1
|
Mohd Abd Razak MR, Md Jelas NH, Norahmad NA, Mohmad Misnan N, Muhammad A, Padlan N, Sa'at MNF, Zainol M, Syed Mohamed AF. In vitro study on efficacy of SKF7 ®, a Malaysian medicinal plant product against SARS-CoV-2. BMC Complement Med Ther 2024; 24:333. [PMID: 39261916 PMCID: PMC11389526 DOI: 10.1186/s12906-024-04628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND In early 2020, COVID-19 pandemic has mobilized researchers in finding new remedies including repurposing of medicinal plant products focusing on direct-acting antiviral and host-directed therapies. In this study, we performed an in vitro investigation on the standardized Marantodes pumilum extract (SKF7®) focusing on anti-SARS-CoV-2 and anti-inflammatory activities. METHODS Anti-SARS-CoV-2 potential of the SKF7® was evaluated in SARS-CoV-2-infected Vero E6 cells and SARS-CoV-2-infected A549 cells by cytopathic effect-based assay and RT-qPCR, respectively. Target based assays were performed on the SKF7® against the S1-ACE2 interaction and 3CL protease activities. Anti-inflammatory activity of the SKF7® was evaluated by nitric oxide inhibitory and TLR2/TLR4 receptor blocker assays. RESULTS The SKF7® inhibited wild-type Wuhan (EC50 of 21.99 µg/mL) and omicron (EC50 of 16.29 µg/mL) SARS-CoV-2 infections in Vero-E6 cells. The SKF7® also inhibited the wild-type SARS-CoV-2 infection in A549 cells (EC50 value of 6.31 µg/mL). The SKF7® prominently inhibited 3CL protease activity. The SKF7® inhibited the LPS induced-TLR4 response with the EC50 of 16.19 µg/mL. CONCLUSIONS In conclusion, our in vitro study highlighted anti-SARS-CoV-2 and anti-inflammatory potentials of the SKF7®. Future pre-clinical in vivo studies focusing on antiviral and immunomodulatory potentials of the SKF7® in affecting the COVID-19 pathogenesis are warranted.
Collapse
Affiliation(s)
- Mohd Ridzuan Mohd Abd Razak
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia.
| | - Nur Hana Md Jelas
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Norazlan Mohmad Misnan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Amirrudin Muhammad
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Noorsofiana Padlan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Muhammad Nor Farhan Sa'at
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Murizal Zainol
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Ami Fazlin Syed Mohamed
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| |
Collapse
|
2
|
Alipour Z, Zarezadeh S, Ghotbi-Ravandi AA. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. PLANTA MEDICA 2024; 90:172-203. [PMID: 37956978 DOI: 10.1055/a-2209-6357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Szabó D, Crowe A, Mamotte C, Strappe P. Natural products as a source of Coronavirus entry inhibitors. Front Cell Infect Microbiol 2024; 14:1353971. [PMID: 38449827 PMCID: PMC10915212 DOI: 10.3389/fcimb.2024.1353971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The COVID-19 pandemic has had a significant and lasting impact on the world. Four years on, despite the existence of effective vaccines, the continuous emergence of new SARS-CoV-2 variants remains a challenge for long-term immunity. Additionally, there remain few purpose-built antivirals to protect individuals at risk of severe disease in the event of future coronavirus outbreaks. A promising mechanism of action for novel coronavirus antivirals is the inhibition of viral entry. To facilitate entry, the coronavirus spike glycoprotein interacts with angiotensin converting enzyme 2 (ACE2) on respiratory epithelial cells. Blocking this interaction and consequently viral replication may be an effective strategy for treating infection, however further research is needed to better characterize candidate molecules with antiviral activity before progressing to animal studies and clinical trials. In general, antiviral drugs are developed from purely synthetic compounds or synthetic derivatives of natural products such as plant secondary metabolites. While the former is often favored due to the higher specificity afforded by rational drug design, natural products offer several unique advantages that make them worthy of further study including diverse bioactivity and the ability to work synergistically with other drugs. Accordingly, there has recently been a renewed interest in natural product-derived antivirals in the wake of the COVID-19 pandemic. This review provides a summary of recent research into coronavirus entry inhibitors, with a focus on natural compounds derived from plants, honey, and marine sponges.
