1
|
Pradeep S, Patil SM, Dharmashekara C, Jain A, Ramu R, Shirahatti PS, Mandal SP, Reddy P, Srinivasa C, Patil SS, Ortega-Castro J, Frau J, Flores-Holgúın N, Shivamallu C, Kollur SP, Glossman-Mitnik D. Molecular insights into the in silico discovery of corilagin from Terminalia chebula as a potential dual inhibitor of SARS-CoV-2 structural proteins. J Biomol Struct Dyn 2023; 41:10869-10884. [PMID: 36576118 DOI: 10.1080/07391102.2022.2158943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
The spike (S) glycoprotein and nucleocapsid (N) proteins are the crucial pathogenic proteins of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) virus during its interaction with the host. Even FDA-approved drugs like dexamethasone and grazoprevir are not able to curb the viral progression inside the host and are reported with adverse effects on body metabolism. In this context, we aim to report corilagin a novel, potential dual inhibitor of S and N proteins from Terminalia chebula. The bioactive compounds of T. chebula were subjected to a series of computational investigations including molecular docking simulations, molecular dynamics (MD) simulations, binding free energy calculations, and PASS pharmacological analysis. The results obtained from these studies revealed that corilagin was highly interactive with the S (-8.9 kcal/mol) and N (-9.2 kcal/mol) proteins, thereby showing dual inhibition activity. It was also found to be stable enough to induce biological activity inside the inhibitor binding pocket of the target enzymes throughout the dynamics simulation run for 100 ns. This is also confirmed by the changes in the protein conformations, evaluated using free energy landscapes. Outcomes from this investigation identify corilagin as the lead potential dual inhibitor of S and N proteins of SARS-CoV-2, which could be taken for biological studies in near future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Shashank M Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Anisha Jain
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | | | - Subhankar P Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Pruthvish Reddy
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, Karnataka, India
| | - Chandrashekar Srinivasa
- Department of Studies in Biotechnology, Davangere University, Shivagangotri, Karnataka, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | | | - Juan Frau
- Departament de Qúımica, Universitat de les Illes Balears, Palma de Malllorca, Spain
| | - Norma Flores-Holgúın
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energ'ıa, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, México
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energ'ıa, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, México
| |
Collapse
|
2
|
Wang Y, Pan Z, Mou M, Xia W, Zhang H, Zhang H, Liu J, Zheng L, Luo Y, Zheng H, Yu X, Lian X, Zeng Z, Li Z, Zhang B, Zheng M, Li H, Hou T, Zhu F. A task-specific encoding algorithm for RNAs and RNA-associated interactions based on convolutional autoencoder. Nucleic Acids Res 2023; 51:e110. [PMID: 37889083 PMCID: PMC10682500 DOI: 10.1093/nar/gkad929] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
RNAs play essential roles in diverse physiological and pathological processes by interacting with other molecules (RNA/protein/compound), and various computational methods are available for identifying these interactions. However, the encoding features provided by existing methods are limited and the existing tools does not offer an effective way to integrate the interacting partners. In this study, a task-specific encoding algorithm for RNAs and RNA-associated interactions was therefore developed. This new algorithm was unique in (a) realizing comprehensive RNA feature encoding by introducing a great many of novel features and (b) enabling task-specific integration of interacting partners using convolutional autoencoder-directed feature embedding. Compared with existing methods/tools, this novel algorithm demonstrated superior performances in diverse benchmark testing studies. This algorithm together with its source code could be readily accessed by all user at: https://idrblab.org/corain/ and https://github.com/idrblab/corain/.
