1
|
Rahman MF, Tseng TL(B, Pokojovy M, McCaffrey P, Walser E, Moen S, Vo A, Ho JC. Machine-Learning-Enabled Diagnostics with Improved Visualization of Disease Lesions in Chest X-ray Images. Diagnostics (Basel) 2024; 14:1699. [PMID: 39202188 PMCID: PMC11353848 DOI: 10.3390/diagnostics14161699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The class activation map (CAM) represents the neural-network-derived region of interest, which can help clarify the mechanism of the convolutional neural network's determination of any class of interest. In medical imaging, it can help medical practitioners diagnose diseases like COVID-19 or pneumonia by highlighting the suspicious regions in Computational Tomography (CT) or chest X-ray (CXR) film. Many contemporary deep learning techniques only focus on COVID-19 classification tasks using CXRs, while few attempt to make it explainable with a saliency map. To fill this research gap, we first propose a VGG-16-architecture-based deep learning approach in combination with image enhancement, segmentation-based region of interest (ROI) cropping, and data augmentation steps to enhance classification accuracy. Later, a multi-layer Gradient CAM (ML-Grad-CAM) algorithm is integrated to generate a class-specific saliency map for improved visualization in CXR images. We also define and calculate a Severity Assessment Index (SAI) from the saliency map to quantitatively measure infection severity. The trained model achieved an accuracy score of 96.44% for the three-class CXR classification task, i.e., COVID-19, pneumonia, and normal (healthy patients), outperforming many existing techniques in the literature. The saliency maps generated from the proposed ML-GRAD-CAM algorithm are compared with the original Gran-CAM algorithm.
Collapse
Affiliation(s)
- Md Fashiar Rahman
- Department of Industrial, Manufacturing and Systems Engineering, The University of Texas, El Paso, TX 79968, USA
| | - Tzu-Liang (Bill) Tseng
- Department of Industrial, Manufacturing and Systems Engineering, The University of Texas, El Paso, TX 79968, USA
| | - Michael Pokojovy
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA;
| | - Peter McCaffrey
- Department of Radiology, The University of Texas Medical Branch, Galveston, TX 77550, USA; (P.M.); (E.W.); (S.M.); (A.V.)
| | - Eric Walser
- Department of Radiology, The University of Texas Medical Branch, Galveston, TX 77550, USA; (P.M.); (E.W.); (S.M.); (A.V.)
| | - Scott Moen
- Department of Radiology, The University of Texas Medical Branch, Galveston, TX 77550, USA; (P.M.); (E.W.); (S.M.); (A.V.)
| | - Alex Vo
- Department of Radiology, The University of Texas Medical Branch, Galveston, TX 77550, USA; (P.M.); (E.W.); (S.M.); (A.V.)
| | - Johnny C. Ho
- Department of Management and Marketing, Turner College of Business, Columbus State University, Columbus, GA 31907, USA;
| |
Collapse
|
2
|
Tariq MU, Ismail SB. Deep learning in public health: Comparative predictive models for COVID-19 case forecasting. PLoS One 2024; 19:e0294289. [PMID: 38483948 PMCID: PMC10939212 DOI: 10.1371/journal.pone.0294289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 03/17/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on both the United Arab Emirates (UAE) and Malaysia, emphasizing the importance of developing accurate and reliable forecasting mechanisms to guide public health responses and policies. In this study, we compared several cutting-edge deep learning models, including Long Short-Term Memory (LSTM), bidirectional LSTM, Convolutional Neural Networks (CNN), hybrid CNN-LSTM, Multilayer Perceptron's, and Recurrent Neural Networks (RNN), to project COVID-19 cases in the aforementioned regions. These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. Subsequently, the models were re-evaluated to compare their effectiveness. Analytic approaches, both predictive and retrospective in nature, were used to interpret the data. Our primary objective was to determine the most effective model for predicting COVID-19 cases in the United Arab Emirates (UAE) and Malaysia. The findings indicate that the selected deep learning algorithms were proficient in forecasting COVID-19 cases, although their efficacy varied across different models. After a thorough evaluation, the model architectures most suitable for the specific conditions in the UAE and Malaysia were identified. Our study contributes significantly to the ongoing efforts to combat the COVID-19 pandemic, providing crucial insights into the application of sophisticated deep learning algorithms for the precise and timely forecasting of COVID-19 cases. These insights hold substantial value for shaping public health strategies, enabling authorities to develop targeted and evidence-based interventions to manage the virus spread and its impact on the populations of the UAE and Malaysia. The study confirms the usefulness of deep learning methodologies in efficiently processing complex datasets and generating reliable projections, a skill of great importance in healthcare and professional settings.
