1
|
Campello Jorge CA, Marway PS, Tjahjadi NS, Knauer HA, Patel HJ, Bowman MH, Eagle K, Burris NS. Growth Rate Assessed by Vascular Deformation Mapping predicts Type B Aortic Dissection in Marfan Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.10.24315133. [PMID: 39417112 PMCID: PMC11483026 DOI: 10.1101/2024.10.10.24315133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Patients with Marfan syndrome (MFS) are at a high risk of type B dissection (TBAD). Aortic growth and elongation have been suggested as risk factors for TBAD. Vascular deformation mapping (VDM) is an image analysis technique for mapping 3D aortic growth on rouine computed tomography angiography (CTA) scans. We aimed to use VDM to examine the value of aortic growth rate in the descending thoracic aorta (DescAo), among other imaging biomarkers, to identify the factors associated with risk of TBAD in MFS. Methods and Results CTA scans spanning 2004-2023 from adult MFS patients with native DescAo were analyzed by VDM. Other measurements included multi-level thoracoabdominal aortic diameters and the length of the DescAo by centerline analysis.Among the 105 MFS patients analyzed, 63.8% were male, with median age of 40 years (range 18-73) and a median surveillance interval of 5.3 years (range 2.0-18.3). During surveillance, 12 (11.4%) patients developed TBAD. Patients with TBAD had higher radial growth rate (0.63 vs. 0.23 mm/year; p < 0.001) and elongation rate (2.4 vs. 0.5 mm/year; p < 0.001), on univariate and multivariable analysis, but pre-dissection descending aortic diameter was not significantly different. Predictors of growth rate included younger age, higher baseline maximal diameter of the DescAo, smoking history and warfarin use. Conclusions Radial growth and elongation rates of the DescAo were independent predictors of TBAD occurrence in MFS. TBAD often occurred in at non-aneurysmal diameters (<4.0 cm). These findings emphasize the role of growth over absolute diameter in risk stratification for TBAD in MFS.
Collapse
Affiliation(s)
| | | | | | - Heather A Knauer
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Himanshu J Patel
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan
| | - Marion Hofmann Bowman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kim Eagle
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
2
|
Tajeddini F, Romero DA, Huang YX, David TE, Ouzounian M, Amon CH, Chung JC. Type B aortic dissection in Marfan patients after the David procedure: Insights from patient-specific simulation. JTCVS OPEN 2024; 21:1-16. [PMID: 39534345 PMCID: PMC11551291 DOI: 10.1016/j.xjon.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 11/16/2024]
Abstract
Objective An elevated risk of acute type B aortic dissection exists in patients with Marfan syndrome after the David procedure. This study explores hemodynamic changes in the descending aorta postsurgery. Methods A single-center retrospective review identified 5 patients with Marfan syndrome who experienced acute type B aortic dissection within 6 years after the David procedure, alongside 5 matched patients with Marfan syndrome without dissection more than 6 years postsurgery. Baseline and postoperative computed tomography and magnetic resonance scans were analyzed for aortic geometry reconstruction. Computational fluid dynamic simulations evaluated preoperative and postoperative hemodynamics. Results Patients with acute type B aortic dissection showed lower blood flow velocities, increased vortices, and altered velocity profiles in the proximal descending aorta compared with controls. Preoperatively, median time-averaged wall shear stress in the descending aorta was lower in patients with acute type B aortic dissection (control: 1.76 [1.50-2.83] Pa, dissection: 1.16 [1.06-1.30] Pa, P = .047). Postsurgery, neither group had significant time-averaged wall shear stress changes (dissection: P = .69, control: P = .53). Localized analysis revealed surgery-induced time-averaged wall shear stress increases near the subclavian artery in the dissection group (range, +0.30 to +1.05 Pa, each comparison, P < .05). No such changes were observed in controls. Oscillatory shear index and relative residence time were higher in patients with acute type B aortic dissection before and after surgery versus controls. Conclusions Hemodynamics likely play a role in post-David procedure acute type B aortic dissection. Further investigation into aortic geometry, hemodynamics, and postoperative acute type B aortic dissection is vital for enhancing outcomes and refining surgical strategies in patients with Marfan syndrome.