Collapse
Affiliation(s)
- Yunxia Wang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Weiqi Xia
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Jin Liu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Hanqi Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Mingyue Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Honglin Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Xia J, Wang J, Ying L, Huang R, Zhang K, Zhang R, Tang W, Xu Q, Lai D, Zhang Y, Hu Y, Zhang X, Zang R, Fan J, Shu Q, Xu J. RAGE Is a Receptor for SARS-CoV-2 N Protein and Mediates N Protein-induced Acute Lung Injury. Am J Respir Cell Mol Biol 2023; 69:508-520. [PMID: 37478333 PMCID: PMC10633841 DOI: 10.1165/rcmb.2022-0351oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N-protein) increases early in body fluids during infection and has recently been identified as a direct inducer for lung injury. However, the signal mechanism of N-protein in the lung inflammatory response remains poorly understood. The goal of this study was to determine whether RAGE (receptor for advanced glycation endproducts) participated in N-protein-induced acute lung injury. The binding between N-protein and RAGE was examined via assays for protein-protein interaction. To determine the signaling mechanism in vitro, cells were treated with recombinant N-protein and assayed for the activation of the RAGE/MAPK (mitogen-activated protein kinase)/NF-ĸB pathway. RAGE deficiency mice and antagonist were used to study N-protein-induced acute lung injury in vivo. Binding between N-protein and RAGE was confirmed via flow cytometry-based binding assay, surface plasmon resonance, and ELISA. Pull-down and coimmunoprecipitation assays revealed that N-protein bound RAGE via both N-terminal and C-terminal domains. In vitro, N-protein activated the RAGE-ERK1/2-NF-ĸB signaling pathway and induced a proinflammatory response. RAGE deficiency subdued N-protein-induced proinflammatory signaling and response. In vivo, RAGE was upregulated in the BAL and lung tissue after recombinant N-protein insult. RAGE deficiency and small molecule antagonist partially protected mice from N-protein-induced acute lung injury. Our study demonstrated that RAGE is a receptor for N-protein. RAGE is partially responsible for N-protein-induced acute lung injury and has the potential to become a therapeutic target for treating coronavirus disease.
Collapse
Affiliation(s)
- Jie Xia
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiangmei Wang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Liyang Ying
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoqiong Huang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Kai Zhang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; and
| | - Ruoyang Zhang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Wenqi Tang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qi Xu
- Hangzhou Medical College, Hangzhou, China
| | - Dengming Lai
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Zhang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yaoqin Hu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaodie Zhang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoxi Zang
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiajie Fan
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianguo Xu
- The Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
4
|
Boniardi I, Corona A, Basquin J, Basquin C, Milia J, Nagy I, Tramontano E, Zinzula L. Suramin inhibits SARS-CoV-2 nucleocapsid phosphoprotein genome packaging function. Virus Res 2023; 336:199221. [PMID: 37704176 PMCID: PMC10514558 DOI: 10.1016/j.virusres.2023.199221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is fading, however its etiologic agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues posing - despite the availability of licensed vaccines - a global health threat, due to the potential emergence of vaccine-resistant SARS-CoV-2 variants. This makes the development of new drugs against COVID-19 a persistent urgency and sets as research priority the validation of novel therapeutic targets within the SARS-CoV-2 proteome. Among these, a promising one is the SARS-CoV-2 nucleocapsid (N) phosphoprotein, a major structural component of the virion with indispensable role in packaging the viral genome into a ribonucleoprotein (RNP) complex, which also contributes to SARS-CoV-2 innate immune evasion by inhibiting the host cell type-I interferon (IFN-I) response. By combining miniaturized differential scanning fluorimetry with microscale thermophoresis, we found that the 100-year-old drug Suramin interacts with SARS-CoV-2 N-terminal domain (NTD) and C-terminal domain (CTD), thereby inhibiting their single-stranded RNA (ssRNA) binding function with low-micromolar Kd and IC50 values. Molecular docking suggests that Suramin interacts with basic NTD cleft and CTD dimer interface groove, highlighting three potentially druggable ssRNA binding sites. Electron microscopy shows that Suramin inhibits the formation in vitro of RNP complex-like condensates by SARS-CoV-2 N with a synthetic ssRNA. In a dose-dependent manner, Suramin also reduced SARS-CoV-2-induced cytopathic effect on Vero E6 and Calu-3 cells, partially reverting the SARS-CoV-2 N-inhibited IFN-I production in 293T cells. Our findings indicate that Suramin inhibits SARS-CoV-2 replication by hampering viral genome packaging, thereby representing a starting model for design of new COVID-19 antivirals.
