability to establish dependencies on global information. Conversely, the GF module assumes responsibility for implementing multi-scale feature fusion by connecting the encoder and decoder components. It facilitates the transfer of information between features that are separated over substantial distances through guided fusion, effectively minimizing the loss of critical data. In experiments conducted on public medical image datasets such as BUSI and ISIC2018, ConvMedSegNet outperforms several advanced competing methods, yielding superior results. Additionally, the code can be accessed at https://github.com/csust-yixin/ConvMedSegNet.
Collapse
Affiliation(s)
- Yuxu Peng
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Xin Yi
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Dengyong Zhang
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | | | - Yuehong Tian
- Changkuangao Beijing Technology Co., Ltd, Beijing 101100, China
| | - Zhifeng Zhou
- Wenzhou University Library, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Guo L, Liu L, Zhao Z, Xia X. An improved RIME optimization algorithm for lung cancer image segmentation. Comput Biol Med 2024; 174:108219. [PMID: 38581997 DOI: 10.1016/j.compbiomed.2024.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 04/08/2024]
Abstract
Lung cancer is a prevalent form of cancer worldwide, necessitating early and accurate diagnosis for successful treatment. Within medical imaging processing, image segmentation plays a vital role in medical diagnosis. This study applies swarm intelligence algorithms to segment lung cancer pathological images at three levels. The original algorithm incorporates the Whales' search prey mechanism and a random mutation strategy, resulting in an improved version named WDRIME, which aims to enhance convergence speed and avoid local optima (LO). Additionally, the study introduces a multilevel image segmentation method for lung cancer based on the improved algorithm. WDRIME's performance is showcased by comparing it to the state-of-the-art algorithms in IEEE CEC2014. To design a framework for lung cancer image segmentation, this paper combines the WDRIME algorithm with the multilevel segmentation method. Evaluation of the segmentation results employs metrics such as PSNR, SSIM, and FSIM. Overall, the analysis confirms that the proposed algorithm supersedes others regarding convergence speed and accuracy. This model signifies a high-quality segmentation method and offers practical support for in-depth exploration of lung cancer pathological images.
Collapse
Affiliation(s)
- Lei Guo
- Intensive Care Unit, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, China.
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Zhiguang Zhao
- Department of Pathology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, China.
| | - Xiaodong Xia
- Department of Respiratory Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, China.
| |
Collapse
|
6
|
Lian J, Hui G, Ma L, Zhu T, Wu X, Heidari AA, Chen Y, Chen H. Parrot optimizer: Algorithm and applications to medical problems. Comput Biol Med 2024; 172:108064. [PMID: 38452469 DOI: 10.1016/j.compbiomed.2024.108064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 03/09/2024]
Abstract
Stochastic optimization methods have gained significant prominence as effective techniques in contemporary research, addressing complex optimization challenges efficiently. This paper introduces the Parrot Optimizer (PO), an efficient optimization method inspired by key behaviors observed in trained Pyrrhura Molinae parrots. The study features qualitative analysis and comprehensive experiments to showcase the distinct characteristics of the Parrot Optimizer in handling various optimization problems. Performance evaluation involves benchmarking the proposed PO on 35 functions, encompassing classical cases and problems from the IEEE CEC 2022 test sets, and comparing it with eight popular algorithms. The results vividly highlight the competitive advantages of the PO in terms of its exploratory and exploitative traits. Furthermore, parameter sensitivity experiments explore the adaptability of the proposed PO under varying configurations. The developed PO demonstrates effectiveness and superiority when applied to engineering design problems. To further extend the assessment to real-world applications, we included the application of PO to disease diagnosis and medical image segmentation problems, which are highly relevant and significant in the medical field. In conclusion, the findings substantiate that the PO is a promising and competitive algorithm, surpassing some existing algorithms in the literature. The supplementary files and open source codes of the proposed Parrot Optimizer (PO) is available at https://aliasgharheidari.com/PO.html and https://github.com/junbolian/PO.
Collapse
Affiliation(s)
- Junbo Lian
- College of Mathematics and Computer Sciences, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, PR China.
| | - Guohua Hui
- College of Mathematics and Computer Sciences, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, PR China.
| | - Ling Ma
- College of Mathematics and Computer Sciences, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, PR China.
| | - Ting Zhu
- College of Mathematics and Computer Sciences, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, PR China.
| | - Xincan Wu
- College of Mathematics and Computer Sciences, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, PR China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Yi Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Guo H, Liu H, Zhu H, Li M, Yu H, Zhu Y, Chen X, Xu Y, Gao L, Zhang Q, Shentu Y. Exploring a novel HE image segmentation technique for glioblastoma: A hybrid slime mould and differential evolution approach. Comput Biol Med 2024; 168:107653. [PMID: 37984200 DOI: 10.1016/j.compbiomed.2023.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Glioblastoma is a primary brain tumor with high incidence and mortality rates, posing a significant threat to human health. It is crucial to provide necessary diagnostic assistance for its management. Among them, Multi-threshold Image Segmentation (MIS) is considered the most efficient and intuitive method in image processing. In recent years, many scholars have combined different metaheuristic algorithms with MIS to improve the quality of Image Segmentation (IS). Slime Mould Algorithm (SMA) is a metaheuristic approach inspired by the foraging behavior of slime mould populations in nature. In this investigation, we introduce a hybridized variant named BDSMA, aimed at overcoming the inherent limitations of the original algorithm. These limitations encompass inadequate exploitation capacity and a tendency to converge prematurely towards local optima when dealing with complex multidimensional problems. To bolster the algorithm's optimization prowess, we integrate the original algorithm with a robust exploitative operator called Differential Evolution (DE). Additionally, we introduce a strategy for handling solutions that surpass boundaries. The incorporation of an advanced cooperative mixing model accelerates the convergence of BDSMA, refining its precision and preventing it from becoming trapped in local optima. To substantiate the effectiveness of our proposed approach, we conduct a comprehensive series of comparative experiments involving 30 benchmark functions. The results of these experiments demonstrate the superiority of our method in terms of both convergence speed and precision. Moreover, within this study, we propose a MIS technique. This technique is subsequently employed to conduct experiments on IS at both low and high threshold levels. The effectiveness of the BDSMA-based MIS technique is further showcased through its successful application to the medical image of brain glioblastoma. The evaluation of these experimental outcomes, utilizing image quality metrics, conclusively underscores the exceptional efficacy of the algorithm we have put forth.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Hanbo Liu
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Hong Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Mingyang Li
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Helong Yu
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yun Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiaoxiao Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yujia Xu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Lianxing Gao
- College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Qiongying Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Zhu W, Fang L, Ye X, Medani M, Escorcia-Gutierrez J. IDRM: Brain tumor image segmentation with boosted RIME optimization. Comput Biol Med 2023; 166:107551. [PMID: 37832284 DOI: 10.1016/j.compbiomed.2023.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Timely diagnosis of medical conditions can significantly mitigate the risks they pose to human life. Consequently, there is an urgent demand for an effective auxiliary model that assists physicians in accurately diagnosing medical conditions based on imaging data. While multi-threshold image segmentation models have garnered considerable attention due to their simplicity and ease of implementation, the selection of threshold combinations greatly influences the segmentation performance. Traditional optimization algorithms often require substantial time to address multi-threshold image segmentation problems, and their segmentation accuracy is frequently unsatisfactory. As a result, metaheuristic algorithms have been employed in this domain. However, several algorithms suffer from drawbacks such as premature convergence and inadequate exploration of the solution space when it comes to threshold selection. For instance, the recently proposed optimization algorithm RIME, inspired by the physical phenomenon of rime-ice, falls short in terms of avoiding local optima and fully exploring the solution space. Therefore, this study introduces an enhanced version of RIME, called IDRM, which incorporates an interactive mechanism and Gaussian diffusion strategy. The interactive mechanism facilitates information exchange among agents, enabling them to evolve towards more promising directions and increasing the likelihood of discovering the optimal solution. Additionally, the Gaussian diffusion strategy enhances the agents' local exploration capabilities and expands their search within the solution space, effectively preventing them from becoming trapped in local optima. Experimental results on 30 benchmark test functions demonstrate that IDRM exhibits favorable optimization performance across various optimization functions, showcasing its robustness and convergence properties. Furthermore, the algorithm is applied to select threshold combinations for brain tumor image segmentation, and the results are evaluated using metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). The overall findings consistently highlight the exceptional performance of this approach, further validating the effectiveness of IDRM in addressing image segmentation problems.