Collapse
Affiliation(s)
- Dávid Szabó
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Andrew Crowe
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Cyril Mamotte
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Padraig Strappe
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| |
Collapse
|
4
|
Abarova S, Alexova R, Dragomanova S, Solak A, Fagone P, Mangano K, Petralia MC, Nicoletti F, Kalfin R, Tancheva L. Emerging Therapeutic Potential of Polyphenols from Geranium sanguineum L. in Viral Infections, Including SARS-CoV-2. Biomolecules 2024; 14:130. [PMID: 38275759 PMCID: PMC10812934 DOI: 10.3390/biom14010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The existing literature supports the anti-inflammatory, antioxidant, and antiviral capacities of the polyphenol extracts derived from Geranium sanguineum L. These extracts exhibit potential in hindering viral replication by inhibiting enzymes like DNA polymerase and reverse transcriptase. The antiviral properties of G. sanguineum L. seem to complement its immunomodulatory effects, contributing to infection resolution. While preclinical studies on G. sanguineum L. suggest its potential effectiveness against COVID-19, there is still a lack of clinical evidence. Therefore, the polyphenols extracted from this herb warrant further investigation as a potential alternative for preventing and treating COVID-19 infections.
Collapse
Affiliation(s)
- Silviya Abarova
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University of Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria;
| | - Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, Tsar Osvoboditel Blvd 84A, 9002 Varna, Bulgaria;
| | - Ayten Solak
- Institute of Cryobiology and Food Technologies, Cherni Vrah Blvd. 53, 1407 Sofia, Bulgaria;
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Reni Kalfin
- Department of Biological Effects of Natural and Synthetic Substances, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. 23, 1113 Sofia, Bulgaria; (R.K.); (L.T.)
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Department of Biological Effects of Natural and Synthetic Substances, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. 23, 1113 Sofia, Bulgaria; (R.K.); (L.T.)
| |
Collapse
|
5
|
Jahajeeah D, Ranghoo-Sanmukhiya M, Schäfer G. Metabolic Profiling, Antiviral Activity and the Microbiome of Some Mauritian Soft Corals. Mar Drugs 2023; 21:574. [PMID: 37999398 PMCID: PMC10672535 DOI: 10.3390/md21110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Soft corals, recognized as sessile marine invertebrates, rely mainly on chemical, rather than physical defense, by secreting intricate secondary metabolites with plausible pharmaceutical implication. Their ecological niche encompasses a diverse community of symbiotic microorganisms which potentially contribute to the biosynthesis of these bioactive metabolites. The emergence of new viruses and heightened viral resistance underscores the urgency to explore novel pharmacological reservoirs. Thus, marine organisms, notably soft corals and their symbionts, have drawn substantial attention. In this study, the chemical composition of four Mauritian soft corals: Sinularia polydactya, Cespitularia simplex, Lobophytum patulum, and Lobophytum crassum was investigated using LC-MS techniques. Concurrently, Illumina 16S metagenomic sequencing was used to identify the associated bacterial communities in the named soft corals. The presence of unique biologically important compounds and vast microbial communities found therein was further followed up to assess their antiviral effects against SARS-CoV-2 and HPV pseudovirus infection. Strikingly, among the studied soft corals, L. patulum displayed an expansive repertoire of unique metabolites alongside a heightened bacterial consort. Moreover, L. patulum extracts exerted some promising antiviral activity against SARS-CoV-2 and HPV pseudovirus infection, and our findings suggest that L. patulum may have the potential to serve as a therapeutic agent in the prevention of infectious diseases, thereby warranting further investigation.