Collapse
Affiliation(s)
- Irene Boniardi
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - Jerome Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Claire Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jessica Milia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy
| | - István Nagy
- Center of Research and Development, Eszterházy Károly Catholic University, Eger 3300, Hungary
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato 09042, Italy.
| | - Luca Zinzula
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
5
|
Sangwan N, Singh J, Chauhan A, Prakash A, Khanduja KL, Medhi B, Avti PK. Structure and dynamic simulation-based interactions of benzenoids, pyrroles and organooxygen compounds for effective targeting of GPX4 in ischemic stroke. J Biomol Struct Dyn 2023; 41:9143-9156. [PMID: 36326469 DOI: 10.1080/07391102.2022.2141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
The discovery of a novel drug for ischemic stroke is plagued by expensive and unsuccessful outcomes. FDA-approved drugs could be a viable repurposing strategy for stroke therapy. Emerging evidence suggests the regulating role of Glutathione peroxidase (GPX4) in stroke and attracts as a potential target. To overcome limited therapeutic interventions, a drug repurposing in silico investigation of FDA-approved drugs is proposed for the GPX4 receptor in distinctive species (Homo sapiens and Mus musculus). The GPX4 UniProt wild type ids, that is, P36969 (Homo sapiens), P36970 (Rattus norvegicus) and O70325 (Mus musculus) are Swiss modelled, and resultant templates are 2OBI and 6HN3 for Homo sapiens, and 5L71 for Mus musculus with a sequence identity of ∼88%. Enrichment analysis reveals high sensitivity and ranked actives with ROC and AUC values of 0.59 and 0.61, respectively. Virtual screening at extra precision resulted hit Acarbosum, is similar between 2OBI and 6HN3, demonstrating a multiple-target specificity and Iopromide, targeting 2OBI. MD simulation at 100 ns following trajectory analysis provides RMSD (∼1.2-1.8Å), RMSF (∼1.6-2.7Å), Rgyr (∼15-15.6Å) depicting stabilisation of receptor-ligand complexes. Furthermore, average B-factor value of 2OBI, 6HN3 and 5L71 is 25Å, 24Å and 60Å with a defined resolution of 1.55Å, 1.01Å and 1.80Å, respectively, depicting the thermodynamic stability of the protein structures. The dynamic cross-correlation and principal component analysis of residual fluctuations reveal more positive correlation, high atomic displacements and greater residual clustering of residues from atomic coordinates. Therefore, Acarbosum, an FDA-approved drug, could act as a potential repurposing drug with a multi-target approach translating from preclinical to clinical stages.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
6
|
Chauhan A, Avti PK, Shekhar N, Prajapat M, Sarma P, Sangwan N, Singh J, Bhattacharyya A, Kumar S, Kaur H, Sharma S, Prakash A, Medhi B. An insight into the simulation directed understanding of the mechanism in SARS CoV-2 N-CTD, dimer integrity, and RNA-binding: Identifying potential antiviral inhibitors. J Biomol Struct Dyn 2022; 40:13912-13924. [PMID: 34751101 DOI: 10.1080/07391102.2021.1996463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coronavirus 2019 is a transmissible disease and has caused havoc throughout the world. The present study identifies the novel potential antiviral inhibitors against the nucleocapsid C-terminal domain that aids in RNA-binding and replication. A total of 485,629 compounds were screened, and MD was performed. The trajectory analysis (DCCM & PCA), structural integrity, and degree of compaction depicted the protein-ligand complex stability (PDB-PISA and Rgyr). Results obtained from screening shortlists 13 compounds possessing high Docking score. Further, seven compounds had a permissible RMSD limit (3 Å), with robust RMSF. Post-MD analysis of the top two compounds (204 and 502), DCCM & PCA analysis show a positive atomic displacements correlation among residues of active sites-dimer (Chain A and Chain B) & residual clustering. The ΔGint of RNA-bound (-83.5 kcal/mol) and drug-bound N-CTD-204 (-40.8 kcal/mol) and 502(-39.7 kcal/mol) as compared to Apo (-35.95 kcal/mol) suggests stabilization of protein, with less RNA-binding possibility. The Rgyr values depict the loss of compactness on RNA-binding when compared to the drug-bound N-CTD complex. Further, overlapping the protein complexes (0 ns and 100 ns) display significant changes in RMSD of the protein (204-2.07 Å and 502-1.89 Å) as compared to the Apo (1.72 Å) and RNA-bound form (1.76 Å), suggesting strong interaction for compound 204 as compared to 502. ADMET profiling indicates that these compounds can be used for further experiments (in vitro and pre-clinical). Compound 204 could be a promising candidate for targeting the N-protein-RNA assembly and viral replication.