Collapse
Affiliation(s)
- Wei Zhu
- School of Resources and Safety Engineering, Central South University, Changsha, 410083, China.
| | - Liming Fang
- School of Humanities and Communication, Zhejiang Gongshang University, Hangzhou, 310000, China.
| | - Xia Ye
- School of the 1st Clinical Medical Sciences(School of Information and Engineering), Wenzhou Medical University, Wenzhou, 325000, China.
| | - Mohamed Medani
- Department of Computer Science, College of Science and Art at Mahayil, King Khalid University, Muhayil Aseer, 62529, Saudi Arabia.
| | - José Escorcia-Gutierrez
- Department of Computational Science and Electronics, Universidad de la Costa, CUC, Barranquilla, 080002, Colombia.
| |
Collapse
|
9
|
Wu Q, Tang X, Li R, Liu L, Chen HL. An enhanced decision-making framework for predicting future trends of sharing economy. PLoS One 2023; 18:e0291626. [PMID: 37797038 PMCID: PMC10553323 DOI: 10.1371/journal.pone.0291626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
This work aims to provide a reliable and intelligent prediction model for future trends in sharing economy. Moreover, it presents valuable insights for decision-making and policy development by relevant governmental bodies. Furthermore, the study introduces a predictive system that incorporates an enhanced Harris Hawk Optimization (HHO) algorithm and a K-Nearest Neighbor (KNN) forecasting framework. The method utilizes an improved simulated annealing mechanism and a Gaussian bare bone structure to improve the original HHO, termed SGHHO. To achieve optimal prediction performance and identify essential features, a refined simulated annealing mechanism is employed to mitigate the susceptibility of the original HHO algorithm to local optima. The algorithm employs a mechanism that boosts its global search ability by generating fresh solution sets at a specific likelihood. This mechanism dynamically adjusts the equilibrium between the exploration and exploitation phases, incorporating the Gaussian bare bone strategy. The best classification model (SGHHO-KNN) is developed to mine the key features with the improvement of both strategies. To assess the exceptional efficacy of the SGHHO algorithm, this investigation conducted a series of comparative trials employing the function set of IEEE CEC 2014. The outcomes of these experiments unequivocally demonstrate that the SGHHO algorithm outperforms the original HHO algorithm on 96.7% of the functions, substantiating its remarkable superiority. The algorithm can achieve the optimal value of the function on 67% of the tested functions and significantly outperforms other competing algorithms. In addition, the key features selected by the SGHHO-KNN model in the prediction experiment, including " Form of sharing economy in your region " and " Attitudes to the sharing economy ", are important for predicting the future trends of the sharing economy in this study. The results of the prediction demonstrate that the proposed model achieves an accuracy rate of 99.70% and a specificity rate of 99.38%. Consequently, the SGHHO-KNN model holds great potential as a reliable tool for forecasting the forthcoming trajectory of the sharing economy.
Collapse
Affiliation(s)
- Qiong Wu
- School of Marxism, Wenzhou University, Wenzhou, China
| | - Xiaoxiao Tang
- School of Marxism, Wenzhou University, Wenzhou, China
| | - Rongjie Li
- Wenzhou Business College, Wenzhou, China
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Ling Chen
- College of Computer Science an Artificial Intelligence, Wenzhou University, Wenzhou, China
| |
Collapse
|
10
|
Hao S, Huang C, Heidari AA, Xu Z, Chen H, Alabdulkreem E, Elmannai H, Wang X. Multi-threshold image segmentation using an enhanced fruit fly optimization for COVID-19 X-ray images. Biomed Signal Process Control 2023; 86:105147. [PMID: 37361197 PMCID: PMC10266503 DOI: 10.1016/j.bspc.2023.105147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Since the outbreak of COVID-19, it has seriously endangered the health of human beings. Computer automatic segmentation of COVID-19 X-ray images is an important means to assist doctors in rapid and accurate diagnosis. Therefore, this paper proposes a modified FOA (EEFOA) with two optimization strategies added to the original FOA, including elite natural evolution (ENE) and elite random mutation (ERM). To be specific, ENE and ERM can effectively speed up the convergence and deal with the problem of local optima, respectively. The outstanding performance of EEFOA was confirmed by experimental results comparing EEFOA with the original FOA, other FOA variants, and advanced algorithms at CEC2014. After that, EEFOA is implemented for multi-threshold image segmentation (MIS) of COVID-19 X-ray images, where a 2D histogram consisting of the original greyscale image and the non-local means image is used to represent the image information, and Rényi's entropy is used as the objective function to find the maximum value. The evaluation results of the MIS segmentation experiments show that, whether high or low threshold, EEFOA can achieve higher quality segmentation results and greater robustness than other advanced segmentation methods.
Collapse
Affiliation(s)
- Shuhui Hao
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Changcheng Huang
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ali Asghar Heidari
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Zhangze Xu
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Eatedal Alabdulkreem
- Department of Computer Science, College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hela Elmannai
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Xianchuan Wang
- Information Technology Center, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
11
|
Multi-head deep learning framework for pulmonary disease detection and severity scoring with modified progressive learning. Biomed Signal Process Control 2023; 85:104855. [PMID: 36987448 PMCID: PMC10036214 DOI: 10.1016/j.bspc.2023.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/26/2023]
Abstract
Chest X-rays (CXR) are the most commonly used imaging methodology in radiology to diagnose pulmonary diseases with close to 2 billion CXRs taken every year. The recent upsurge of COVID-19 and its variants accompanied by pneumonia and tuberculosis can be fatal in some cases and lives could be saved through early detection and appropriate intervention for the advanced cases. Thus CXRs can be used for an automated severity grading of pulmonary diseases that can aid radiologists in making better and informed diagnoses. In this article, we propose a single framework for disease classification and severity scoring produced by segmenting the lungs into six regions. We present a modified progressive learning technique in which the amount of augmentations at each step is capped. Our base network in the framework is first trained using modified progressive learning and can then be tweaked for new data sets. Furthermore, the segmentation task makes use of an attention map generated within and by the network itself. This attention mechanism allows to achieve segmentation results that are on par with networks having an order of magnitude or more parameters. We also propose severity score grading for 4 thoracic diseases that can provide a single-digit score corresponding to the spread of opacity in different lung segments with the help of radiologists. The proposed framework is evaluated using the BRAX data set for segmentation and classification into six classes with severity grading for a subset of the classes. On the BRAX validation data set, we achieve F1 scores of 0.924 and 0.939 without and with fine-tuning, respectively. A mean matching score of 80.8% is obtained for severity score grading while an average area under receiver operating characteristic curve of 0.88 is achieved for classification.
Collapse
|
12
|
Chen J, Cai Z, Heidari AA, Chen H, He Q, Escorcia-Gutierrez J, Mansour RF. Multi-threshold image segmentation based on an improved differential evolution: Case study of thyroid papillary carcinoma. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
13
|
Wang Z, Mo Y, Cui M, Hu J, Lyu Y. An improved golden jackal optimization for multilevel thresholding image segmentation. PLoS One 2023; 18:e0285211. [PMID: 37146052 PMCID: PMC10162520 DOI: 10.1371/journal.pone.0285211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Aerial photography is a long-range, non-contact method of target detection technology that enables qualitative or quantitative analysis of the target. However, aerial photography images generally have certain chromatic aberration and color distortion. Therefore, effective segmentation of aerial images can further enhance the feature information and reduce the computational difficulty for subsequent image processing. In this paper, we propose an improved version of Golden Jackal Optimization, which is dubbed Helper Mechanism Based Golden Jackal Optimization (HGJO), to apply multilevel threshold segmentation to aerial images. The proposed method uses opposition-based learning to boost population diversity. And a new approach to calculate the prey escape energy is proposed to improve the convergence speed of the algorithm. In addition, the Cauchy distribution is introduced to adjust the original update scheme to enhance the exploration capability of the algorithm. Finally, a novel "helper mechanism" is designed to improve the performance for escape the local optima. To demonstrate the effectiveness of the proposed algorithm, we use the CEC2022 benchmark function test suite to perform comparison experiments. the HGJO is compared with the original GJO and five classical meta-heuristics. The experimental results show that HGJO is able to achieve competitive results in the benchmark test set. Finally, all of the algorithms are applied to the experiments of variable threshold segmentation of aerial images, and the results show that the aerial photography images segmented by HGJO beat the others. Noteworthy, the source code of HGJO is publicly available at https://github.com/Vang-z/HGJO.