Collapse
Affiliation(s)
- Deeya Jahajeeah
- Department of Agricultural & Food Science, Faculty of Agriculture, University of Mauritius, Reduit 80837, Mauritius;
- International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa;
| | - Mala Ranghoo-Sanmukhiya
- Department of Agricultural & Food Science, Faculty of Agriculture, University of Mauritius, Reduit 80837, Mauritius;
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa;
| |
Collapse
|
6
|
Olugbogi EA, Arobadade OA, Bodun DS, Omoseeye SD, Omirin ES, Fapohunda O, Ekun OE, Metibemu DS, Shodehinde SA, Saliu JA, Omotuyi OI. Identification of apposite antagonist for androgen receptor in prostate cancer: an in silico study of fenugreek compounds. J Biomol Struct Dyn 2023; 42:12918-12934. [PMID: 37897191 DOI: 10.1080/07391102.2023.2273988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
Benign Prostate Cancer (BPC), a prevalent condition predominantly affecting elderly males, manifests with voiding difficulties and urinary retention. A library of compounds from Trigonella foenum-graecum, commonly known as fenugreek was used in this study. We aimed to explore its potential anti-cancer effects by computationally assessing its inhibitory activity on the androgen receptor (AR). For in-silico drug assessment, we employed Maestro 12.8, part of the Schrödinger Suite, to identify the most promising candidates acting as androgen receptor antagonists in the treatment of BPC. Subsequently, 59 fenugreek compounds were retrieved from the PubChem database and subjected to molecular docking against the active site of the target protein, 1E3G. 100-nanosecond molecular dynamics (MD) simulations were performed to assess the stability and compactness of the AR-ligand complexes. Notably, the AR-kaempferol complex exhibited the least fluctuation within the AR active site throughout the simulation trajectory, followed by chlorogenic acid and the reference ligand, hydroxyflutamide. The MM/GBSA values revealed the compounds' maximum free binding energy (-103.3 ± 6, -87.4 ± 23, -68.5 ΔGbind) for chlorogenic acid, kaempferol, and hydroxyflutamide, respectively. These findings suggest their potential as promising leads for drug development. Further lead optimization and comprehensive studies on the top-ranked ligands identified in this investigation are warranted to advance their potential as therapeutic agents for BPC treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ezekiel A Olugbogi
- Molecular Biology and Simulation Center, Ado-Ekiti, Ekiti State, Nigeria
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | | | - Damilola S Bodun
- Molecular Biology and Simulation Center, Ado-Ekiti, Ekiti State, Nigeria
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | - Shola D Omoseeye
- Molecular Biology and Simulation Center, Ado-Ekiti, Ekiti State, Nigeria
- Department of Anatomy, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | - Emmanuel S Omirin
- Molecular Biology and Simulation Center, Ado-Ekiti, Ekiti State, Nigeria
| | - Oluwaseun Fapohunda
- Chemistry and Biochemistry Department, University of Arizona, Tucson, AZ, USA
| | - Oluwafemi E Ekun
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | - Damilohun S Metibemu
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | - Sidiqat A Shodehinde
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | - Jamiyu A Saliu
- Department of Biochemistry, Adekunle Ajasin University, Akungba Akoko, Ondo State, Nigeria
| | - Olaposi I Omotuyi
- Molecular Biology and Simulation Center, Ado-Ekiti, Ekiti State, Nigeria
- College of Pharmacy Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
7
|
Ahmad Merza Mohammad T. Combining nano-curcumin with catechin improves COVID-19-infected patient's inflammatory conditions. Hum Immunol 2023; 84:471-483. [PMID: 37331910 PMCID: PMC10239908 DOI: 10.1016/j.humimm.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/30/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
AIMS A hyperinflammatory condition is brought on by the development of Coronavirus disease 2019 (COVID-19), which is characterized by an elevation of T helper (Th) 17 cells, high levels of pro-inflammatory cytokines, and a depletion of regulatory T (Treg) cells. METHODS In this research, we examined the effect of nano-curcumin and catechin on the TCD4+, TCD8+, Th17, and Treg cells and their associated factors in COVID-19 patients. For this purpose, 160 (50 patients excluded during the study) COVID-19 patients were divided into four groups: placebo, nano-curcumin, catechin, and nano-curcumin + catechin. The frequency of TCD4+, TCD8+, Th17, and Treg cells, the gene expression of transcription factors (STAT3, RORt, and FoxP3) relevant to Th17 and Treg, as well as the serum levels of cytokines (IL-6, IL17, IL1-b, IL-10, and TGF-), were all evaluated intra- and inter-group, before and after treatment, in all groups. RESULTS Our study showed that TCD4 + and TCD8 + cells were significantly higher in the nano-curcumin + catechin group compared to the control group, whereas Th17 was lower than the initial value. Furthermore, compared to the placebo-received group, cytokines and transcription factors associated with Th17 were significantly lower in the nano-curcumin + catechin group. Additionally, combined therapy increased Treg cells and transcription factors compared to the placebo group. CONCLUSION Overall, our results show that combining nano-curcumin with catechin has a more notable impact on the enhancement of TCD4+, TCD8+, and Treg cells, as well as a decrease in Th17 cells and their mediators, suggesting a promising combination therapy in reducing the inflammatory conditions of COVID-19 infected patients.