Collapse
Affiliation(s)
- Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Shekhar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College and Hospital, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Saurabh Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Kim J, Kim D, Baek K, Kim M, Kang BM, Maharjan S, Park S, Choi JK, Kim S, Kim YK, Park MS, Lee Y, Kwon HJ. Production of a Monoclonal Antibody to the Nucleocapsid Protein of SARS-CoV-2 and Its Application to ELISA-Based Detection Methods with Broad Specificity by Combined Use of Detector Antibodies. Viruses 2022; 15:28. [PMID: 36680068 PMCID: PMC9866944 DOI: 10.3390/v15010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The coronavirus disease 2019 pandemic, elicited by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is ongoing. Currently accessible antigen-detecting rapid diagnostic tests are limited by their low sensitivity and detection efficacy due to evolution of SARS-CoV-2 variants. Here, we produced and characterized an anti-SARS-CoV-2 nucleocapsid (N) protein-specific monoclonal antibody (mAb), 2A7H9. Monoclonal antibody 2A7H9 and a previously developed mAb, 1G10C4, have different specificities. The 2A7H9 mAb detected the N protein of S clade, delta, iota, and mu but not omicron, whereas the 1G10C4 antibody recognized the N protein of all variants under study. In a sandwich enzyme-linked immunosorbent assay, recombinant N protein bound to the 1G10C4 mAb could be detected by both 1G10C4 and 2A7H9 mAbs. Similarly, N protein bound to the 2A7H9 mAb was detected by both mAbs, confirming the existence of dimeric N protein. While the 1G10C4 mAb detected omicron and mu with higher efficiency than S clade, delta, and iota, the 2A7H9 mAb efficiently detected all the strains except omicron, with higher affinity to S clade and mu than others. Combined use of 1G10C4 and 2A7H9 mAb resulted in the detection of all the strains with considerable sensitivity, suggesting that antibody combinations can improve the simultaneous detection of virus variants. Therefore, our findings provide insights into the development and improvement of diagnostic tools with broader specificity and higher sensitivity to detect rapidly evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Bo Min Kang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sony Maharjan
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jun-Kyu Choi
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Suyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yong Kyun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 02841, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
8
|
Selvaraj C, Pravin MA, Alhoqail WA, Nayarisseri A, Singh SK. Intrinsically disordered proteins in viral pathogenesis and infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:221-242. [PMID: 36088077 DOI: 10.1016/bs.apcsb.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Disordered proteins serve a crucial part in many biological processes that go beyond the capabilities of ordered proteins. A large number of virus-encoded proteins have extremely condensed proteomes and genomes, which results in highly disordered proteins. The presence of these IDPs allows them to rapidly adapt to changes in their biological environment and play a significant role in viral replication and down-regulation of host defense mechanisms. Since viruses undergo rapid evolution and have a high rate of mutation and accumulation in their proteome, IDPs' insights into viruses are critical for understanding how viruses hijack cells and cause disease. There are many conformational changes that IDPs can adopt in order to interact with different protein partners and thus stabilize the particular fold and withstand high mutation rates. This chapter explains the molecular mechanism behind viral IDPs, as well as the significance of recent research in the field of IDPs, with the goal of gaining a deeper comprehension of the essential roles and functions played by viral proteins.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Muthuraja Arun Pravin
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Wardah A Alhoqail
- Department of Biology, College of Education, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
9
|
Wang N, Yan K, Zhang J, Liu B. iDRNA-ITF: identifying DNA- and RNA-binding residues in proteins based on induction and transfer framework. Brief Bioinform 2022; 23:6609520. [PMID: 35709747 DOI: 10.1093/bib/bbac236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
Protein-DNA and protein-RNA interactions are involved in many biological activities. In the post-genome era, accurate identification of DNA- and RNA-binding residues in protein sequences is of great significance for studying protein functions and promoting new drug design and development. Therefore, some sequence-based computational methods have been proposed for identifying DNA- and RNA-binding residues. However, they failed to fully utilize the functional properties of residues, leading to limited prediction performance. In this paper, a sequence-based method iDRNA-ITF was proposed to incorporate the functional properties in residue representation by using an induction and transfer framework. The properties of nucleic acid-binding residues were induced by the nucleic acid-binding residue feature extraction network, and then transferred into the feature integration modules of the DNA-binding residue prediction network and the RNA-binding residue prediction network for the final prediction. Experimental results on four test sets demonstrate that iDRNA-ITF achieves the state-of-the-art performance, outperforming the other existing sequence-based methods. The webserver of iDRNA-ITF is freely available at http://bliulab.net/iDRNA-ITF.