Collapse
Affiliation(s)
- Zihao Wang
- School of Artificial Intelligence, Guangxi Minzu University, Nanning, China
| | - Yuanbin Mo
- Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi Minzu University, Nanning, China
| | - Mingyue Cui
- School of Artificial Intelligence, Guangxi Minzu University, Nanning, China
| | - Jufeng Hu
- School of Artificial Intelligence, Guangxi Minzu University, Nanning, China
| | - Yucheng Lyu
- School of Artificial Intelligence, Guangxi Minzu University, Nanning, China
| |
Collapse
|
14
|
Chen J, Cai Z, Chen H, Chen X, Escorcia-Gutierrez J, Mansour RF, Ragab M. Renal Pathology Images Segmentation Based on Improved Cuckoo Search with Diffusion Mechanism and Adaptive Beta-Hill Climbing. JOURNAL OF BIONIC ENGINEERING 2023; 20:1-36. [PMID: 37361683 PMCID: PMC10154766 DOI: 10.1007/s42235-023-00365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/28/2023]
Abstract
Lupus Nephritis (LN) is a significant risk factor for morbidity and mortality in systemic lupus erythematosus, and nephropathology is still the gold standard for diagnosing LN. To assist pathologists in evaluating histopathological images of LN, a 2D Rényi entropy multi-threshold image segmentation method is proposed in this research to apply to LN images. This method is based on an improved Cuckoo Search (CS) algorithm that introduces a Diffusion Mechanism (DM) and an Adaptive β-Hill Climbing (AβHC) strategy called the DMCS algorithm. The DMCS algorithm is tested on 30 benchmark functions of the IEEE CEC2017 dataset. In addition, the DMCS-based multi-threshold image segmentation method is also used to segment renal pathological images. Experimental results show that adding these two strategies improves the DMCS algorithm's ability to find the optimal solution. According to the three image quality evaluation metrics: PSNR, FSIM, and SSIM, the proposed image segmentation method performs well in image segmentation experiments. Our research shows that the DMCS algorithm is a helpful image segmentation method for renal pathological images.
Collapse
Affiliation(s)
- Jiaochen Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 China
| | - Zhennao Cai
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 China
| | - Xiaowei Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - José Escorcia-Gutierrez
- Department of Computational Science and Electronics, Universidad de la Costa, CUC, 080002 Barranquilla, Colombia
| | - Romany F. Mansour
- Department of Mathematics, Faculty of Science, New Valley University, 72511, El-Kharga, Egypt
| | - Mahmoud Ragab
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Department of Mathematics, Faculty of Science, Al-Azhar University, Naser City, Cairo, 11884 Egypt
| |
Collapse
|
15
|
Shi M, Chen C, Liu L, Kuang F, Zhao D, Chen X. A grade-based search adaptive random slime mould optimizer for lupus nephritis image segmentation. Comput Biol Med 2023; 160:106950. [PMID: 37120988 DOI: 10.1016/j.compbiomed.2023.106950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
The segmentation of medical images is a crucial and demanding step in medical image processing that offers a solid foundation for subsequent extraction and analysis of medical image data. Although multi-threshold image segmentation is the most used and specialized basic image segmentation technique, it is computationally demanding and often produces subpar segmentation results, hence restricting its application. To solve this issue, this work develops a multi-strategy-driven slime mould algorithm (RWGSMA) for multi-threshold image segmentation. Specifically, the random spare strategy, the double adaptive weigh strategy, and the grade-based search strategy are used to improve the performance of SMA, resulting in an enhanced SMA version. The random spare strategy is mainly used to accelerate the convergence rate of the algorithm. To prevent SMA from falling towards the local optimum, the double adaptive weights are also applied. The grade-based search approach has also been developed to boost convergence performance. This study evaluates the efficacy of RWGSMA from many viewpoints using 30 test suites from IEEE CEC2017 to effectively demonstrate the importance of these techniques in RWGSMA. In addition, numerous typical images were used to show RWGSMA's segmentation performance. Using the multi-threshold segmentation approach with 2D Kapur's entropy as the RWGSMA fitness function, the suggested algorithm was then used to segment instances of lupus nephritis. The experimental findings demonstrate that the suggested RWGSMA beats numerous similar rivals, suggesting that it has a great deal of promise for segmenting histopathological images.
Collapse
Affiliation(s)
- Manrong Shi
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Chi Chen
- Wenzhou University of Technology, Wenzhou, 325035, China.
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Fangjun Kuang
- School of Information engineering, Wenzhou Business College, Wenzhou, 325035, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Xiaowei Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
16
|
Hou L, Li R, Mafarja M, Heidari AA, Liu L, Jin C, Zhou S, Chen H, Cai Z, Li C. Image segmentation of Intracerebral hemorrhage patients based on enhanced hunger Games search Optimizer. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Zhao S, Wang P, Heidari AA, Zhao X, Chen H. Boosted crow search algorithm for handling multi-threshold image problems with application to X-ray images of COVID-19. EXPERT SYSTEMS WITH APPLICATIONS 2023; 213:119095. [PMID: 36313263 PMCID: PMC9595503 DOI: 10.1016/j.eswa.2022.119095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 is pervasive and threatens the safety of people around the world. Therefore, now, a method is needed to diagnose COVID-19 accurately. The identification of COVID-19 by X-ray images is a common method. The target area is extracted from the X-ray images by image segmentation to improve classification efficiency and help doctors make a diagnosis. In this paper, we propose an improved crow search algorithm (CSA) based on variable neighborhood descent (VND) and information exchange mutation (IEM) strategies, called VMCSA. The original CSA quickly falls into the local optimum, and the possibility of finding the best solution is significantly reduced. Therefore, to help the algorithm avoid falling into local optimality and improve the global search capability of the algorithm, we introduce VND and IEM into CSA. Comparative experiments are conducted at CEC2014 and CEC'21 to demonstrate the better performance of the proposed algorithm in optimization. We also apply the proposed algorithm to multi-level thresholding image segmentation using Renyi's entropy as the objective function to find the optimal threshold, where we construct 2-D histograms with grayscale images and non-local mean images and maximize the Renyi's entropy on top of the 2-D histogram. The proposed segmentation method is evaluated on X-ray images of COVID-19 and compared with some algorithms. VMCSA has a significant advantage in segmentation results and obtains better robustness than other algorithms. The available extra info can be found at https://github.com/1234zsw/VMCSA.
Collapse
Affiliation(s)
- Songwei Zhao
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ali Asghar Heidari
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang 325035, China
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Xuehua Zhao
- School of Digital Media, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
18
|
Abualigah L, Habash M, Hanandeh ES, Hussein AM, Shinwan MA, Zitar RA, Jia H. Improved Reptile Search Algorithm by Salp Swarm Algorithm for Medical Image Segmentation. JOURNAL OF BIONIC ENGINEERING 2023; 20:1-25. [PMID: 36777369 PMCID: PMC9902839 DOI: 10.1007/s42235-023-00332-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding, called RSA-SSA. The proposed method introduces a better search space to find the optimal solution at each iteration. However, we proposed RSA-SSA to avoid the searching problem in the same area and determine the optimal multi-level thresholds. The obtained solutions by the proposed method are represented using the image histogram. The proposed RSA-SSA employed Otsu's variance class function to get the best threshold values at each level. The performance measure for the proposed method is valid by detecting fitness function, structural similarity index, peak signal-to-noise ratio, and Friedman ranking test. Several benchmark images of COVID-19 validate the performance of the proposed RSA-SSA. The results showed that the proposed RSA-SSA outperformed other metaheuristics optimization algorithms published in the literature.