Collapse
|
8
|
Rafiq A, Jabeen T, Aslam S, Ahmad M, Ashfaq UA, Mohsin NUA, Zaki MEA, Al-Hussain SA. A Comprehensive Update of Various Attempts by Medicinal Chemists to Combat COVID-19 through Natural Products. Molecules 2023; 28:4860. [PMID: 37375415 PMCID: PMC10305344 DOI: 10.3390/molecules28124860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The ongoing COVID-19 pandemic has resulted in a global panic because of its continual evolution and recurring spikes. This serious malignancy is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the outbreak, millions of people have been affected from December 2019 till now, which has led to a great surge in finding treatments. Despite trying to handle the pandemic with the repurposing of some drugs, such as chloroquine, hydroxychloroquine, remdesivir, lopinavir, ivermectin, etc., against COVID-19, the SARS-CoV-2 virus continues its out-of-control spread. There is a dire need to identify a new regimen of natural products to combat the deadly viral disease. This article deals with the literature reports to date of natural products showing inhibitory activity towards SARS-CoV-2 through different approaches, such as in vivo, in vitro, and in silico studies. Natural compounds targeting the proteins of SARS-CoV-2-the main protease (Mpro), papain-like protease (PLpro), spike proteins, RNA-dependent RNA polymerase (RdRp), endoribonuclease, exoribonuclease, helicase, nucleocapsid, methyltransferase, adeno diphosphate (ADP) phosphatase, other nonstructural proteins, and envelope proteins-were extracted mainly from plants, and some were isolated from bacteria, algae, fungi, and a few marine organisms.
Collapse
Affiliation(s)
- Ayesha Rafiq
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Tooba Jabeen
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Noor ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
9
|
Storozhuk M, Lee S, Lee JI, Park J. Green Tea Consumption and the COVID-19 Omicron Pandemic Era: Pharmacology and Epidemiology. Life (Basel) 2023; 13:life13030852. [PMID: 36984007 PMCID: PMC10054848 DOI: 10.3390/life13030852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
In spite of the development of numerous vaccines for the prevention of COVID-19 and the approval of several drugs for its treatment, there is still a great need for effective and inexpensive therapies against this disease. Previously, we showed that green tea and tea catechins interfere with coronavirus replication as well as coronavirus 3CL protease activity, and also showed lower COVID-19 morbidity and mortality in countries with higher green tea consumption. However, it is not clear whether green tea is still effective against the newer SARS-CoV-2 variants including omicron. It is also not known whether higher green tea consumption continues to contribute to lower COVID-19 morbidity and mortality now that vaccination rates in many countries are high. Here, we attempted to update the information regarding green tea in relation to COVID-19. Using pharmacological and ecological approaches, we found that EGCG as well as green tea inhibit the activity of the omicron variant 3CL protease efficiently, and there continues to be pronounced differences in COVID-19 morbidity and mortality between groups of countries with high and low green tea consumption as of December 6, 2022. These results collectively suggest that green tea continues to be effective against COVID-19 despite the new omicron variants and increased vaccination.