Collapse
Affiliation(s)
- Farshad Tajeddini
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - David A. Romero
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Xuan Huang
- Department of Engineering Science, University of Toronto, Toronto, Ontario, Canada
| | - Tirone E. David
- Division of Cardiovascular Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Maral Ouzounian
- Division of Cardiovascular Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Cristina H. Amon
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer C.Y. Chung
- Division of Cardiovascular Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Jacquemyn X, Cordrey K, Van Den Eynde J, Guerrerio AL, MacCarrick G, Dietz HC, Kutty S. Abnormal Cardiac Magnetic Resonance-Derived Ascending Aortic Area Strain Demonstrates Altered Ventriculo-Vascular Function in Marfan Syndrome. J Thorac Imaging 2024; 39:319-327. [PMID: 38624084 DOI: 10.1097/rti.0000000000000784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
PURPOSE There remains a need for improved imaging markers for risk stratification and treatment guidance in Marfan syndrome (MFS). After aortic root replacement (ARR), vascular remodeling and progressive aneurysm formation can occur due to alterations in up- and downstream wall biomechanics and hemodynamics. We aim to compare the ventriculo-vascular properties of patients with MFS with controls, and investigate the correlation between ascending aortic area strain and descending aortic area strain (DAAS) with other clinical variables. PATIENTS AND METHODS Nineteen patients with MFS (47% males), including 6 with ARR were studied. In 26 studies, aortic area strain was measured using cross-sectional cardiac magnetic resonance images at the ascending and proximal descending aortic levels. Left atrial, left ventricular longitudinal, and left ventricle circumferential strain (left atrial longitudinal strain, left ventricular longitudinal strain, and left ventricular circumferential strain, respectively) were measured using cardiac magnetic resonance-feature tracking. RESULTS Compared with healthy controls, patients with MFS had significantly impaired left ventricular longitudinal strain and left ventricular circumferential strain (-15.8 ± 4.7 vs -19.7 ± 4.8, P = 0.005, and -17.7 ± 4.0 vs -27.0 ± 4.1, P < 0.001). Left atrial longitudinal strain was comparable between patients with MFS and controls. AAAS was significantly reduced (19.0 [11.9, 23.7] vs 46.1 ± 11.3, P < 0.001), whereas DAAS was not significantly decreased. AAAS and DAAS were negatively correlated with age, whereas no significant associations were identified with left ventricle function indices. No significant differences were observed between the ventriculo-vascular properties of patients with MFS who underwent ARR and those who did not. CONCLUSION Patients with MFS demonstrated impaired ventricular and vascular function compared with healthy controls. Further investigations are warranted to determine clinical utility of aortic stiffness indices for predicting primary and repeat aortic events.
Collapse
Affiliation(s)
- Xander Jacquemyn
- The Blalock Taussig Thomas Heart Center, Department of Pediatrics, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Kyla Cordrey
- The Blalock Taussig Thomas Heart Center, Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Jef Van Den Eynde
- The Blalock Taussig Thomas Heart Center, Department of Pediatrics, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
| | - Anthony L Guerrerio
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine
| | - Gretchen MacCarrick
- Howard Hughes Medical Institute and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hal C Dietz
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Shelby Kutty
- The Blalock Taussig Thomas Heart Center, Department of Pediatrics, Johns Hopkins University School of Medicine
| |
Collapse
|
4
|
Girardin L, Stokes C, Thet MS, Oo AY, Balabani S, Díaz-Zuccarini V. Patient-Specific Haemodynamic Analysis of Virtual Grafting Strategies in Type-B Aortic Dissection: Impact of Compliance Mismatch. Cardiovasc Eng Technol 2024; 15:290-304. [PMID: 38438692 PMCID: PMC11239731 DOI: 10.1007/s13239-024-00713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024]
Abstract
INTRODUCTION Compliance mismatch between the aortic wall and Dacron Grafts is a clinical problem concerning aortic haemodynamics and morphological degeneration. The aortic stiffness introduced by grafts can lead to an increased left ventricular (LV) afterload. This study quantifies the impact of compliance mismatch by virtually testing different Type-B aortic dissection (TBAD) surgical grafting strategies in patient-specific, compliant computational fluid dynamics (CFD) simulations. MATERIALS AND METHODS A post-operative case of TBAD was segmented from computed tomography angiography data. Three virtual surgeries were generated using different grafts; two additional cases with compliant grafts were assessed. Compliant CFD simulations were performed using a patient-specific inlet flow rate and three-element Windkessel outlet boundary conditions informed by 2D-Flow MRI data. The wall compliance was calibrated using Cine-MRI images. Pressure, wall shear stress (WSS) indices and energy loss (EL) were computed. RESULTS Increased aortic stiffness and longer grafts increased aortic pressure and EL. Implementing a compliant graft matching the aortic compliance of the patient reduced the pulse pressure by 11% and EL by 4%. The endothelial cell activation potential (ECAP) differed the most within the aneurysm, where the maximum percentage difference between the reference case and the mid (MDA) and complete (CDA) descending aorta replacements increased by 16% and 20%, respectively. CONCLUSION This study suggests that by minimising graft length and matching its compliance to the native aorta whilst aligning with surgical requirements, the risk of LV hypertrophy may be reduced. This provides evidence that compliance-matching grafts may enhance patient outcomes.