Collapse
Affiliation(s)
- Laith Abualigah
- Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, Al Al-Bayt University, Mafraq, 25113 Jordan
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, 19328 Jordan
- Faculty of Information Technology, Middle East University, Amman, 11831 Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11931 Jordan
- School of Computer Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | | | - Essam Said Hanandeh
- Department of Computer Information System, Zarqa University, P.O. Box 13132, Zarqa, Jordan
| | - Ahmad MohdAziz Hussein
- Deanship of E-Learning and Distance Education, Umm Al-Qura University, Makkah, 21955 Saudi Arabia
| | - Mohammad Al Shinwan
- Faculty of Information Technology, Applied Science Private University, Amman, 11931 Jordan
| | - Raed Abu Zitar
- Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Heming Jia
- School of Information Engineering, Sanming University, Sanming, 365004 China
| |
Collapse
|
19
|
Hao S, Huang C, Heidari AA, Xu Z, Chen H, Althobaiti MM, Mansour RF, Chen X. Performance optimization of water cycle algorithm for multilevel lupus nephritis image segmentation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Gharehchopogh FS, Ucan A, Ibrikci T, Arasteh B, Isik G. Slime Mould Algorithm: A Comprehensive Survey of Its Variants and Applications. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:2683-2723. [PMID: 36685136 PMCID: PMC9838547 DOI: 10.1007/s11831-023-09883-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Meta-heuristic algorithms have a high position among academic researchers in various fields, such as science and engineering, in solving optimization problems. These algorithms can provide the most optimal solutions for optimization problems. This paper investigates a new meta-heuristic algorithm called Slime Mould algorithm (SMA) from different optimization aspects. The SMA algorithm was invented due to the fluctuating behavior of slime mold in nature. It has several new features with a unique mathematical model that uses adaptive weights to simulate the biological wave. It provides an optimal pathway for connecting food with high exploration and exploitation ability. As of 2020, many types of research based on SMA have been published in various scientific databases, including IEEE, Elsevier, Springer, Wiley, Tandfonline, MDPI, etc. In this paper, based on SMA, four areas of hybridization, progress, changes, and optimization are covered. The rate of using SMA in the mentioned areas is 15, 36, 7, and 42%, respectively. According to the findings, it can be claimed that SMA has been repeatedly used in solving optimization problems. As a result, it is anticipated that this paper will be beneficial for engineers, professionals, and academic scientists.
Collapse
Affiliation(s)
| | - Alaettin Ucan
- Department of Computer Engineering, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | - Turgay Ibrikci
- Department of Software Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Bahman Arasteh
- Department of Software Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul, Turkey
| | - Gultekin Isik
- Department of Computer Engineering, Igdir University, Igdir, Turkey
| |
Collapse
|
21
|
Han Y, Chen W, Heidari AA, Chen H. Multi-verse Optimizer with Rosenbrock and Diffusion Mechanisms for Multilevel Threshold Image Segmentation from COVID-19 Chest X-Ray Images. JOURNAL OF BIONIC ENGINEERING 2023; 20:1198-1262. [PMID: 36619872 PMCID: PMC9811903 DOI: 10.1007/s42235-022-00295-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) is the most severe epidemic that is prevalent all over the world. How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidemic. Moreover, it is essential to accurately and rapidly identify COVID-19 lesions by analyzing Chest X-ray images. As we all know, image segmentation is a critical stage in image processing and analysis. To achieve better image segmentation results, this paper proposes to improve the multi-verse optimizer algorithm using the Rosenbrock method and diffusion mechanism named RDMVO. Then utilizes RDMVO to calculate the maximum Kapur's entropy for multilevel threshold image segmentation. This image segmentation scheme is called RDMVO-MIS. We ran two sets of experiments to test the performance of RDMVO and RDMVO-MIS. First, RDMVO was compared with other excellent peers on IEEE CEC2017 to test the performance of RDMVO on benchmark functions. Second, the image segmentation experiment was carried out using RDMVO-MIS, and some meta-heuristic algorithms were selected as comparisons. The test image dataset includes Berkeley images and COVID-19 Chest X-ray images. The experimental results verify that RDMVO is highly competitive in benchmark functions and image segmentation experiments compared with other meta-heuristic algorithms.
Collapse
Affiliation(s)
- Yan Han
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 China
| | - Weibin Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 China
| |
Collapse
|
22
|
Li J, Liu K, Hu Y, Zhang H, Heidari AA, Chen H, Zhang W, Algarni AD, Elmannai H. Eres-UNet++: Liver CT image segmentation based on high-efficiency channel attention and Res-UNet+. Comput Biol Med 2022; 158:106501. [PMID: 36635120 DOI: 10.1016/j.compbiomed.2022.106501] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 01/11/2023]
Abstract
Computerized tomography (CT) is of great significance for the localization and diagnosis of liver cancer. Many scholars have recently applied deep learning methods to segment CT images of liver and liver tumors. Unlike natural images, medical image segmentation is usually more challenging due to its nature. Aiming at the problem of blurry boundaries and complex gradients of liver tumor images, a deep supervision network based on the combination of high-efficiency channel attention and Res-UNet++ (ECA residual UNet++) is proposed for liver CT image segmentation, enabling fully automated end-to-end segmentation of the network. In this paper, the UNet++ structure is selected as the baseline. The residual block feature encoder based on context awareness enhances the feature extraction ability and solves the problem of deep network degradation. The introduction of an efficient attention module combines the depth of the feature map with spatial information to alleviate the uneven sample distribution impact; Use DiceLoss to replace the cross-entropy loss function to optimize network parameters. The liver and liver tumor segmentation accuracy on the LITS dataset was 95.8% and 89.3%, respectively. The results show that compared with other algorithms, the method proposed in this paper achieves a good segmentation performance, which has specific reference significance for computer-assisted diagnosis and treatment to attain fine segmentation of liver and liver tumors.
Collapse
Affiliation(s)
- Jian Li
- College of Information Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Kongyu Liu
- College of Information Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Yating Hu
- College of Information Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Hongchen Zhang
- College of Information Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Ali Asghar Heidari
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China.
| | - Huiling Chen
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China.
| | - Weijiang Zhang
- College of Information Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Abeer D Algarni
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Hela Elmannai
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
23
|
Liu L, Kuang F, Li L, Xu S, Liang Y. An efficient multi-threshold image segmentation for skin cancer using boosting whale optimizer. Comput Biol Med 2022; 151:106227. [PMID: 36368112 DOI: 10.1016/j.compbiomed.2022.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 12/27/2022]
Abstract
Due to the terrible manifestations of skin cancer, it seriously disturbs the quality of life status and health of patients, so we needs treatment plans to detect it early and avoid it causing more harm to patients. Medical disease image threshold segmentation technique can well extract the region of interest and effectively assist in disease recognition. Moreover, in multi-threshold image segmentation, the selection of the threshold set determines the image segmentation quality. Among the common threshold selection methods, the selection based on metaheuristic algorithm has the advantages of simplicity, easy implementation and avoidable local optimization. However, different algorithms have different performances for different medical disease images. For example, the Whale Optimization Algorithm (WOA) does not give a satisfactory performance for thresholding skin cancer images. We propose an improved WOA (LCWOA) in which the Levy operator and chaotic random mutation strategy are introduced to enhance the ability of the algorithm to jump out of the local optimum and to explore the search space. Comparing with different existing WOA variants on the CEC2014 function set, our proposed and improved algorithm improves the efficiency of the search. Experimental results show that our method outperforms the extant WOA variants in terms of optimization performances, improving the convergence accuracy and velocity. The method is also applied to solve the threshold selection in the skin cancer image segmentation problem, and LCWOA also gives excellent performance in obtaining optimal segmentation results.