Collapse
Affiliation(s)
- Maksim Storozhuk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine
| | - Siyun Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Jin I Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
10
|
DeSoto MC. Is a Genetic Diathesis for Poor Nutrition Becoming More Crucial Due to the Uniformity of COVID Social Stress? Nutrients 2023; 15:960. [PMID: 36839316 PMCID: PMC9967310 DOI: 10.3390/nu15040960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
The important role of nutrition in proper neural functioning and mental health has seen wider acceptance, but is still sadly under recognized given the existent body of research. This Special Issue was designed to unite authoritative information on this topic in one volume. This editorial provides an overview of the issue, and suggests that the combination of social isolation, lack of exercise, and remaining indoors that overtook industrialized societies during 2020 are specific factors expected to change the Gene × Environment interactions for anxiety and depression. Importantly, the recent environmental changes may make biological diatheses for nutritional deficiencies even more problematic. The concept of G × E interaction is dissected to clarify a non-intuitive scenario: heritability may increase, even when a sharp increase in prevalence is entirely the result of an environmental change (e.g., COVID anxiety and isolation). Key research is highlighted, specific genetic examples are noted, and theoretical implications regarding natural selection are discussed.
Collapse
Affiliation(s)
- M Catherine DeSoto
- Department of Psychology, University of Northern Iowa, Cedar Falls, IA 50613, USA
| |
Collapse
|
11
|
Dey R, Samadder A, Nandi S. Exploring the Targets of Novel Corona Virus and Docking-based Screening of Potential Natural Inhibitors to Combat COVID-19. Curr Top Med Chem 2022; 22:2410-2434. [PMID: 36281864 DOI: 10.2174/1568026623666221020163831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 01/20/2023]
Abstract
There is a need to explore natural compounds against COVID-19 due to their multitargeted actions against various targets of nCoV. They act on multiple sites rather than single targets against several diseases. Thus, there is a possibility that natural resources can be repurposed to combat COVID-19. However, the biochemical mechanisms of these inhibitors were not known. To reveal the mode of anti-nCoV action, structure-based docking plays a major role. The present study is an attempt to explore various potential targets of SARS-CoV-2 and the structure-based screening of various potential natural inhibitors to combat the novel coronavirus.
Collapse
Affiliation(s)
- Rishita Dey
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India.,Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
12
|
Manieri JAG, Correa VG, Gomes Corrêa RC, Dias MI, Calhelha RC, Ivanov M, Soković M, Barros L, Ferreira IC, Bracht A, Peralta RM. Polyphenolic profile and pharmacological activities of whips horse (Luehea divaricata) bark extracts studied using in vitro and in vivo systems. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Feng T, Zhang M, Xu Q, Song F, Wang L, Gai S, Tang H, Wang S, Zhou L, Li H. Exploration of molecular targets and mechanisms of Chinese medicinal formula Acacia Catechu -Scutellariae Radix in the treatment of COVID-19 by a systems pharmacology strategy. Phytother Res 2022; 36:4210-4229. [PMID: 35859316 PMCID: PMC9349561 DOI: 10.1002/ptr.7554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022]
Abstract
Coronavirus disease 2019 (COVID‐19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). In China, the Acacia catechu (AC)‐Scutellariae Radix (SR) formula has been widely used for pulmonary infection in clinical practice for several centuries. However, the potential role and mechanisms of this formula against COVID‐19 remains unclear. The present study was designed to dissect the active ingredients, molecular targets, and the therapeutic mechanisms of AC‐SR formula in the treatment of COVID‐19 based on a systems pharmacology strategy integrated by ADME screening, target prediction, network analysis, GO and KEGG enrichment analysis, molecular docking, and molecular dynamic (MD) simulations. Finally, Quercetin, Fisetin(1‐), kaempferol, Wogonin, Beta‐sitosterol, Baicalein, Skullcapflavone II, Stigmasterol were primarily screened to be the potentially effective active ingredients against COVID‐19. The hub‐proteins were TP53, JUN, ESR1, MAPK1, Akt1, HSP90AA1, TNF, IL‐6, SRC, and RELA. The potential mechanisms of AC‐SR formula in the treatment of COVID‐19 were the TNF signaling pathway, PI3K‐Akt signaling pathway and IL‐17 signaling pathway, etc. Furthermore, virtual docking revealed that baicalein, (+)‐catechin and fisetin(1‐) exhibited high affinity to SARS‐CoV‐2 3CLpro, which has validated by the FRET‐based enzymatic inhibitory assays with the IC50 of 11.3, 23.8, and 44.1 μM, respectively. And also, a concentration‐dependent inhibition of baicalein, quercetin and (+)‐catechin against SARS‐CoV‐2 ACE2 was observed with the IC50 of 138.2, 141.3, and 348.4 μM, respectively. These findings suggested AC‐SR formula exerted therapeutic effects involving “multi‐compounds and multi‐targets.” It might be working through directly inhibiting the virus, improving immune function, and reducing the inflammatory in response to anti‐COVID‐19. Ultimately, this study would provide new perspective for discovering potential drugs and mechanisms against COVID‐19.