Collapse
Affiliation(s)
- Louis Girardin
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, 43-45 Foley Street, London, W1W 7TS, UK
| | - Catriona Stokes
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, 43-45 Foley Street, London, W1W 7TS, UK
| | - Myat Soe Thet
- Department of Cardiothoracic Surgery, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Aung Ye Oo
- Department of Cardiothoracic Surgery, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Stavroula Balabani
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, 43-45 Foley Street, London, W1W 7TS, UK
| | - Vanessa Díaz-Zuccarini
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, 43-45 Foley Street, London, W1W 7TS, UK.
| |
Collapse
|
5
|
Zhou S, Xu K, Fang Y, Alastruey J, Vennin S, Yang J, Wang J, Xu L, Wang X, Greenwald SE. Patient-specific non-invasive estimation of the aortic blood pressure waveform by ultrasound and tonometry. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108082. [PMID: 38422893 DOI: 10.1016/j.cmpb.2024.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/21/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND AND OBJECTIVE Aortic blood pressure (ABP) is a more effective prognostic indicator of cardiovascular disease than peripheral blood pressure. A highly accurate algorithm for non-invasively deriving the ABP wave, based on ultrasonic measurement of aortic flow combined with peripheral pulse wave measurements, has been proposed elsewhere. However, it has remained at the proof-of-concept stage because it requires a priori knowledge of the ABP waveform to calculate aortic pulse wave velocity (PWV). The objective of this study is to transform this proof-of-concept algorithm into a clinically feasible technique. METHODS We used the Bramwell-Hill equation to non-invasively calculate aortic PWV which was then used to reconstruct the ABP waveform from non-invasively determined aortic blood flow velocity, aortic diameter, and radial pressure. The two aortic variables were acquired by an ultrasound system from 90 subjects, followed by recordings of radial pressure using a SphygmoCor device. The ABPs estimated by the new algorithm were compared with reference values obtained by cardiac catheterization (invasive validation, 8 subjects aged 62.3 ± 12.7 years) and a SphygmoCor device (non-invasive validation, 82 subjects aged 45.0 ± 17.8 years). RESULTS In the invasive comparison, there was good agreement between the estimated and directly measured pressures: the mean error in systolic blood pressure (SBP) was 1.4 ± 0.8 mmHg; diastolic blood pressure (DBP), 0.9 ± 0.8 mmHg; mean blood pressure (MBP), 1.8 ± 1.2 mmHg and pulse pressure (PP), 1.4 ± 1.1 mmHg. In the non-invasive comparison, the estimated and directly measured pressures also agreed well: the errors being: SBP, 2.0 ± 1.4 mmHg; DBP, 0.8 ± 0.1 mmHg; MBP, 0.1 ± 0.1 mmHg and PP, 2.3 ± 1.6 mmHg. The significance of the differences in mean errors between calculated and reference values for SBP, DBP, MBP and PP were assessed by paired t-tests. The agreement between the reference methods and those obtained by applying the new approach was also expressed by correlation and Bland-Altman plots. CONCLUSION The new method proposed here can accurately estimate ABP, allowing this important variable to be obtained non-invasively, using standard, well validated measurement techniques. It thus has the potential to relocate ABP estimation from a research environment to more routine use in the cardiac clinic. SHORT ABSTRACT A highly accurate algorithm for non-invasively deriving the ABP wave has been proposed elsewhere. However, it has remained at the proof-of-concept stage because it requires a priori knowledge of the ABP waveform to calculate aortic pulse wave velocity (PWV). This study aims to transform this proof-of-concept algorithm into a clinically feasible technique. We used the Bramwell-Hill equation to non-invasively calculate aortic PWV which was then used to reconstruct the ABP waveform. The ABPs estimated by the new algorithm were compared with reference values obtained by cardiac catheterization or a SphygmoCor device. The results showed that there was good agreement between the estimated and directly measured pressures. The new method proposed can accurately estimate ABP, allowing this important variable to be obtained non-invasively, using standard, well validated measurement techniques. It thus has the potential to relocate ABP estimation from a research environment to more routine use in the cardiac clinic.
Collapse
Affiliation(s)
- Shuran Zhou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Kai Xu
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110840, China.
| | - Yi Fang
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Jordi Alastruey
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Samuel Vennin
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Jun Yang
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang 110122, China
| | - Junli Wang
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang 110122, China
| | - Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; Engineering Research Center of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China; Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang 110169, China.
| | - Xiaocheng Wang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Steve E Greenwald
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
6
|
Schoenborn S, Pirola S, Woodruff MA, Allenby MC. Fluid-Structure Interaction Within Models of Patient-Specific Arteries: Computational Simulations and Experimental Validations. IEEE Rev Biomed Eng 2024; 17:280-296. [PMID: 36260570 DOI: 10.1109/rbme.2022.3215678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide and its incidence is rising due to an aging population. The development and progression of CVD is directly linked to adverse vascular hemodynamics and biomechanics, whose in-vivo measurement remains challenging but can be simulated numerically and experimentally. The ability to evaluate these parameters in patient-specific CVD cases is crucial to better predict future disease progression, risk of adverse events, and treatment efficacy. While significant progress has been made toward patient-specific hemodynamic simulations, blood vessels are often assumed to be rigid, which does not consider the compliant mechanical properties of vessels whose malfunction is implicated in disease. In an effort to simulate the biomechanics of flexible vessels, fluid-structure interaction (FSI) simulations have emerged as promising tools for the characterization of hemodynamics within patient-specific cardiovascular anatomies. Since FSI simulations combine the blood's fluid domain with the arterial structural domain, they pose novel challenges for their experimental validation. This paper reviews the scientific work related to FSI simulations for patient-specific arterial geometries and the current standard of FSI model validation including the use of compliant arterial phantoms, which offer novel potential for the experimental validation of FSI results.