Collapse
Affiliation(s)
- Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Fangjun Kuang
- School of Information Engineering, Wenzhou Business College, Wenzhou, 325035, China.
| | - Lingzhi Li
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, China.
| | - Suling Xu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, China.
| | - Yingqi Liang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
24
|
Ren L, Zhao D, Zhao X, Chen W, Li L, Wu T, Liang G, Cai Z, Xu S. Multi-level thresholding segmentation for pathological images: Optimal performance design of a new modified differential evolution. Comput Biol Med 2022; 148:105910. [DOI: 10.1016/j.compbiomed.2022.105910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 02/07/2023]
|
25
|
Qi A, Zhao D, Yu F, Heidari AA, Wu Z, Cai Z, Alenezi F, Mansour RF, Chen H, Chen M. Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation. Comput Biol Med 2022; 148:105810. [PMID: 35868049 PMCID: PMC9278012 DOI: 10.1016/j.compbiomed.2022.105810] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022]
Abstract
This paper focuses on the study of Coronavirus Disease 2019 (COVID-19) X-ray image segmentation technology. We present a new multilevel image segmentation method based on the swarm intelligence algorithm (SIA) to enhance the image segmentation of COVID-19 X-rays. This paper first introduces an improved ant colony optimization algorithm, and later details the directional crossover (DX) and directional mutation (DM) strategy, XMACO. The DX strategy improves the quality of the population search, which enhances the convergence speed of the algorithm. The DM strategy increases the diversity of the population to jump out of the local optima (LO). Furthermore, we design the image segmentation model (MIS-XMACO) by incorporating two-dimensional (2D) histograms, 2D Kapur's entropy, and a nonlocal mean strategy, and we apply this model to COVID-19 X-ray image segmentation. Benchmark function experiments based on the IEEE CEC2014 and IEEE CEC2017 function sets demonstrate that XMACO has a faster convergence speed and higher convergence accuracy than competing models, and it can avoid falling into LO. Other SIAs and image segmentation models were used to ensure the validity of the experiments. The proposed MIS-XMACO model shows more stable and superior segmentation results than other models at different threshold levels by analyzing the experimental results.
Collapse
Affiliation(s)
- Ailiang Qi
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Fanhua Yu
- College of Computer Science and Technology, Beihua University, Jilin, Jilin, 132013, China.
| | - Ali Asghar Heidari
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Zongda Wu
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Zhennao Cai
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Fayadh Alenezi
- Department of Electrical Engineering, College of Engineering, Jouf University, Saudi Arabia.
| | - Romany F Mansour
- Department of Mathematics, Faculty of Science, New Valley University, El-Kharga, 72511, Egypt.
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Mayun Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
26
|
An equilibrium optimizer slime mould algorithm for inverse kinematics of the 7-DOF robotic manipulator. Sci Rep 2022; 12:9421. [PMID: 35676308 PMCID: PMC9177595 DOI: 10.1038/s41598-022-13516-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022] Open
Abstract
In order to solve the inverse kinematics (IK) of complex manipulators efficiently, a hybrid equilibrium optimizer slime mould algorithm (EOSMA) is proposed. Firstly, the concentration update operator of the equilibrium optimizer is used to guide the anisotropic search of the slime mould algorithm to improve the search efficiency. Then, the greedy strategy is used to update the individual and global historical optimal to accelerate the algorithm’s convergence. Finally, the random difference mutation operator is added to EOSMA to increase the probability of escaping from the local optimum. On this basis, a multi-objective EOSMA (MOEOSMA) is proposed. Then, EOSMA and MOEOSMA are applied to the IK of the 7 degrees of freedom manipulator in two scenarios and compared with 15 single-objective and 9 multi-objective algorithms. The results show that EOSMA has higher accuracy and shorter computation time than previous studies. In two scenarios, the average convergence accuracy of EOSMA is 10e−17 and 10e−18, and the average solution time is 0.05 s and 0.36 s, respectively.
Collapse
|
27
|
Stoleru CA, Dulf EH, Ciobanu L. Automated detection of celiac disease using Machine Learning Algorithms. Sci Rep 2022; 12:4071. [PMID: 35260574 PMCID: PMC8904634 DOI: 10.1038/s41598-022-07199-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Celiac disease is a disorder of the immune system that mainly affects the small intestine but can also affect the skeletal system. The diagnosis relies on histological assessment of duodenal biopsies acquired by upper digestive endoscopy. Immunological tests involve collecting a blood sample to detect if the antibodies have been produced in the body. Endoscopy is invasive and histology is time-consuming. In recent years there have been various algorithms that use artificial intelligence (AI) and neural convolutions (CNN, Convolutional Neural Network) to process images from capsule endoscopy, a non-invasive endoscopy approach, that provides magnified, high qualitative images of the small bowel mucosa, to quickly establish a diagnosis. The proposed innovative approach do not use complex learning algorithms, instead it find some artefacts in the endoscopies using kernels and use classified machine learning algorithms. Each used artefacts have a psychical meaning: atrophies of the mucosa with a visible submucosal vascular pattern; the presence of cracks (depressions) that have an appearance similar to that of dry land; reduction or complete loss of folds in the duodenum; the presence of a submerged appearance at the Kerckring folds and a low number of villi. The results obtained for video capsule endoscopy images processing reveal an accuracy of 94.1% and F1 score of 94%, which is competitive with other complex algorithms. The main goal of the present research was to demonstrate that computer-aided diagnosis of celiac disease is possible even without the use of very complex algorithms, which require expensive hardware and a lot of processing time. The use of the proposed automated images processing acquired noninvasively by capsule endoscopy would be assistive in detecting the subtle presence of villous atrophy not evident by visual inspection. It may also be useful to assess the degree of improvement of celiac. Patients on a gluten-free diet, the main treatment method for stopping the autoimmune process and improving the state of the small intestinal villi. The novelty of the work is that the algorithm uses two modified filters to properly analyse the intestine wall texture. It is proved that using the right filters, the proper diagnostic can be obtained by image processing, without the use of a complicated machine learning algorithm.
Collapse
Affiliation(s)
- Cristian-Andrei Stoleru
- Automation Department, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Memorandumului 28, 400014, Cluj-Napoca, Romania
| | - Eva H Dulf
- Automation Department, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Memorandumului 28, 400014, Cluj-Napoca, Romania.
| | - Lidia Ciobanu
- Faculty of Medicine, Regional Institute of Gastroenterology and Hepatology, Iuliu Hatieganu University of Medicine and Pharmacy, Croitorilor Street 19-21, 400162, Cluj-Napoca, Romania
| |
Collapse
|
28
|
Alfadhli J, Jaragh A, Alfailakawi MG, Ahmad I. FP-SMA: an adaptive, fluctuant population strategy for slime mould algorithm. Neural Comput Appl 2022; 34:11163-11175. [PMID: 35281623 PMCID: PMC8898343 DOI: 10.1007/s00521-022-07034-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/30/2022] [Indexed: 01/18/2023]
Abstract
In this paper, an adaptive Fluctuant Population size Slime Mould Algorithm (FP-SMA) is proposed. Unlike the original SMA where population size is fixed in every epoch, FP-SMA will adaptively change population size in order to effectively balance exploitation and exploration characteristics of SMA’s different phases. Experimental results on 13 standard and 30 IEEE CEC2014 benchmark functions have shown that FP-SMA can achieve significant reduction in run time while maintaining good solution quality when compared to the original SMA. Typical saving in terms of function evaluations for all benchmarks was between 20 and 30% on average with a maximum being as high as 60% in some cases. Therefore, with its higher computation efficiency, FP-SMA is much more favorable choice as compared to SMA in time stringent applications.