Collapse
Affiliation(s)
- Muhammad Usman Tariq
- Abu Dhabi University, Abu Dhabi, United Arab Emirates
- Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Malaysia
| | | |
Collapse
|
3
|
Yang K, Liu L, Wen Y. The impact of Bayesian optimization on feature selection. Sci Rep 2024; 14:3948. [PMID: 38366092 PMCID: PMC10873405 DOI: 10.1038/s41598-024-54515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Feature selection is an indispensable step for the analysis of high-dimensional molecular data. Despite its importance, consensus is lacking on how to choose the most appropriate feature selection methods, especially when the performance of the feature selection methods itself depends on hyper-parameters. Bayesian optimization has demonstrated its advantages in automatically configuring the settings of hyper-parameters for various models. However, it remains unclear whether Bayesian optimization can benefit feature selection methods. In this research, we conducted extensive simulation studies to compare the performance of various feature selection methods, with a particular focus on the impact of Bayesian optimization on those where hyper-parameters tuning is needed. We further utilized the gene expression data obtained from the Alzheimer's Disease Neuroimaging Initiative to predict various brain imaging-related phenotypes, where various feature selection methods were employed to mine the data. We found through simulation studies that feature selection methods with hyper-parameters tuned using Bayesian optimization often yield better recall rates, and the analysis of transcriptomic data further revealed that Bayesian optimization-guided feature selection can improve the accuracy of disease risk prediction models. In conclusion, Bayesian optimization can facilitate feature selection methods when hyper-parameter tuning is needed and has the potential to substantially benefit downstream tasks.
Collapse
Affiliation(s)
- Kaixin Yang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, No 56 Xinjian South Road, Yingze District, Taiyuan, Shanxi, China
| | - Long Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, No 56 Xinjian South Road, Yingze District, Taiyuan, Shanxi, China.
| | - Yalu Wen
- Department of Statistics, University of Auckland, 38 Princes Street, Auckland Central, Auckland, 1010, New Zealand.
| |
Collapse
|
4
|
Abdullah AA, Hassan MM, Mustafa YT. Leveraging Bayesian deep learning and ensemble methods for uncertainty quantification in image classification: A ranking-based approach. Heliyon 2024; 10:e24188. [PMID: 38293520 PMCID: PMC10825337 DOI: 10.1016/j.heliyon.2024.e24188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/08/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Bayesian deep learning (BDL) has emerged as a powerful technique for quantifying uncertainty in classification tasks, surpassing the effectiveness of traditional models by aligning with the probabilistic nature of real-world data. This alignment allows for informed decision-making by not only identifying the most likely outcome but also quantifying the surrounding uncertainty. Such capabilities hold great significance in fields like medical diagnoses and autonomous driving, where the consequences of misclassification are substantial. To further improve uncertainty quantification, the research community has introduced Bayesian model ensembles, which combines multiple Bayesian models to enhance predictive accuracy and uncertainty quantification. These ensembles have exhibited superior performance compared to individual Bayesian models and even non-Bayesian counterparts. In this study, we propose a novel approach that leverages the power of Bayesian ensembles for enhanced uncertainty quantification. The proposed method exploits the disparity between predicted positive and negative classes and employes it as a ranking metric for model selection. For each instance or sample, the ensemble's output for each class is determined by selecting the top 'k' models based on this ranking. Experimental results on different medical image classifications demonstrate that the proposed method consistently outperforms or achieves comparable performance to conventional Bayesian ensemble. This investigation highlights the practical application of Bayesian ensemble techniques in refining predictive performance and enhancing uncertainty evaluation in image classification tasks.