Collapse
|
7
|
Pedroza AJ, Cheng P, Dalal AR, Baeumler K, Kino A, Tognozzi E, Shad R, Yokoyama N, Nakamura K, Mitchel O, Hiesinger W, MacFarlane EG, Fleischmann D, Woo YJ, Quertermous T, Fischbein MP. Early clinical outcomes and molecular smooth muscle cell phenotyping using a prophylactic aortic arch replacement strategy in Loeys-Dietz syndrome. J Thorac Cardiovasc Surg 2023; 166:e332-e376. [PMID: 37500053 DOI: 10.1016/j.jtcvs.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Patients with Loeys-Dietz syndrome demonstrate a heightened risk of distal thoracic aortic events after valve-sparing aortic root replacement. This study assesses the clinical risks and hemodynamic consequences of a prophylactic aortic arch replacement strategy in Loeys-Dietz syndrome and characterizes smooth muscle cell phenotype in Loeys-Dietz syndrome aneurysmal and normal-sized downstream aorta. METHODS Patients with genetically confirmed Loeys-Dietz syndrome (n = 8) underwent prophylactic aortic arch replacement during valve-sparing aortic root replacement. Four-dimensional flow magnetic resonance imaging studies were performed in 4 patients with Loeys-Dietz syndrome (valve-sparing aortic root replacement + arch) and compared with patients with contemporary Marfan syndrome (valve-sparing aortic root replacement only, n = 5) and control patients (without aortopathy, n = 5). Aortic tissues from 4 patients with Loeys-Dietz syndrome and 2 organ donors were processed for anatomically segmented single-cell RNA sequencing and histologic assessment. RESULTS Patients with Loeys-Dietz syndrome valve-sparing aortic root replacement + arch had no deaths, major morbidity, or aortic events in a median of 2 years follow-up. Four-dimensional magnetic resonance imaging demonstrated altered flow parameters in patients with postoperative aortopathy relative to controls, but no clear deleterious changes due to arch replacement. Integrated analysis of aortic single-cell RNA sequencing data (>49,000 cells) identified a continuum of abnormal smooth muscle cell phenotypic modulation in Loeys-Dietz syndrome defined by reduced contractility and enriched extracellular matrix synthesis, adhesion receptors, and transforming growth factor-beta signaling. These modulated smooth muscle cells populated the Loeys-Dietz syndrome tunica media with gradually reduced density from the overtly aneurysmal root to the nondilated arch. CONCLUSIONS Patients with Loeys-Dietz syndrome demonstrated excellent surgical outcomes without overt downstream flow or shear stress disturbances after concomitant valve-sparing aortic root replacement + arch operations. Abnormal smooth muscle cell-mediated aortic remodeling occurs within the normal diameter, clinically at-risk Loeys-Dietz syndrome arch segment. These initial clinical and pathophysiologic findings support concomitant arch replacement in Loeys-Dietz syndrome.
Collapse
Affiliation(s)
- Albert J Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Paul Cheng
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Alex R Dalal
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Kathrin Baeumler
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Aya Kino
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Emily Tognozzi
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Rohan Shad
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Nobu Yokoyama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Ken Nakamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Olivia Mitchel
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Elena Gallo MacFarlane
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Dominik Fleischmann
- Department of Radiology, Stanford University School of Medicine, Stanford, Calif
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
8
|
Narula N, Devereux RB, Arbustini E, Ma X, Weinsaft JW, Girardi L, Malonga GP, Roman MJ. Risk of Type B Dissection in Marfan Syndrome: The Cornell Aortic Aneurysm Registry. J Am Coll Cardiol 2023:S0735-1097(23)07569-1. [PMID: 37930285 DOI: 10.1016/j.jacc.2023.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND With preventive aortic grafting decreasing the incidence of type A dissections in Marfan syndrome (MFS), most dissections are now type B, for which risk factors remain largely uncertain. OBJECTIVES We explored the determinants of type B dissection risk in a large, single-center MFS registry. METHODS Demographic and anthropometric features, cardiovascular disease, and surgical history were compared in patients with MFS with and without type B dissection. RESULTS Of 336 patients with MFS, 47 (14%) experienced a type B dissection (vs type A in 9%). Patients with type B dissection were more likely to have undergone elective aortic root replacement (ARR) (79 vs 46%; P < 0.001). Of the patients, 55% had type B dissection a mean of 13.3 years after ARR, whereas 45% experienced type B dissection before or in the absence of ARR; 41 patients (87%) were aware of their MFS diagnosis before type B dissection. Among those with predissection imaging, the descending aorta was normal or minimally dilated (<4.0 cm) in 88%. In multivariable analyses, patients with type B dissection were more likely to have undergone ARR and independent mitral valve surgery, to have had a type II dissection, and to have lived longer. CONCLUSIONS In our contemporary cohort, type B dissections are more common than type A dissections and occur at traditional nonsurgical thresholds. The associations of type B dissection with ARR, independent mitral valve surgery, and type II dissection suggest a more severe phenotype in the setting of prolonged life expectancy.