Collapse
Affiliation(s)
- Tian Feng
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Meng Zhang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Qiong Xu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Fan Song
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Libin Wang
- School of Medicine, Shaanxi Energy Institute, Xianyang, China
| | - Shouchang Gai
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China.,College of Life Science and Medicine, Northwest University, Xi'an, China
| | - Liying Zhou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hua Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| |
Collapse
|
14
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
15
|
Jablonský M, Štekláč M, Majová V, Gall M, Matúška J, Pitoňák M, Bučinský L. Molecular docking and machine learning affinity prediction of compounds identified upon softwood bark extraction to the main protease of the SARS-CoV-2 virus. Biophys Chem 2022; 288:106854. [PMID: 35810518 PMCID: PMC9233873 DOI: 10.1016/j.bpc.2022.106854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022]
Abstract
Molecular docking of 234 unique compounds identified in the softwood bark (W set) is presented with a focus on their inhibition potential to the main protease of the SARS-CoV-2 virus 3CLpro (6WQF). The docking results are compared with the docking results of 866 COVID19-related compounds (S set). Furthermore, machine learning (ML) prediction of docking scores of the W set is presented using the S set trained TensorFlow, XGBoost, and SchNetPack ML approaches. Docking scores are evaluated with the Autodock 4.2.6 software. Four compounds in the W set achieve a docking score below −13 kcal/mol, with (+)-lariciresinol 9′-p-coumarate (CID 11497085) achieving the best docking score (−15 kcal/mol) within the W and S sets. In addition, 50% of W set docking scores are found below −8 kcal/mol and 25% below −10 kcal/mol. Therefore, the compounds identified in the softwood bark, show potential for antiviral activity upon extraction or further derivatization. The W set molecular docking studies are validated by means of molecular dynamics (five best compounds). The solubility (Log S, ESOL) and druglikeness of the best docking compounds in S and W sets are compared to evaluate the pharmacological potential of compounds identified in softwood bark.
Collapse
Affiliation(s)
- Michal Jablonský
- Institute of Natural and Synthetic Polymers, Department of Wood, Pulp and Paper, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava SK-812 37, Slovakia.
| | - Marek Štekláč
- Institute of Physical Chemistry and Chemical Physics, Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava SK-812 37, Slovakia
| | - Veronika Majová
- Institute of Natural and Synthetic Polymers, Department of Wood, Pulp and Paper, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava SK-812 37, Slovakia
| | - Marián Gall
- Institute of Information Engineering, Automation and Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic; Computing Center, Centre of Operations of the Slovak Academy of Sciences, Dúbravská cesta c. 9, SK-84535 Bratislava, Slovak Republic
| | - Ján Matúška
- Institute of Physical Chemistry and Chemical Physics, Department of Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava SK-812 37, Slovakia
| | - Michal Pitoňák
- Computing Center, Centre of Operations of the Slovak Academy of Sciences, Dúbravská cesta c. 9, SK-84535 Bratislava, Slovak Republic; Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, SK-84215 Bratislava, Slovak Republic
| | - Lukáš Bučinský
- Institute of Physical Chemistry and Chemical Physics, Department of Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava SK-812 37, Slovakia.