Collapse
Affiliation(s)
- Jassim Alfadhli
- Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Safat, 13060 Kuwait
| | - Ali Jaragh
- Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Safat, 13060 Kuwait
| | - Mohammad Gh. Alfailakawi
- Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Safat, 13060 Kuwait
| | - Imtiaz Ahmad
- Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Safat, 13060 Kuwait
| |
Collapse
|
29
|
Chen X, Huang H, Heidari AA, Sun C, Lv Y, Gui W, Liang G, Gu Z, Chen H, Li C, Chen P. An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: A real case with lupus nephritis images. Comput Biol Med 2022; 142:105179. [DOI: 10.1016/j.compbiomed.2021.105179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023]
|
30
|
Rai R, Das A, Dhal KG. Nature-inspired optimization algorithms and their significance in multi-thresholding image segmentation: an inclusive review. EVOLVING SYSTEMS 2022; 13:889-945. [PMID: 37520044 PMCID: PMC8859498 DOI: 10.1007/s12530-022-09425-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/15/2022] [Indexed: 12/14/2022]
Abstract
Multilevel Thresholding (MLT) is considered as a significant and imperative research field in image segmentation that can efficiently resolve difficulties aroused while analyzing the segmented regions of multifaceted images with complicated nonlinear conditions. MLT being a simple exponential combinatorial optimization problem is commonly phrased by means of a sophisticated objective function requirement that can only be addressed by nondeterministic approaches. Consequently, researchers are engaging Nature-Inspired Optimization Algorithms (NIOA) as an alternate methodology that can be widely employed for resolving problems related to MLT. This paper delivers an acquainted review related to novel NIOA shaped lately in last three years (2019-2021) highlighting and exploring the major challenges encountered during the development of image multi-thresholding models based on NIOA.
Collapse
Affiliation(s)
- Rebika Rai
- Department of Computer Applications, Sikkim University, Sikkim, India
| | - Arunita Das
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| | - Krishna Gopal Dhal
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| |
Collapse
|
31
|
Dispersed foraging slime mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2021.107761] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
A novel improved whale optimization algorithm to solve numerical optimization and real-world applications. Artif Intell Rev 2022. [DOI: 10.1007/s10462-021-10114-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Multi-Population Enhanced Slime Mould Algorithm and with Application to Postgraduate Employment Stability Prediction. ELECTRONICS 2022. [DOI: 10.3390/electronics11020209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, the authors aimed to study an effective intelligent method for employment stability prediction in order to provide a reasonable reference for postgraduate employment decision and for policy formulation in related departments. First, this paper introduces an enhanced slime mould algorithm (MSMA) with a multi-population strategy. Moreover, this paper proposes a prediction model based on the modified algorithm and the support vector machine (SVM) algorithm called MSMA-SVM. Among them, the multi-population strategy balances the exploitation and exploration ability of the algorithm and improves the solution accuracy of the algorithm. Additionally, the proposed model enhances the ability to optimize the support vector machine for parameter tuning and for identifying compact feature subsets to obtain more appropriate parameters and feature subsets. Then, the proposed modified slime mould algorithm is compared against various other famous algorithms in experiments on the 30 IEEE CEC2017 benchmark functions. The experimental results indicate that the established modified slime mould algorithm has an observably better performance compared to the algorithms on most functions. Meanwhile, a comparison between the optimal support vector machine model and other several machine learning methods on their ability to predict employment stability was conducted, and the results showed that the suggested the optimal support vector machine model has better classification ability and more stable performance. Therefore, it is possible to infer that the optimal support vector machine model is likely to be an effective tool that can be used to predict employment stability.
Collapse
|
34
|
Yin S, Luo Q, Zhou Y. EOSMA: An Equilibrium Optimizer Slime Mould Algorithm for Engineering Design Problems. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06513-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Yin S, Luo Q, Du Y, Zhou Y. DTSMA: Dominant Swarm with Adaptive T-distribution Mutation-based Slime Mould Algorithm. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2240-2285. [PMID: 35240784 DOI: 10.3934/mbe.2022105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The slime mould algorithm (SMA) is a metaheuristic algorithm recently proposed, which is inspired by the oscillations of slime mould. Similar to other algorithms, SMA also has some disadvantages such as insufficient balance between exploration and exploitation, and easy to fall into local optimum. This paper, an improved SMA based on dominant swarm with adaptive t-distribution mutation (DTSMA) is proposed. In DTSMA, the dominant swarm is used improved the SMA's convergence speed, and the adaptive t-distribution mutation balances is used enhanced the exploration and exploitation ability. In addition, a new exploitation mechanism is hybridized to increase the diversity of populations. The performances of DTSMA are verified on CEC2019 functions and eight engineering design problems. The results show that for the CEC2019 functions, the DTSMA performances are best; for the engineering problems, DTSMA obtains better results than SMA and many algorithms in the literature when the constraints are satisfied. Furthermore, DTSMA is used to solve the inverse kinematics problem for a 7-DOF robot manipulator. The overall results show that DTSMA has a strong optimization ability. Therefore, the DTSMA is a promising metaheuristic optimization for global optimization problems.
Collapse
Affiliation(s)
- Shihong Yin
- College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
- Key Laboratory of Guangxi High Schools Complex System and Computational Intelligence, Nanning 530006, China
- Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
| | - Qifang Luo
- College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
- Key Laboratory of Guangxi High Schools Complex System and Computational Intelligence, Nanning 530006, China
- Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
| | - Yanlian Du
- College of Information and Communication Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yongquan Zhou
- College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
- Key Laboratory of Guangxi High Schools Complex System and Computational Intelligence, Nanning 530006, China
- Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
| |
Collapse
|
36
|
Su H, Zhao D, Yu F, Heidari AA, Zhang Y, Chen H, Li C, Pan J, Quan S. Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images. Comput Biol Med 2022; 142:105181. [PMID: 35016099 DOI: 10.1016/j.compbiomed.2021.105181] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022]
Abstract
The artificial bee colony algorithm (ABC) has been successfully applied to various optimization problems, but the algorithm still suffers from slow convergence and poor quality of optimal solutions in the optimization process. Therefore, in this paper, an improved ABC (CCABC) based on a horizontal search mechanism and a vertical search mechanism is proposed to improve the algorithm's performance. In addition, this paper also presents a multilevel thresholding image segmentation (MTIS) method based on CCABC to enhance the effectiveness of the multilevel thresholding image segmentation method. To verify the performance of the proposed CCABC algorithm and the performance of the improved image segmentation method. First, this paper demonstrates the performance of the CCABC algorithm itself by comparing CCABC with 15 algorithms of the same type using 30 benchmark functions. Then, this paper uses the improved multi-threshold segmentation method for the segmentation of COVID-19 X-ray images and compares it with other similar plans in detail. Finally, this paper confirms that the incorporation of CCABC in MTIS is very effective by analyzing appropriate evaluation criteria and affirms that the new MTIS method has a strong segmentation performance.
Collapse
Affiliation(s)
- Hang Su
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Fanhua Yu
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Yu Zhang
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Chengye Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Provincial, Wenzhou, Zhejiang, 325000, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, Zhejiang, 325000, China.
| | - Shichao Quan
- Department of General Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Department of Big Data in Health Science, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
37
|
Lin S, Jia H, Abualigah L, Altalhi M. Enhanced Slime Mould Algorithm for Multilevel Thresholding Image Segmentation Using Entropy Measures. ENTROPY 2021; 23:e23121700. [PMID: 34946006 PMCID: PMC8700578 DOI: 10.3390/e23121700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023]
Abstract
Image segmentation is a fundamental but essential step in image processing because it dramatically influences posterior image analysis. Multilevel thresholding image segmentation is one of the most popular image segmentation techniques, and many researchers have used meta-heuristic optimization algorithms (MAs) to determine the threshold values. However, MAs have some defects; for example, they are prone to stagnate in local optimal and slow convergence speed. This paper proposes an enhanced slime mould algorithm for global optimization and multilevel thresholding image segmentation, namely ESMA. First, the Levy flight method is used to improve the exploration ability of SMA. Second, quasi opposition-based learning is introduced to enhance the exploitation ability and balance the exploration and exploitation. Then, the superiority of the proposed work ESMA is confirmed concerning the 23 benchmark functions. Afterward, the ESMA is applied in multilevel thresholding image segmentation using minimum cross-entropy as the fitness function. We select eight greyscale images as the benchmark images for testing and compare them with the other classical and state-of-the-art algorithms. Meanwhile, the experimental metrics include the average fitness (mean), standard deviation (Std), peak signal to noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM), and Wilcoxon rank-sum test, which is utilized to evaluate the quality of segmentation. Experimental results demonstrated that ESMA is superior to other algorithms and can provide higher segmentation accuracy.
