1
|
Ye H, Liu S, Li M, Zhu H, Cao F. Semantic-spatial feature-fused cortical surface parcellation: a scale-unified spatial learning network with boundary contrastive loss. Med Biol Eng Comput 2024:10.1007/s11517-024-03242-5. [PMID: 39549225 DOI: 10.1007/s11517-024-03242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
The cortical surface parcellation provides prior guidance for studying mental disorders and human cognition. Graph neural networks (GNNs) have gained popularity in this task to preserve its spatial structure. However, previous GNNs struggled to effectively exploit the information contained in the complex spatial structure of the cortical surface and generally encountered an uneven node distribution issue. Meanwhile, labeling boundary nodes was also identified as a widespread problem in this task. Accordingly, this paper develops a scale-unified spatial learning network with a boundary contrastive loss (SSLNet) for cortical surface parcellation. Its core is the scale-unified spatial learning module. It devises neighbor feature extraction and aggregation strategies by fully integrating spatial coordinates and semantic structure to learn effective spatial features of local neighborhoods. More importantly, spatial scale unification is incorporated into this module to mitigate the negative effect on spatial learning caused by node distribution differences among local areas. Additionally, a universal boundary contrastive loss is constructed, enhancing the feature discriminability of boundary nodes by constraining them to be close to the same class nodes and apart from different class nodes in the feature space. It considerably improves boundary performance without increasing parameters or changing the network structure. Experiments regarding public Mindboggle demonstrate that the dice score and accuracy of SSLNet achieve 89.8 % and 90.89 % , respectively, surpassing existing methods.
Collapse
Affiliation(s)
- Hailiang Ye
- Department of Applied Mathematics, College of Sciences, China Jiliang University, Hangzhou, China
| | - Siqi Liu
- Department of Applied Mathematics, College of Sciences, China Jiliang University, Hangzhou, China
| | - Ming Li
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Houying Zhu
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Feilong Cao
- Department of Applied Mathematics, College of Sciences, China Jiliang University, Hangzhou, China.
| |
Collapse
|
2
|
Zhao F, Wu Z, Wang L, Lin W, Li G. Longitudinally consistent registration and parcellation of cortical surfaces using semi-supervised learning. Med Image Anal 2024; 96:103193. [PMID: 38823362 PMCID: PMC11292586 DOI: 10.1016/j.media.2024.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Temporally consistent and accurate registration and parcellation of longitudinal cortical surfaces is of great importance in studying longitudinal morphological and functional changes of human brains. However, most existing methods are developed for registration or parcellation of a single cortical surface. When applying to longitudinal studies, these methods independently register/parcellate each surface from longitudinal scans, thus often generating longitudinally inconsistent and inaccurate results, especially in small or ambiguous cortical regions. Essentially, longitudinal cortical surface registration and parcellation are highly correlated tasks with inherently shared constraints on both spatial and temporal feature representations, which are unfortunately ignored in existing methods. To this end, we unprecedentedly propose a novel semi-supervised learning framework to exploit these inherent relationships from limited labeled data and extensive unlabeled data for more robust and consistent registration and parcellation of longitudinal cortical surfaces. Our method utilizes the spherical topology characteristic of cortical surfaces. It employs a spherical network to function as an encoder, which extracts high-level cortical features. Subsequently, we build two specialized decoders dedicated to the tasks of registration and parcellation, respectively. To extract more meaningful spatial features, we design a novel parcellation map similarity loss to utilize the relationship between registration and parcellation tasks, i.e., the parcellation map warped by the deformation field in registration should match the atlas parcellation map, thereby providing extra supervision for the registration task and augmented data for parcellation task by warping the atlas parcellation map to unlabeled surfaces. To enable temporally more consistent feature representation, we additionally enforce longitudinal consistency among longitudinal surfaces after registering them together using their concatenated features. Experiments on two longitudinal datasets of infants and adults have shown that our method achieves significant improvements on both registration/parcellation accuracy and longitudinal consistency compared to existing methods, especially in small and challenging cortical regions.
Collapse
Affiliation(s)
- Fenqiang Zhao
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Liu S, Ye H, Yang B, Li M, Cao F. A joint parcellation and boundary network with multi-rate-shared dilated graph attention for cortical surface parcellation. Med Biol Eng Comput 2024; 62:537-549. [PMID: 37945794 DOI: 10.1007/s11517-023-02942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Cortical surface parcellation aims to segment the surface into anatomically and functionally significant regions, which are crucial for diagnosing and treating numerous neurological diseases. However, existing methods generally ignore the difficulty in learning labeling patterns of boundaries, hindering the performance of parcellation. To this end, this paper proposes a joint parcellation and boundary network (JPBNet) to promote the effectiveness of cortical surface parcellation. Its core is developing a multi-rate-shared dilated graph attention (MDGA) module and incorporating boundary learning into the parcellation process. The former, in particular, constructs a dilated graph attention strategy, extending the dilated convolution from regular data to irregular graph data. We fuse it with different dilated rates to extract context information in various scales by devising a shared graph attention layer. After that, a boundary enhancement module and a parcellation enhancement module based on graph attention mechanisms are built in each layer, forcing MDGA to capture informative and valuable features for boundary detection and parcellation tasks. Integrating MDGA, the boundary enhancement module, and the parcellation enhancement module at each layer to supervise boundary and parcellation information, an effective JPBNet is formed by stacking multiple layers. Experiments on the public dataset reveal that the proposed method outperforms comparison methods and performs well on boundaries for cortical surface parcellation.