Collapse
Affiliation(s)
- Nupoor Narula
- Division of Cardiology, Weill Cornell Medicine, New York, New York, USA
| | | | | | - Xiaoyue Ma
- Division of Biostatistics and Epidemiology, Department of Health Care Policy and Research, Weill Cornell Medicine, New York, New York, USA
| | | | - Leonard Girardi
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Grace P Malonga
- Division of Cardiology, Weill Cornell Medicine, New York, New York, USA
| | - Mary J Roman
- Division of Cardiology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
9
|
Silva MLFDA, Gonçalves SDEF, Haniel J, Lucas TC, Huebner R. Comparative study between 1-way and 2-way coupled fluid-structure interaction in numerical simulation of aortic arch aneurysms. AN ACAD BRAS CIENC 2023; 95:e20210859. [PMID: 37255166 DOI: 10.1590/0001-3765202320210859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/19/2022] [Indexed: 06/01/2023] Open
Abstract
Hemodynamic forces are related to pathological variations of the cardiovascular system, and numerical simulations for fluid-structure interaction have been systematically used to analyze the behavior of blood flow and the arterial wall in aortic aneurysms. This paper proposes a comparative analysis of 1-way and 2-way coupled fluid-structure interaction for aortic arch aneurysm. The coupling models of fluid-structure interaction were conducted using 3D geometry of the thoracic aorta from computed tomography. Hyperelastic anisotropic properties were estimated for the Holzapfel arterial wall model. The rheological behavior of the blood was modeled by the Carreau-Yasuda model. The results showed that the 1-way approach tends to underestimate von Mises stress, displacement, and strain over the entire cardiac cycle, compared to the 2-way approach. In contrast, the behavior of the variables of flow field, velocity, wall shear stress, and Reynolds number when coupled by the 1-way model was overestimated at the systolic moment and tends to be equal at the diastolic moment. The quantitative differences found, especially during the systole, suggest the use of 2-way coupling in numerical simulations of aortic arch aneurysms due to the hyperelastic nature of the arterial wall, which leads to a strong iteration between the fluid and the arterial wall.
Collapse
Affiliation(s)
- Mário Luis F DA Silva
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Minas Gerais, Departamento de Engenharia Mecânica, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Saulo DE Freitas Gonçalves
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Minas Gerais, Departamento de Engenharia Mecânica, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Jonathas Haniel
- Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Minas Gerais, Departamento de Engenharia Mecânica, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Thabata C Lucas
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Departamento de Enfermagem, MGC 367, km 583, 5000, Alto da Jacuba, 39100-000 Diamantina, MG, Brazil
| | - Rudolf Huebner
- Universidade Federal de Minas Gerais, Departamento de Engenharia Mecânica, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Nowak M, Divo E, Adamczyk WP. Multiscale model for blood flow after a bileaflet artificial aortic valve implantation. Comput Biol Med 2023; 158:106805. [PMID: 37019010 DOI: 10.1016/j.compbiomed.2023.106805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Cardiovascular diseases are the leading cause of mortality in the world, mainly due to atherosclerosis and its consequences. The article presents the numerical model of the blood flow through artificial aortic valve. The overset mesh approach was applied to simulate the valve leaflets motion and to realize the moving mesh, in the aortic arch and the main branches of cardiovascular system. To capture the cardiac system's response and the effect of vessel compliance on the outlet pressure, the lumped parameter model has been also included within the solution procedure. Three different turbulence modeling approaches were used and compared - the laminar, k-ϵ and k-ω model. The simulation results were also compared with the model excluding the moving valve geometry and the importance of the lumped parameter model for the outlet boundary condition was analyzed. Proposed numerical model and protocol was found as suitable for performing the virtual operations on the real patient vasculature geometry. The time-efficient turbulence model and overall solving procedure allows to support the clinicians in making decisions about the patient treatment and to predict the results of the future surgery.