Collapse
Affiliation(s)
- Abdullah A. Abdullah
- Computer Science Department, Faculty of Science, University of Zakho, Duhok, Iraq
| | - Masoud M. Hassan
- Computer Science Department, Faculty of Science, University of Zakho, Duhok, Iraq
| | - Yaseen T. Mustafa
- Environmental Science Department, Faculty of Science, University of Zakho, Duhok, Iraq
| |
Collapse
|
5
|
Cui Y, Lu W, Xue J, Ge L, Yin X, Jian S, Li H, Zhu B, Dai Z, Shen Q. Machine learning-guided REIMS pattern recognition of non-dairy cream, milk fat cream and whipping cream for fraudulence identification. Food Chem 2023; 429:136986. [PMID: 37516053 DOI: 10.1016/j.foodchem.2023.136986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
The illegal adulteration of non-dairy cream in milk fat cream during the manufacturing process of baked goods has significantly hindered the robust growth of the dairy industry. In this study, a method based on rapid evaporative ionization mass spectrometry (REIMS) lipidomics pattern recognition integrated with machine learning algorithms was established. A total of 26 ions with importance were picked using multivariate statistical analysis as salient contributing features to distinguish between milk fat cream and non-dairy cream. Furthermore, employing discriminant analysis, decision trees, support vector machines, and neural network classifiers, machine learning models were utilized to classify non-dairy cream, milk fat cream, and minute quantities of non-dairy cream adulterated in milk fat cream. These approaches were enhanced through hyperparameter optimization and feature engineering, yielding accuracy rates at 98.4-99.6%. This artificial intelligent method of machine learning-guided REIMS pattern recognition can accurately identify adulteration of whipped cream and might help combat food fraud.
Collapse
Affiliation(s)
- Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xuelian Yin
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shikai Jian
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Haihong Li
- Hangzhou Linping District Maternal & Child Health Care Hospital, Hangzhou 311113, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhiyuan Dai
- Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Qing Shen
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
6
|
Highly accurate multiclass classification of respiratory system diseases from chest radiography images using deep transfer learning technique. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
7
|
Nahiduzzaman M, Faruq Goni MO, Robiul Islam M, Sayeed A, Shamim Anower M, Ahsan M, Haider J, Kowalski M. Detection of various lung diseases including COVID-19 using extreme learning machine algorithm based on the features extracted from a lightweight CNN architecture. Biocybern Biomed Eng 2023; 43:S0208-5216(23)00037-2. [PMID: 38620111 PMCID: PMC10292668 DOI: 10.1016/j.bbe.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 11/09/2023]
Abstract
Around the world, several lung diseases such as pneumonia, cardiomegaly, and tuberculosis (TB) contribute to severe illness, hospitalization or even death, particularly for elderly and medically vulnerable patients. In the last few decades, several new types of lung-related diseases have taken the lives of millions of people, and COVID-19 has taken almost 6.27 million lives. To fight against lung diseases, timely and correct diagnosis with appropriate treatment is crucial in the current COVID-19 pandemic. In this study, an intelligent recognition system for seven lung diseases has been proposed based on machine learning (ML) techniques to aid the medical experts. Chest X-ray (CXR) images of lung diseases were collected from several publicly available databases. A lightweight convolutional neural network (CNN) has been used to extract characteristic features from the raw pixel values of the CXR images. The best feature subset has been identified using the Pearson Correlation Coefficient (PCC). Finally, the extreme learning machine (ELM) has been used to perform the classification task to assist faster learning and reduced computational complexity. The proposed CNN-PCC-ELM model achieved an accuracy of 96.22% with an Area Under Curve (AUC) of 99.48% for eight class classification. The outcomes from the proposed model demonstrated better performance than the existing state-of-the-art (SOTA) models in the case of COVID-19, pneumonia, and tuberculosis detection in both binary and multiclass classifications. For eight class classification, the proposed model achieved precision, recall and fi-score and ROC are 100%, 99%, 100% and 99.99% respectively for COVID-19 detection demonstrating its robustness. Therefore, the proposed model has overshadowed the existing pioneering models to accurately differentiate COVID-19 from the other lung diseases that can assist the medical physicians in treating the patient effectively.