Collapse
Affiliation(s)
- Siqi Liu
- College of Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Hailiang Ye
- College of Sciences, China Jiliang University, Hangzhou, 310018, China.
| | - Bing Yang
- College of Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Ming Li
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, 321004, China
| | - Feilong Cao
- College of Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Li X, Wang L, Liu H, Ma B, Chu L, Dong X, Zeng D, Che T, Jiang X, Wang W, Hu J, Li S. Syn_SegNet: A Joint Deep Neural Network for Ultrahigh-Field 7T MRI Synthesis and Hippocampal Subfield Segmentation in Routine 3T MRI. IEEE J Biomed Health Inform 2023; 27:4866-4877. [PMID: 37581964 DOI: 10.1109/jbhi.2023.3305377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Precise delineation of hippocampus subfields is crucial for the identification and management of various neurological and psychiatric disorders. However, segmenting these subfields automatically in routine 3T MRI is challenging due to their complex morphology and small size, as well as the limited signal contrast and resolution of the 3T images. This research proposes Syn_SegNet, an end-to-end, multitask joint deep neural network that leverages ultrahigh-field 7T MRI synthesis to improve hippocampal subfield segmentation in 3T MRI. Our approach involves two key components. First, we employ a modified Pix2PixGAN as the synthesis model, incorporating self-attention modules, image and feature matching loss, and ROI loss to generate high-quality 7T-like MRI around the hippocampal region. Second, we utilize a variant of 3D-U-Net with multiscale deep supervision as the segmentation subnetwork, incorporating an anatomic weighted cross-entropy loss that capitalizes on prior anatomical knowledge. We evaluate our method on hippocampal subfield segmentation in paired 3T MRI and 7T MRI with seven different anatomical structures. The experimental findings demonstrate that Syn_SegNet's segmentation performance benefits from integrating synthetic 7T data in an online manner and is superior to competing methods. Furthermore, we assess the generalizability of the proposed approach using a publicly accessible 3T MRI dataset. The developed method would be an efficient tool for segmenting hippocampal subfields in routine clinical 3T MRI.
Collapse
|
5
|
Chen L, Wu Z, Zhao F, Wang Y, Lin W, Wang L, Li G. An attention-based context-informed deep framework for infant brain subcortical segmentation. Neuroimage 2023; 269:119931. [PMID: 36746299 PMCID: PMC10241225 DOI: 10.1016/j.neuroimage.2023.119931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 02/06/2023] Open
Abstract
Precise segmentation of subcortical structures from infant brain magnetic resonance (MR) images plays an essential role in studying early subcortical structural and functional developmental patterns and diagnosis of related brain disorders. However, due to the dynamic appearance changes, low tissue contrast, and tiny subcortical size in infant brain MR images, infant subcortical segmentation is a challenging task. In this paper, we propose a context-guided, attention-based, coarse-to-fine deep framework to precisely segment the infant subcortical structures. At the coarse stage, we aim to directly predict the signed distance maps (SDMs) from multi-modal intensity images, including T1w, T2w, and the ratio of T1w and T2w images, with an SDM-Unet, which can leverage the spatial context information, including the structural position information and the shape information of the target structure, to generate high-quality SDMs. At the fine stage, the predicted SDMs, which encode spatial-context information of each subcortical structure, are integrated with the multi-modal intensity images as the input to a multi-source and multi-path attention Unet (M2A-Unet) for achieving refined segmentation. Both the 3D spatial and channel attention blocks are added to guide the M2A-Unet to focus more on the important subregions and channels. We additionally incorporate the inner and outer subcortical boundaries as extra labels to help precisely estimate the ambiguous boundaries. We validate our method on an infant MR image dataset and on an unrelated neonatal MR image dataset. Compared to eleven state-of-the-art methods, the proposed framework consistently achieves higher segmentation accuracy in both qualitative and quantitative evaluations of infant MR images and also exhibits good generalizability in the neonatal dataset.
Collapse
Affiliation(s)
- Liangjun Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fenqiang Zhao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ya Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Wu L, Hu S, Liu C. MR brain segmentation based on DE-ResUnet combining texture features and background knowledge. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|