Collapse
|
11
|
Saitta S, Maga L, Armour C, Votta E, O'Regan DP, Salmasi MY, Athanasiou T, Weinsaft JW, Xu XY, Pirola S, Redaelli A. Data-driven generation of 4D velocity profiles in the aneurysmal ascending aorta. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 233:107468. [PMID: 36921465 DOI: 10.1016/j.cmpb.2023.107468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/15/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Numerical simulations of blood flow are a valuable tool to investigate the pathophysiology of ascending thoratic aortic aneurysms (ATAA). To accurately reproduce in vivo hemodynamics, computational fluid dynamics (CFD) models must employ realistic inflow boundary conditions (BCs). However, the limited availability of in vivo velocity measurements, still makes researchers resort to idealized BCs. The aim of this study was to generate and thoroughly characterize a large dataset of synthetic 4D aortic velocity profiles sampled on a 2D cross-section along the ascending aorta with features similar to clinical cohorts of patients with ATAA. METHODS Time-resolved 3D phase contrast magnetic resonance (4D flow MRI) scans of 30 subjects with ATAA were processed through in-house code to extract anatomically consistent cross-sectional planes along the ascending aorta, ensuring spatial alignment among all planes and interpolating all velocity fields to a reference configuration. Velocity profiles of the clinical cohort were extensively characterized by computing flow morphology descriptors of both spatial and temporal features. By exploiting principal component analysis (PCA), a statistical shape model (SSM) of 4D aortic velocity profiles was built and a dataset of 437 synthetic cases with realistic properties was generated. RESULTS Comparison between clinical and synthetic datasets showed that the synthetic data presented similar characteristics as the clinical population in terms of key morphological parameters. The average velocity profile qualitatively resembled a parabolic-shaped profile, but was quantitatively characterized by more complex flow patterns which an idealized profile would not replicate. Statistically significant correlations were found between PCA principal modes of variation and flow descriptors. CONCLUSIONS We built a data-driven generative model of 4D aortic inlet velocity profiles, suitable to be used in computational studies of blood flow. The proposed software system also allows to map any of the generated velocity profiles to the inlet plane of any virtual subject given its coordinate set.
Collapse
Affiliation(s)
- Simone Saitta
- Department of Information, Electronics and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Ludovica Maga
- Department of Information, Electronics and Bioengineering, Politecnico di Milano, Milan, Italy; Department of Chemical Engineering, Imperial College London, London, UK
| | - Chloe Armour
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Emiliano Votta
- Department of Information, Electronics and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - M Yousuf Salmasi
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jonathan W Weinsaft
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, USA
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Selene Pirola
- Department of Chemical Engineering, Imperial College London, London, UK; Department of BioMechanical Engineering, 3mE Faculty, Delft University of Technology, Delft, Netherlands.
| | - Alberto Redaelli
- Department of Information, Electronics and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
12
|
Sun Y. A systematic pan-cancer analysis reveals the clinical prognosis and immunotherapy value of C-X3-C motif ligand 1 (CX3CL1). Front Genet 2023; 14:1183795. [PMID: 37153002 PMCID: PMC10157490 DOI: 10.3389/fgene.2023.1183795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
It is now widely known that C-X3-C motif ligand 1 (CX3CL1) plays an essential part in the process of regulating pro-inflammatory cells migration across a wide range of inflammatory disorders, including a number of malignancies. However, there has been no comprehensive study on the correlation between CX3CL1 and cancers on the basis of clinical features. In order to investigate the potential function of CX3CL1 in the clinical prognosis and immunotherapy, I evaluated the expression of CX3CL1 in numerous cancer types, methylation levels and genetic alterations. I found CX3CL1 was differentially expressed in numerous cancer types, which indicated CX3CL1 may plays a potential role in tumor progression. Furthermore, CX3CL1 was variably expressed in methylation levels and gene alterations in most cancers according to The Cancer Genome Atlas (TCGA). CX3CL1 was robustly associated with clinical characteristics and pathological stages, suggesting that it was related to the degree of tumor malignancy and the physical function of patients. As determined by the Kaplan-Meier method of estimating survival, high CX3CL1 expression was associated with either favorable or unfavorable outcomes depending on the different types of cancer. It suggests the correlation between CX3CL1 and tumor prognosis. Significant positive correlations of CX3CL1 expression with CD4+ T cells, M1 macrophage cells and activated mast cells have been established in the majority of TCGA malignancies. Which indicates CX3CL1 plays an important role in tumor immune microenvironment. Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the chemokine signaling pathway may shed light on the pathway for CX3CL1 to exert function. In a conclusion, our study comprehensively summarizes the potential role of CX3CL1 in clinical prognosis and immunotherapy, suggesting that CX3CL1 may represent a promising pharmacological treatment target of tumors.