Collapse
Affiliation(s)
- Md Nahiduzzaman
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Md Omaer Faruq Goni
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Md Robiul Islam
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Abu Sayeed
- Department of Computer Science & Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Md Shamim Anower
- Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh
| | - Mominul Ahsan
- Department of Computer Science, University of York, Deramore Lane, Heslington, York YO10 5GH, UK
| | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| | - Marcin Kowalski
- Institute of Optoelectronics, Military University of Technology, Gen. S. Kaliskiego 2, Warsaw, Poland
| |
Collapse
|
8
|
Sailunaz K, Özyer T, Rokne J, Alhajj R. A survey of machine learning-based methods for COVID-19 medical image analysis. Med Biol Eng Comput 2023; 61:1257-1297. [PMID: 36707488 PMCID: PMC9883138 DOI: 10.1007/s11517-022-02758-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/22/2022] [Indexed: 01/29/2023]
Abstract
The ongoing COVID-19 pandemic caused by the SARS-CoV-2 virus has already resulted in 6.6 million deaths with more than 637 million people infected after only 30 months since the first occurrences of the disease in December 2019. Hence, rapid and accurate detection and diagnosis of the disease is the first priority all over the world. Researchers have been working on various methods for COVID-19 detection and as the disease infects lungs, lung image analysis has become a popular research area for detecting the presence of the disease. Medical images from chest X-rays (CXR), computed tomography (CT) images, and lung ultrasound images have been used by automated image analysis systems in artificial intelligence (AI)- and machine learning (ML)-based approaches. Various existing and novel ML, deep learning (DL), transfer learning (TL), and hybrid models have been applied for detecting and classifying COVID-19, segmentation of infected regions, assessing the severity, and tracking patient progress from medical images of COVID-19 patients. In this paper, a comprehensive review of some recent approaches on COVID-19-based image analyses is provided surveying the contributions of existing research efforts, the available image datasets, and the performance metrics used in recent works. The challenges and future research scopes to address the progress of the fight against COVID-19 from the AI perspective are also discussed. The main objective of this paper is therefore to provide a summary of the research works done in COVID detection and analysis from medical image datasets using ML, DL, and TL models by analyzing their novelty and efficiency while mentioning other COVID-19-based review/survey researches to deliver a brief overview on the maximum amount of information on COVID-19-based existing researches.
Collapse
Affiliation(s)
- Kashfia Sailunaz
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Tansel Özyer
- Department of Computer Engineering, Ankara Medipol University, Ankara, Turkey
| | - Jon Rokne
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Calgary, AB, Canada.
- Department of Computer Engineering, Istanbul Medipol University, Istanbul, Turkey.
- Department of Health Informatics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
9
|
Ajagbe SA, Adigun MO. Deep learning techniques for detection and prediction of pandemic diseases: a systematic literature review. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-35. [PMID: 37362693 PMCID: PMC10226029 DOI: 10.1007/s11042-023-15805-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential to the management of diseases and the prediction of future occurrences. Many scientists and scholars have implemented DL techniques for the detection and prediction of pandemics, IDs and other healthcare-related purposes, these outcomes are with various limitations and research gaps. For the purpose of achieving an accurate, efficient and less complicated DL-based system for the detection and prediction of pandemics, therefore, this study carried out a systematic literature review (SLR) on the detection and prediction of pandemics using DL techniques. The survey is anchored by four objectives and a state-of-the-art review of forty-five papers out of seven hundred and ninety papers retrieved from different scholarly databases was carried out in this study to analyze and evaluate the trend of DL techniques application areas in the detection and prediction of pandemics. This study used various tables and graphs to analyze the extracted related articles from various online scholarly repositories and the analysis showed that DL techniques have a good tool in pandemic detection and prediction. Scopus and Web of Science repositories are given attention in this current because they contain suitable scientific findings in the subject area. Finally, the state-of-the-art review presents forty-four (44) studies of various DL technique performances. The challenges identified from the literature include the low performance of the model due to computational complexities, improper labeling and the absence of a high-quality dataset among others. This survey suggests possible solutions such as the development of improved DL-based techniques or the reduction of the output layer of DL-based architecture for the detection and prediction of pandemic-prone diseases as future considerations.