Collapse
Affiliation(s)
- Shanying Lin
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
- Correspondence: (S.L.); (H.J.)
| | - Heming Jia
- School of Information Engineering, Sanming University, Sanming 365004, China
- Correspondence: (S.L.); (H.J.)
| | - Laith Abualigah
- Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan; or
- School of Computer Science, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Maryam Altalhi
- Department of Management Information System, College of Business Administration, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| |
Collapse
|
38
|
A Modified Slime Mould Algorithm for Global Optimization. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:2298215. [PMID: 34912443 PMCID: PMC8668367 DOI: 10.1155/2021/2298215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/27/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022]
Abstract
Slime mould algorithm (SMA) is a population-based metaheuristic algorithm inspired by the phenomenon of slime mould oscillation. The SMA is competitive compared to other algorithms but still suffers from the disadvantages of unbalanced exploitation and exploration and is easy to fall into local optima. To address these shortcomings, an improved variant of SMA named MSMA is proposed in this paper. Firstly, a chaotic opposition-based learning strategy is used to enhance population diversity. Secondly, two adaptive parameter control strategies are proposed to balance exploitation and exploration. Finally, a spiral search strategy is used to help SMA get rid of local optimum. The superiority of MSMA is verified in 13 multidimensional test functions and 10 fixed-dimensional test functions. In addition, two engineering optimization problems are used to verify the potential of MSMA to solve real-world optimization problems. The simulation results show that the proposed MSMA outperforms other comparative algorithms in terms of convergence accuracy, convergence speed, and stability.
Collapse
|
39
|
Chen C, Wang X, Heidari AA, Yu H, Chen H. Multi-Threshold Image Segmentation of Maize Diseases Based on Elite Comprehensive Particle Swarm Optimization and Otsu. FRONTIERS IN PLANT SCIENCE 2021; 12:789911. [PMID: 34966405 PMCID: PMC8710579 DOI: 10.3389/fpls.2021.789911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Maize is a major global food crop and as one of the most productive grain crops, it can be eaten; it is also a good feed for the development of animal husbandry and essential raw material for light industry, chemical industry, medicine, and health. Diseases are the main factor limiting the high and stable yield of maize. Scientific and practical identification is a vital link to reduce the damage of diseases and accurate segmentation of disease spots is one of the fundamental techniques for disease identification. However, one single method cannot achieve a good segmentation effect to meet the diversity and complexity of disease spots. In order to solve the shortcomings of noise interference and oversegmentation in the Otsu segmentation method, a non-local mean filtered two-dimensional histogram was used to remove the noise in disease images and a new elite strategy improved comprehensive particle swarm optimization (PSO) method was used to find the optimal segmentation threshold of the objective function in this study. The experimental results of segmenting three kinds of maize foliar disease images show that the segmentation effect of this method is better than other similar algorithms and it has better convergence and stability.
Collapse
Affiliation(s)
- Chengcheng Chen
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Changchun, China
| | - Xianchang Wang
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Changchun, China
- Chengdu Kestrel Artificial Intelligence Institute, Chengdu, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Helong Yu
- College of Information Technology, Jilin Agricultural University, Changchun, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| |
Collapse
|
40
|
Zhang Q, Wang Z, Heidari AA, Gui W, Shao Q, Chen H, Zaguia A, Turabieh H, Chen M. Gaussian Barebone Salp Swarm Algorithm with Stochastic Fractal Search for medical image segmentation: A COVID-19 case study. Comput Biol Med 2021; 139:104941. [PMID: 34801864 DOI: 10.1016/j.compbiomed.2021.104941] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/11/2023]
Abstract
An appropriate threshold is a key to using the multi-threshold segmentation method to solve image segmentation problems, and the swarm intelligence (SI) optimization algorithm is one of the popular methods to obtain the optimal threshold. Moreover, Salp Swarm Algorithm (SSA) is a recently released swarm intelligent optimization algorithm. Compared with other SI optimization algorithms, the optimization solution strategy of the SSA still needs to be improved to enhance further the solution accuracy and optimization efficiency of the algorithm. Accordingly, this paper designs an effective segmentation method based on a non-local mean 2D histogram and 2D Kapur's entropy called SSA with Gaussian Barebone and Stochastic Fractal Search (GBSFSSSA) by combining Gaussian Barebone and Stochastic Fractal Search mechanism. In GBSFSSSA, the Gaussian Barebone and Stochastic Fractal Search mechanism effectively balance the global search ability and local search ability of the basic SSA. The CEC2017 competition data set is used to prove the algorithm's performance, and GBSFSSSA shows an absolute advantage over some typical competitive algorithms. Furthermore, the algorithm is applied in image segmentation of COVID-19 CT images, and the results are analyzed based on three different metrics: peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and feature similarity (FSIM), which can lead to the conclusion that the overall performance of GBSFSSSA is better than the comparison algorithm and can effectively improve the segmentation of medical images. Therefore, it is justified that GBSFSSSA is a reliable and effective method in solving the multi-threshold image segmentation problem.
Collapse
Affiliation(s)
- Qian Zhang
- Wenzhou University of Technology, Wenzhou, 325035, China.
| | - Zhiyan Wang
- School of Artificial Intelligence, Jilin International Studies University, Changchun, 130000, China.
| | - Ali Asghar Heidari
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Wenyong Gui
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Qike Shao
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Atef Zaguia
- Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. BOX 11099, Taif, 21944, Saudi Arabia.
| | - Hamza Turabieh
- Department of Information Technology, College of Computers and Information Technology, PO Box 11099, Taif, 21944, Saudi Arabia.
| | - Mayun Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
41
|
Zhao S, Wang P, Heidari AA, Chen H, He W, Xu S. Performance optimization of salp swarm algorithm for multi-threshold image segmentation: Comprehensive study of breast cancer microscopy. Comput Biol Med 2021; 139:105015. [PMID: 34800808 DOI: 10.1016/j.compbiomed.2021.105015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022]
Abstract
Multi-threshold image segmentation (MIS) is now a well known image segmentation technique, and many researchers have applied intelligent algorithms to it, but these methods suffer from local optimal drawbacks. This paper presented a novel approach to improve the Salp Swarm Algorithm (SSA), namely EHSSA, and applied it to MIS. Knowing the inaccuracies and discussions on implementation of this method, a new efficient mechanism is proposed to improve global search capability of the algorithm and avoid falling into a local optimum. Moreover, the excellence of the proposed algorithm was proved by comparative experiments at IEEE CEC2014. Afterward, the performance of EHSSA was demonstrated by testing a set of images selected from the Berkeley segmentation data set 500 (BSDS500), and the experimental results were analyzed by evaluating the parameters, which proved the efficiency of the proposed algorithm in MIS. Furthermore, EHSSA was applied to the microscopic image segmentation of breast cancer. Medical image segmentation is the study of how to quickly extract objects of interest (human organs) from various images to perform qualitative and quantitative analysis of diseased tissues and improve the accuracy of their diagnosis, which assists the physician in making more informed decisions and patient rehabilitation. The results of this set of experiments also proved its superior performance. For any info about this paper, readers can refer to https://aliasgharheidari.com.