Collapse
Affiliation(s)
- Yidi Sun
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China
| |
Collapse
|
13
|
Dirix P, Buoso S, Peper ES, Kozerke S. Synthesis of patient-specific multipoint 4D flow MRI data of turbulent aortic flow downstream of stenotic valves. Sci Rep 2022; 12:16004. [PMID: 36163357 PMCID: PMC9513106 DOI: 10.1038/s41598-022-20121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
We propose to synthesize patient-specific 4D flow MRI datasets of turbulent flow paired with ground truth flow data to support training of inference methods. Turbulent blood flow is computed based on the Navier-Stokes equations with moving domains using realistic boundary conditions for aortic shapes, wall displacements and inlet velocities obtained from patient data. From the simulated flow, synthetic multipoint 4D flow MRI data is generated with user-defined spatiotemporal resolutions and reconstructed with a Bayesian approach to compute time-varying velocity and turbulence maps. For MRI data synthesis, a fixed hypothetical scan time budget is assumed and accordingly, changes to spatial resolution and time averaging result in corresponding scaling of signal-to-noise ratios (SNR). In this work, we focused on aortic stenotic flow and quantification of turbulent kinetic energy (TKE). Our results show that for spatial resolutions of 1.5 and 2.5 mm and time averaging of 5 ms as encountered in 4D flow MRI in practice, peak total turbulent kinetic energy downstream of a 50, 75 and 90% stenosis is overestimated by as much as 23, 15 and 14% (1.5 mm) and 38, 24 and 23% (2.5 mm), demonstrating the importance of paired ground truth and 4D flow MRI data for assessing accuracy and precision of turbulent flow inference using 4D flow MRI exams.
Collapse
Affiliation(s)
- Pietro Dirix
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| | - Stefano Buoso
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Eva S Peper
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Cherry M, Khatir Z, Khan A, Bissell M. The impact of 4D-Flow MRI spatial resolution on patient-specific CFD simulations of the thoracic aorta. Sci Rep 2022; 12:15128. [PMID: 36068322 PMCID: PMC9448751 DOI: 10.1038/s41598-022-19347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is considered the gold standard of medical imaging technologies as it allows for accurate imaging of blood vessels. 4-Dimensional Flow Magnetic Resonance Imaging (4D-Flow MRI) is built on conventional MRI, and provides flow data in the three vector directions and a time resolved magnitude data set. As such it can be used to retrospectively calculate haemodynamic parameters of interest, such as Wall Shear Stress (WSS). However, multiple studies have indicated that a significant limitation of the imaging technique is the spatiotemporal resolution that is currently available. Recent advances have proposed and successfully integrated 4D-Flow MRI imaging techniques with Computational Fluid Dynamics (CFD) to produce patient-specific simulations that have the potential to aid in treatments,surgical decision making, and risk stratification. However, the consequences of using insufficient 4D-Flow MRI spatial resolutions on any patient-specific CFD simulations is currently unclear, despite being a recognised limitation. The research presented in this study aims to quantify the inaccuracies in patient-specific 4D-Flow MRI based CFD simulations that can be attributed to insufficient spatial resolutions when acquiring 4D-Flow MRI data. For this research, a patient has undergone four 4D-Flow MRI scans acquired at various isotropic spatial resolutions and patient-specific CFD simulations have subsequently been run using geometry and velocity data produced from each scan. It was found that compared to CFD simulations based on a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1.5\,{\text {mm}} \times 1.5\,{\text {mm}} \times 1.5\,{\text {mm}}$$\end{document}1.5mm×1.5mm×1.5mm, using a spatial resolution of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$4\,{\text {mm}} \times 4\,{\text {mm}} \times 4\,{\text {mm}}$$\end{document}4mm×4mm×4mm substantially underestimated the maximum velocity magnitude at peak systole by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$110.55\%$$\end{document}110.55%. The impacts of 4D-Flow MRI spatial resolution on WSS calculated from CFD simulations have been investigated and it has been shown that WSS is underestimated in CFD simulations that are based on a coarse 4D-Flow MRI spatial resolution. The authors have concluded that a minimum 4D-Flow MRI spatial resolution of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1.5\,{\text {mm}} \times 1.5\,{\text {mm}} \times 1.5\,{\text {mm}}$$\end{document}1.5mm×1.5mm×1.5mm must be used when acquiring 4D-Flow MRI data to perform patient-specific CFD simulations. A coarser spatial resolution will produce substantial differences within the flow field and geometry.
Collapse
Affiliation(s)
- Molly Cherry
- CDT in Fluid Dynamics, School of Computing, University of Leeds, Leeds, LS2 9JT, UK.