Collapse
Affiliation(s)
- Sunday Adeola Ajagbe
- Department of Computer & Industrial Production Engineering, First Technical University Ibadan, Ibadan, 200255 Nigeria
- Department of Computer Science, University of Zululand, Kwadlangezwa, 3886 South Africa
| | - Matthew O. Adigun
- Department of Computer Science, University of Zululand, Kwadlangezwa, 3886 South Africa
| |
Collapse
|
10
|
Althaqafi T, Al-Ghamdi ASAM, Ragab M. Artificial Intelligence Based COVID-19 Detection and Classification Model on Chest X-ray Images. Healthcare (Basel) 2023; 11:healthcare11091204. [PMID: 37174746 PMCID: PMC10177894 DOI: 10.3390/healthcare11091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Diagnostic and predictive models of disease have been growing rapidly due to developments in the field of healthcare. Accurate and early diagnosis of COVID-19 is an underlying process for controlling the spread of this deadly disease and its death rates. The chest radiology (CT) scan is an effective device for the diagnosis and earlier management of COVID-19, meanwhile, the virus mainly targets the respiratory system. Chest X-ray (CXR) images are extremely helpful in the effective diagnosis of COVID-19 due to their rapid outcomes, cost-effectiveness, and availability. Although the radiological image-based diagnosis method seems faster and accomplishes a better recognition rate in the early phase of the epidemic, it requires healthcare experts to interpret the images. Thus, Artificial Intelligence (AI) technologies, such as the deep learning (DL) model, play an integral part in developing automated diagnosis process using CXR images. Therefore, this study designs a sine cosine optimization with DL-based disease detection and classification (SCODL-DDC) for COVID-19 on CXR images. The proposed SCODL-DDC technique examines the CXR images to identify and classify the occurrence of COVID-19. In particular, the SCODL-DDC technique uses the EfficientNet model for feature vector generation, and its hyperparameters can be adjusted by the SCO algorithm. Furthermore, the quantum neural network (QNN) model can be employed for an accurate COVID-19 classification process. Finally, the equilibrium optimizer (EO) is exploited for optimum parameter selection of the QNN model, showing the novelty of the work. The experimental results of the SCODL-DDC method exhibit the superior performance of the SCODL-DDC technique over other approaches.
Collapse
Affiliation(s)
- Turki Althaqafi
- Information Systems Department, HECI School, Dar Al-Hekma University, Jeddah 34801, Saudi Arabia
| | - Abdullah S Al-Malaise Al-Ghamdi
- Information Systems Department, HECI School, Dar Al-Hekma University, Jeddah 34801, Saudi Arabia
- Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud Ragab
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mathematics Department, Faculty of Science, Al-Azhar University, Naser City 11884, Cairo, Egypt
| |
Collapse
|
11
|
Paul SG, Saha A, Biswas AA, Zulfiker MS, Arefin MS, Rahman MM, Reza AW. Combating Covid-19 using machine learning and deep learning: Applications, challenges, and future perspectives. ARRAY 2023; 17:100271. [PMID: 36530931 PMCID: PMC9737520 DOI: 10.1016/j.array.2022.100271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
COVID-19, a worldwide pandemic that has affected many people and thousands of individuals have died due to COVID-19, during the last two years. Due to the benefits of Artificial Intelligence (AI) in X-ray image interpretation, sound analysis, diagnosis, patient monitoring, and CT image identification, it has been further researched in the area of medical science during the period of COVID-19. This study has assessed the performance and investigated different machine learning (ML), deep learning (DL), and combinations of various ML, DL, and AI approaches that have been employed in recent studies with diverse data formats to combat the problems that have arisen due to the COVID-19 pandemic. Finally, this study shows the comparison among the stand-alone ML and DL-based research works regarding the COVID-19 issues with the combinations of ML, DL, and AI-based research works. After in-depth analysis and comparison, this study responds to the proposed research questions and presents the future research directions in this context. This review work will guide different research groups to develop viable applications based on ML, DL, and AI models, and will also guide healthcare institutes, researchers, and governments by showing them how these techniques can ease the process of tackling the COVID-19.