Collapse
Affiliation(s)
- Songwei Zhao
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Wenming He
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
42
|
Zhao F, Liu F, Li C, Liu H, Lan R, Fan J. Coarse–fine surrogate model driven multiobjective evolutionary fuzzy clustering algorithm with dual memberships for noisy image segmentation. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Chakraborty S, Saha AK, Nama S, Debnath S. COVID-19 X-ray image segmentation by modified whale optimization algorithm with population reduction. Comput Biol Med 2021; 139:104984. [PMID: 34739972 PMCID: PMC8556692 DOI: 10.1016/j.compbiomed.2021.104984] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has caused a massive disaster in every human life field, including health, education, economics, and tourism, over the last year and a half. Rapid interpretation of COVID-19 patients' X-ray images is critical for diagnosis and, consequently, treatment of the disease. The major goal of this research is to develop a computational tool that can quickly and accurately determine the severity of an illness using COVID-19 chest X-ray pictures and improve the degree of diagnosis using a modified whale optimization method (WOA). To improve the WOA, a random initialization of the population is integrated during the global search phase. The parameters, coefficient vector (A) and constant value (b), are changed so that the algorithm can explore in the early stages while also exploiting the search space extensively in the latter stages. The efficiency of the proposed modified whale optimization algorithm with population reduction (mWOAPR) method is assessed by using it to segment six benchmark images using multilevel thresholding approach and Kapur's entropy-based fitness function calculated from the 2D histogram of greyscale images. By gathering three distinct COVID-19 chest X-ray images, the projected algorithm (mWOAPR) is utilized to segment the COVID-19 chest X-ray images. In both benchmark pictures and COVID-19 chest X-ray images, comparisons of the evaluated findings with basic and modified forms of metaheuristic algorithms supported the suggested mWOAPR's improved performance.
Collapse
Affiliation(s)
- Sanjoy Chakraborty
- Department of Computer Science and Engineering, National Institute of Technology, Agartala, Tripura, India; Department of Computer Science and Engineering, Iswar Chandra Vidyasagar College, Belonia, Tripura, India.
| | - Apu Kumar Saha
- Department of Mathematics, National Institute of Technology, Agartala, Tripura, India.
| | - Sukanta Nama
- Department of Applied Mathematics, Maharaja Bir Bikram University, Agartala, Tripura, India.
| | - Sudhan Debnath
- Department of Chemistry, Maharaja Bir Bikram College, Agartala, Tripura, India.
| |
Collapse
|
44
|
Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation. Comput Biol Med 2021; 138:104910. [PMID: 34638022 DOI: 10.1016/j.compbiomed.2021.104910] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023]
Abstract
Breast cancer is one of the most dangerous diseases for women's health, and it is imperative to provide the necessary diagnostic assistance for it. The medical image processing technology is one of the most critical of all complementary diagnostic technologies. Image segmentation is the core step of image processing, where multilevel image segmentation is considered one of the most efficient and straightforward methods. Many multilevel image segmentation methods based on evolutionary and population-based methods have been proposed in recent years, but many have the fatal weakness of poor convergence accuracy and the tendency to fall into local optimum. Therefore, to overcome these weaknesses, this paper proposes a modified differential evolution (MDE) algorithm with a vision based on the slime mould foraging behavior, where the recently proposed slime mould algorithm (SMA) inspires it. Besides, to obtain high-quality breast cancer image segmentation results, this paper also develops an excellent MDE-based multilevel image segmentation model, the core of which is based on non-local means 2D histogram and 2D Kapur's entropy. To effectively validate the performance of the proposed method, a comparison experiment between MDE and its similar algorithms was first carried out on IEEE CEC 2014. Then, an initial validation of the MDE-based multilevel image segmentation model was performed by utilizing a reference image set. Finally, the MDE-based multilevel image segmentation model was compared with peers using breast invasive ductal carcinoma images. A series of experimental results have proved that MDE is an evolutionary algorithm with high convergence accuracy and the ability to jump out of the local optimum, as well as effectively demonstrated that the developed model is a high-quality segmentation method that can provide practical support for further research of breast invasive ductal carcinoma pathological image processing.
Collapse
|
45
|
Wang S, Liu Q, Liu Y, Jia H, Abualigah L, Zheng R, Wu D. A Hybrid SSA and SMA with Mutation Opposition-Based Learning for Constrained Engineering Problems. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:6379469. [PMID: 34531910 PMCID: PMC8440113 DOI: 10.1155/2021/6379469] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022]
Abstract
Based on Salp Swarm Algorithm (SSA) and Slime Mould Algorithm (SMA), a novel hybrid optimization algorithm, named Hybrid Slime Mould Salp Swarm Algorithm (HSMSSA), is proposed to solve constrained engineering problems. SSA can obtain good results in solving some optimization problems. However, it is easy to suffer from local minima and lower density of population. SMA specializes in global exploration and good robustness, but its convergence rate is too slow to find satisfactory solutions efficiently. Thus, in this paper, considering the characteristics and advantages of both the above optimization algorithms, SMA is integrated into the leader position updating equations of SSA, which can share helpful information so that the proposed algorithm can utilize these two algorithms' advantages to enhance global optimization performance. Furthermore, Levy flight is utilized to enhance the exploration ability. It is worth noting that a novel strategy called mutation opposition-based learning is proposed to enhance the performance of the hybrid optimization algorithm on premature convergence avoidance, balance between exploration and exploitation phases, and finding satisfactory global optimum. To evaluate the efficiency of the proposed algorithm, HSMSSA is applied to 23 different benchmark functions of the unimodal and multimodal types. Additionally, five classical constrained engineering problems are utilized to evaluate the proposed technique's practicable abilities. The simulation results show that the HSMSSA method is more competitive and presents more engineering effectiveness for real-world constrained problems than SMA, SSA, and other comparative algorithms. In the end, we also provide some potential areas for future studies such as feature selection and multilevel threshold image segmentation.
Collapse
Affiliation(s)
- Shuang Wang
- School of Information Engineering, Sanming University, Sanming 365004, China
| | - Qingxin Liu
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Yuxiang Liu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Heming Jia
- School of Information Engineering, Sanming University, Sanming 365004, China
| | - Laith Abualigah
- Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan
- School of Computer Science, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Rong Zheng
- School of Information Engineering, Sanming University, Sanming 365004, China
| | - Di Wu
- School of Education and Music, Sanming University, Sanming 365004, China
| |
Collapse
|
46
|
|
47
|
Shakeel CS, Khan SJ, Chaudhry B, Aijaz SF, Hassan U. Classification Framework for Healthy Hairs and Alopecia Areata: A Machine Learning (ML) Approach. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:1102083. [PMID: 34434248 PMCID: PMC8382550 DOI: 10.1155/2021/1102083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 01/29/2023]
Abstract
Alopecia areata is defined as an autoimmune disorder that results in hair loss. The latest worldwide statistics have exhibited that alopecia areata has a prevalence of 1 in 1000 and has an incidence of 2%. Machine learning techniques have demonstrated potential in different areas of dermatology and may play a significant role in classifying alopecia areata for better prediction and diagnosis. We propose a framework pertaining to the classification of healthy hairs and alopecia areata. We used 200 images of healthy hairs from the Figaro1k dataset and 68 hair images of alopecia areata from the Dermnet dataset to undergo image preprocessing including enhancement and segmentation. This was followed by feature extraction including texture, shape, and color. Two classification techniques, i.e., support vector machine (SVM) and k-nearest neighbor (KNN), are then applied to train a machine learning model with 70% of the images. The remaining image set was used for the testing phase. With a 10-fold cross-validation, the reported accuracies of SVM and KNN are 91.4% and 88.9%, respectively. Paired sample T-test showed significant differences between the two accuracies with a p < 0.001. SVM generated higher accuracy (91.4%) as compared to KNN (88.9%). The findings of our study demonstrate potential for better prediction in the field of dermatology.
Collapse
Affiliation(s)
- Choudhary Sobhan Shakeel
- Department of Biomedical Engineering, Ziauddin University, Faculty of Engineering, Science, Technology and Management, Karachi, Pakistan
| | - Saad Jawaid Khan
- Department of Biomedical Engineering, Ziauddin University, Faculty of Engineering, Science, Technology and Management, Karachi, Pakistan
| | - Beenish Chaudhry
- School of Computing and Informatics, University of Louisiana at Lafayette, USA
| | - Syeda Fatima Aijaz
- Department of Biomedical Engineering, Ziauddin University, Faculty of Engineering, Science, Technology and Management, Karachi, Pakistan
| | - Umer Hassan
- Department of Biomedical Engineering, Ziauddin University, Faculty of Engineering, Science, Technology and Management, Karachi, Pakistan
| |
Collapse
|