| | - Zinedine Khatir
- School of Engineering and the Built Environment, Birmingham City University, Birmingham, B4 7XG, UK.,School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amirul Khan
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
15
|
Sadeghi R, Tomka B, Khodaei S, Daeian M, Gandhi K, Garcia J, Keshavarz-Motamed Z. Impact of extra-anatomical bypass on coarctation fluid dynamics using patient-specific lumped parameter and Lattice Boltzmann modeling. Sci Rep 2022; 12:9718. [PMID: 35690596 PMCID: PMC9188592 DOI: 10.1038/s41598-022-12894-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/11/2022] [Indexed: 01/28/2023] Open
Abstract
Accurate hemodynamic analysis is not only crucial for successful diagnosis of coarctation of the aorta (COA), but intervention decisions also rely on the hemodynamics assessment in both pre and post intervention states to minimize patient risks. Despite ongoing advances in surgical techniques for COA treatments, the impacts of extra-anatomic bypass grafting, a surgical technique to treat COA, on the aorta are not always benign. Our objective was to investigate the impact of bypass grafting on aortic hemodynamics. We investigated the impact of bypass grafting on aortic hemodynamics using a patient-specific computational-mechanics framework in three patients with COA who underwent bypass grafting. Our results describe that bypass grafting improved some hemodynamic metrics while worsened the others: (1) Doppler pressure gradient improved (decreased) in all patients; (2) Bypass graft did not reduce the flow rate substantially through the COA; (3) Systemic arterial compliance increased in patients #1 and 3 and didn't change (improve) in patient 3; (4) Hypertension got worse in all patients; (5) The flow velocity magnitude improved (reduced) in patient 2 and 3 but did not improve significantly in patient 1; (6) There were elevated velocity magnitude, persistence of vortical flow structure, elevated turbulence characteristics, and elevated wall shear stress at the bypass graft junctions in all patients. We concluded that bypass graft may lead to pseudoaneurysm formation and potential aortic rupture as well as intimal hyperplasia due to the persistent abnormal and irregular aortic hemodynamics in some patients. Moreover, post-intervention, exposures of endothelial cells to high shear stress may lead to arterial remodeling, aneurysm, and rupture.
Collapse
Affiliation(s)
- Reza Sadeghi
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, Canada ON
| | - Benjamin Tomka
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, Canada ON
| | - Seyedvahid Khodaei
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, Canada ON
| | - MohammadAli Daeian
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, Canada ON
| | - Krishna Gandhi
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, Canada ON
| | - Julio Garcia
- grid.489011.50000 0004 0407 3514Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Department of Radiology, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Department of Cardiac Sciences, University of Calgary, Calgary, AB Canada ,grid.413571.50000 0001 0684 7358Alberta Children’s Hospital Research Institute, Calgary, AB Canada
| | - Zahra Keshavarz-Motamed
- grid.25073.330000 0004 1936 8227Department of Mechanical Engineering, McMaster University, Hamilton, Canada ON ,grid.25073.330000 0004 1936 8227School of Biomedical Engineering, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227School of Computational Science and Engineering, McMaster University, Hamilton, ON Canada
| |
Collapse
|
16
|
Zhou S, Yao Y, Liu W, Yang J, Wang J, Hao L, Wang L, Xu L, Avolio A. Ultrasound-based method for individualized estimation of central aortic blood pressure from flow velocity and diameter. Comput Biol Med 2022; 143:105254. [PMID: 35093843 DOI: 10.1016/j.compbiomed.2022.105254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
Central aortic blood pressure (CABP) is a better predictor for cardiovascular events than brachial blood pressure. However, direct CABP measurement is invasive. The objective of this paper is to develop an ultrasound-based method using individualized Windkessel (WK) models for non-invasive estimation of CABP. Three WK models (with two-, three- and four-element WK, named, WK2, WK3 and WK4, respectively) were created and the model parameters were individualized based on aortic flow velocity and diameter waveforms measured by ultrasound (US). Experimental data were acquired in 42 subjects aged 21-67 years. The CABP estimated by WK models was compared with the reference CABP obtained using a commercial system. The results showed that the overall performance of the WK3 and WK4 models was similar, outperforming the WK2 model. The estimated CABP based on WK3/WK4 model showed good agreement with the reference CABP: the absolute errors of systolic blood pressure (SBP), 2.4 ± 2.1/2.4 ± 2.0 mmHg; diastolic blood pressure (DBP), 1.4 ± 1.1/1.7 ± 1.5 mmHg; mean blood pressure (MBP), 1.3 ± 0.8/1.3 ± 0.8 mmHg; pulse pressure (PP), 3.0 ± 2.3/3.2 ± 2.6 mmHg; the root mean square error (RMSE) of the waveforms, 2.5 ± 1.0/2.6 ± 1.1 mmHg. Therefore, the proposed method can provide a non-invasive CABP estimation during routine cardiac US examination.
Collapse
Affiliation(s)
- Shuran Zhou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Yang Yao
- School of Information Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Wenyan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Jun Yang
- The First Hospital of China Medical University, Shenyang, 110122, China
| | - Junli Wang
- The First Hospital of China Medical University, Shenyang, 110122, China
| | - Liling Hao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Lu Wang
- School of Computer Science and Engineering, Northeastern University, Shenyang, 110169, China
| | - Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China; Engineering Research Center of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang, 110169, China; Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, 110169, China.
| | - Alberto Avolio
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, New South Wales, Australia
| |
Collapse
|