| |
Collapse
|
16
|
Ray R, Birangal SR, Fathima F, Bhat GV, Rao M, Shenoy GG. Repurposing of approved drugs and nutraceuticals to identify potential inhibitors of SARS-COV-2’s entry into human host cells: a structural analysis using induced-fit docking, MMGBSA and molecular dynamics simulation approach. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2021.2016741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rajdeep Ray
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Fajeelath Fathima
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - G. Varadaraj Bhat
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - G. Gautham Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
17
|
Theoharides TC. Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome? Mol Neurobiol 2022; 59:1850-1861. [PMID: 35028901 PMCID: PMC8757925 DOI: 10.1007/s12035-021-02696-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 infects cells via its spike protein binding to its surface receptor on target cells and results in acute symptoms involving especially the lungs known as COVID-19. However, increasing evidence indicates that many patients develop a chronic condition characterized by fatigue and neuropsychiatric symptoms, termed long-COVID. Most of the vaccines produced so far for COVID-19 direct mammalian cells via either mRNA or an adenovirus vector to express the spike protein, or administer recombinant spike protein, which is recognized by the immune system leading to the production of neutralizing antibodies. Recent publications provide new findings that may help decipher the pathogenesis of long-COVID. One paper reported perivascular inflammation in brains of deceased patients with COVID-19, while others showed that the spike protein could damage the endothelium in an animal model, that it could disrupt an in vitro model of the blood-brain barrier (BBB), and that it can cross the BBB resulting in perivascular inflammation. Moreover, the spike protein appears to share antigenic epitopes with human molecular chaperons resulting in autoimmunity and can activate toll-like receptors (TLRs), leading to release of inflammatory cytokines. Moreover, some antibodies produced against the spike protein may not be neutralizing, but may change its conformation rendering it more likely to bind to its receptor. As a result, one wonders whether the spike protein entering the brain or being expressed by brain cells could activate microglia, alone or together with inflammatory cytokines, since protective antibodies could not cross the BBB, leading to neuro-inflammation and contributing to long-COVID. Hence, there is urgent need to better understand the neurotoxic effects of the spike protein and to consider possible interventions to mitigate spike protein-related detrimental effects to the brain, possibly via use of small natural molecules, especially the flavonoids luteolin and quercetin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA, 02111, USA.
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, 02111, USA.
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA.
| |
Collapse
|
18
|
Diniz LRL, Elshabrawy HA, Souza MTDS, Duarte ABS, Datta S, de Sousa DP. Catechins: Therapeutic Perspectives in COVID-19-Associated Acute Kidney Injury. Molecules 2021; 26:5951. [PMID: 34641495 PMCID: PMC8512361 DOI: 10.3390/molecules26195951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Data obtained from several intensive care units around the world have provided substantial evidence of the strong association between impairment of the renal function and in-hospital deaths of critically ill COVID-19 patients, especially those with comorbidities and requiring renal replacement therapy (RRT). Acute kidney injury (AKI) is a common renal disorder of various etiologies characterized by a sudden and sustained decrease of renal function. Studies have shown that 5-46% of COVID-19 patients develop AKI during hospital stay, and the mortality of those patients may reach up to 100% depending on various factors, such as organ failures and RRT requirement. Catechins are natural products that have multiple pharmacological activities, including anti-coronavirus and reno-protective activities against kidney injury induced by nephrotoxic agents, obstructive nephropathies and AKI accompanying metabolic and cardiovascular disorders. Therefore, in this review, we discuss the anti-SARS-CoV-2 and reno-protective effects of catechins from a mechanistic perspective. We believe that catechins may serve as promising therapeutics in COVID-19-associated AKI due to their well-recognized anti-SARS-CoV-2, and antioxidant and anti-inflammatory properties that mediate their reno-protective activities.
Collapse
Affiliation(s)
| | - Hatem A. Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | | | | | - Sabarno Datta
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA;
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil;
| |
Collapse
|
19
|
Wu Y, Pegan SD, Crich D, Desrochers E, Starling EB, Hansen MC, Booth C, Nicole Mullininx L, Lou L, Chang KY, Xie ZR. Polyphenols as alternative treatments of COVID-19. Comput Struct Biotechnol J 2021; 19:5371-5380. [PMID: 34567475 PMCID: PMC8452152 DOI: 10.1016/j.csbj.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 01/23/2023] Open
Abstract
Although scientists around the world have put lots of effort into the development of new treatments for COVID-19 since the outbreak, no drugs except Veklury (remdesivir) have been approved by FDA. There is an urgent need to discover some alternative antiviral treatment for COVID-19. Because polyphenols have been shown to possess antiviral activities, here we conducted a large-scale virtual screening for more than 400 polyphenols. Several lead compounds such as Petunidin 3-O-(6″-p-coumaroyl-glucoside) were identified to have promising binding affinities and convincing binding mechanisms. Analyzing the docking results and ADME properties sheds light on the potential efficacy of the top-ranked drug candidates and pinpoints the key residues on the target proteins for the future of drug development.