Collapse
Affiliation(s)
- Ning Wang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jun Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
SARS-CoV-2 N Protein Antagonizes Stress Granule Assembly and IFN Production by Interacting with G3BPs to Facilitate Viral Replication. J Virol 2022; 96:e0041222. [PMID: 35652658 PMCID: PMC9215227 DOI: 10.1128/jvi.00412-22] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 is the causative agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19) and poses a significant threat to global health. N protein (NP), which is a major pathogenic protein among betacoronaviruses, binds to the viral RNA genome to allow viral genome packaging and viral particle release. Recent studies showed that NP antagonizes interferon (IFN) induction and mediates phase separation. Using live SARS-CoV-2 viruses, this study provides solid evidence showing that SARS-CoV-2 NP associates with G3BP1 and G3BP2 in vitro and in vivo. NPSARS-CoV-2 could efficiently suppress G3BP-mediated SG formation and potentiate viral infection by overcoming G3BP1-mediated antiviral innate immunity. G3BP1 conditional knockout mice (g3bp1fl/fL, Sftpc-Cre) exhibit significantly higher lung viral loads after SARS-CoV-2 infection than wild-type mice. Our findings contribute to the growing body of knowledge regarding the pathogenicity of NPSARS-CoV-2 and provide insight into new therapeutics targeting NPSARS-CoV-2. IMPORTANCE In this study, by in vitro assay and live SARS-CoV-2 virus infection, we provide solid evidence that the SARS-CoV-2 NP associates with G3BP1 and G3BP2 in vitro and in vivo. NPSARS-CoV-2 could efficiently suppress G3BP-mediated SG formation and potentiate viral infection by overcoming antiviral innate immunity mediated by G3BP1 in A549 cell lines and G3BP1 conditional knockout mice (g3bp1-cKO) mice, which provide in-depth evidence showing the mechanism underlying NP-related SARS-CoV-2 pathogenesis through G3BPs.
Collapse
|
11
|
Singh J, Raina A, Sangwan N, Chauhan A, Khanduja KL, Avti PK. Identification of homologous human miRNAs as antivirals towards COVID-19 genome. ADVANCES IN CELL AND GENE THERAPY 2021; 4:e114. [PMID: 34901760 PMCID: PMC8646656 DOI: 10.1002/acg2.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/25/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
The COVID-19 fatality rate is ~57% worldwide. The investigation of possible antiviral therapy using host microRNA (miRNA) to inhibit viral replication and transmission is the need of the hour. Computational techniques were used to predict the hairpin precursor miRNA (pre-miRNAs) of COVID-19 genome with high homology towards human (host) miRNA. Top 21 host miRNAs with >80% homology towards 18 viral pre miRNAs were identified. The Gibbs free energy (ΔG) between host miRNAs and viral pre-miRNAs hybridization resulted in the best 5 host miRNAs having the highest base-pair complementarity. miR-4476 had the strongest binding with viral pre-miRNA (ΔG = -21.8 kcal/mol) due to maximum base pairing in the seed sequence. Pre-miR-651 secondary structure was most stable due to the (1) least minimum free energy (ΔG = -24.4 kcal/mol), energy frequency, and noncanonical base pairing and (2) maximum number of stem base pairing and small loop size. Host miRNAs-viral mRNAs interaction can effectively inhibit viral transmission and replication. Furthermore, miRNAs gene network and gene-ontology studies indicate top 5 host miRNAs interaction with host genes involved in transmembrane-receptor signaling, cell migration, RNA splicing, nervous system formation, and tumor necrosis factor-mediated signaling in respiratory diseases. This study identifies host miRNA/virus pre-miRNAs strong interaction, structural stability, and their gene-network analysis provides strong evidence of host miRNAs as antiviral COVID-19 agents.
Collapse
Affiliation(s)
- Jitender Singh
- Department of BiophysicsPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Ashvinder Raina
- Postgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Namrata Sangwan
- Department of BiophysicsPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Arushi Chauhan
- Department of BiophysicsPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Krishan L. Khanduja
- Department of BiophysicsPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Pramod K. Avti
- Department of BiophysicsPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| |
Collapse
|