Collapse
Affiliation(s)
- Yifei Wu
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens 30602, GA, USA
| | - Scott D Pegan
- Division of Biomedical Sciences., School of Medicine, University of California Riverside, 92521, CA, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens 30602, GA, USA
| | - Ellison Desrochers
- Franklin College of Arts and Sciences, University of Georgia, Athens 30602, GA, USA
| | - Edward B Starling
- Franklin College of Arts and Sciences, University of Georgia, Athens 30602, GA, USA
| | - Madelyn C Hansen
- Franklin College of Arts and Sciences, University of Georgia, Athens 30602, GA, USA
| | - Carson Booth
- Franklin College of Arts and Sciences, University of Georgia, Athens 30602, GA, USA
| | | | - Lei Lou
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens 30602, GA, USA
| | - Kuan Y Chang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202, Taiwan, ROC
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens 30602, GA, USA
| |
Collapse
|
20
|
Rehman MFU, Akhter S, Batool AI, Selamoglu Z, Sevindik M, Eman R, Mustaqeem M, Akram MS, Kanwal F, Lu C, Aslam M. Effectiveness of Natural Antioxidants against SARS-CoV-2? Insights from the In-Silico World. Antibiotics (Basel) 2021; 10:1011. [PMID: 34439061 PMCID: PMC8388999 DOI: 10.3390/antibiotics10081011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS CoV-2 pandemic has affected millions of people around the globe. Despite many efforts to find some effective medicines against SARS CoV-2, no established therapeutics are available yet. The use of phytochemicals as antiviral agents provides hope against the proliferation of SARS-CoV-2. Several natural compounds were analyzed by virtual screening against six SARS CoV-2 protein targets using molecular docking simulations in the present study. More than a hundred plant-derived secondary metabolites have been docked, including alkaloids, flavonoids, coumarins, and steroids. SARS CoV-2 protein targets include Main protease (MPro), Papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), Spike glycoprotein (S), Helicase (Nsp13), and E-Channel protein. Phytochemicals were evaluated by molecular docking, and MD simulations were performed using the YASARA structure using a modified genetic algorithm and AMBER03 force field. Binding energies and dissociation constants allowed the identification of potentially active compounds. Ligand-protein interactions provide an insight into the mechanism and potential of identified compounds. Glycyrrhizin and its metabolite 18-β-glycyrrhetinic acid have shown a strong binding affinity for MPro, helicase, RdRp, spike, and E-channel proteins, while a flavonoid Baicalin also strongly binds against PLpro and RdRp. The use of identified phytochemicals may help to speed up the drug development and provide natural protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Fayyaz ur Rehman
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Institute of Chemistry, University of Sargodha, Sargodha 41600, Pakistan; (S.A.); (R.E.)
| | - Shahzaib Akhter
- Institute of Chemistry, University of Sargodha, Sargodha 41600, Pakistan; (S.A.); (R.E.)
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha 41600, Pakistan;
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Omer Halisdemir University, Nigde 51240, Turkey;
| | - Mustafa Sevindik
- Department of Food Processing, Bahçe Vocational School, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey;
| | - Rida Eman
- Institute of Chemistry, University of Sargodha, Sargodha 41600, Pakistan; (S.A.); (R.E.)
| | - Muhammad Mustaqeem
- Department of Chemistry, University of Sargodha, Bhakkar Campus, Bhakkar 30000, Pakistan;
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK;
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Fariha Kanwal
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 201620, China;
| | - Changrui Lu
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Lahore 54600, Pakistan
| |
Collapse
|