Collapse
Affiliation(s)
- Showmick Guha Paul
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Arpa Saha
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Al Amin Biswas
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh,Corresponding author
| | - Md. Sabab Zulfiker
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad Shamsul Arefin
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh,Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Chittagong, Bangladesh
| | - Md. Mahfujur Rahman
- Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Ahmed Wasif Reza
- Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh
| |
Collapse
|
12
|
Attallah O. RADIC:A tool for diagnosing COVID-19 from chest CT and X-ray scans using deep learning and quad-radiomics. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS : AN INTERNATIONAL JOURNAL SPONSORED BY THE CHEMOMETRICS SOCIETY 2023; 233:104750. [PMID: 36619376 PMCID: PMC9807270 DOI: 10.1016/j.chemolab.2022.104750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 05/28/2023]
Abstract
Deep learning (DL) algorithms have demonstrated a high ability to perform speedy and accurate COVID-19 diagnosis utilizing computed tomography (CT) and X-Ray scans. The spatial information in these images was used to train DL models in the majority of relevant studies. However, training these models with images generated by radiomics approaches could enhance diagnostic accuracy. Furthermore, combining information from several radiomics approaches with time-frequency representations of the COVID-19 patterns can increase performance even further. This study introduces "RADIC", an automated tool that uses three DL models that are trained using radiomics-generated images to detect COVID-19. First, four radiomics approaches are used to analyze the original CT and X-ray images. Next, each of the three DL models is trained on a different set of radiomics, X-ray, and CT images. Then, for each DL model, deep features are obtained, and their dimensions are decreased using the Fast Walsh Hadamard Transform, yielding a time-frequency representation of the COVID-19 patterns. The tool then uses the discrete cosine transform to combine these deep features. Four classification models are then used to achieve classification. In order to validate the performance of RADIC, two benchmark datasets (CT and X-Ray) for COVID-19 are employed. The final accuracy attained using RADIC is 99.4% and 99% for the first and second datasets respectively. To prove the competing ability of RADIC, its performance is compared with related studies in the literature. The results reflect that RADIC achieve superior performance compared to other studies. The results of the proposed tool prove that a DL model can be trained more effectively with images generated by radiomics techniques than the original X-Ray and CT images. Besides, the incorporation of deep features extracted from DL models trained with multiple radiomics approaches will improve diagnostic accuracy.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering & Technology, Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt
| |
Collapse
|
13
|
Novel Light Convolutional Neural Network for COVID Detection with Watershed Based Region Growing Segmentation. J Imaging 2023; 9:jimaging9020042. [PMID: 36826961 PMCID: PMC9963211 DOI: 10.3390/jimaging9020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
A rapidly spreading epidemic, COVID-19 had a serious effect on millions and took many lives. Therefore, for individuals with COVID-19, early discovery is essential for halting the infection's progress. To quickly and accurately diagnose COVID-19, imaging modalities, including computed tomography (CT) scans and chest X-ray radiographs, are frequently employed. The potential of artificial intelligence (AI) approaches further explored the creation of automated and precise COVID-19 detection systems. Scientists widely use deep learning techniques to identify coronavirus infection in lung imaging. In our paper, we developed a novel light CNN model architecture with watershed-based region-growing segmentation on Chest X-rays. Both CT scans and X-ray radiographs were employed along with 5-fold cross-validation. Compared to earlier state-of-the-art models, our model is lighter and outperformed the previous methods by achieving a mean accuracy of 98.8% on X-ray images and 98.6% on CT scans, predicting the rate of 0.99% and 0.97% for PPV (Positive predicted Value) and NPV (Negative predicted Value) rate of 0.98% and 0.99%, respectively.
Collapse
|
14
|
Suba S, Muthulakshmi M. A systematic review: Chest radiography images (X-ray images) analysis and COVID-19 categorization diagnosis using artificial intelligence techniques. NETWORK (BRISTOL, ENGLAND) 2023; 34:26-64. [PMID: 36420865 DOI: 10.1080/0954898x.2022.2147231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 pandemic created a turmoil across nations due to Severe Acute Respiratory Syndrome Corona virus-1(SARS - Co-V-2). The severity of COVID-19 symptoms is starting from cold, breathing problems, issues in respiratory system which may also lead to life threatening situations. This disease is widely contaminating and transmitted from man-to-man. The contamination is spreading when the human organs like eyes, nose, and mouth get in contact with contaminated fluids. This virus can be screened through performing a nasopharyngeal swab test which is time consuming. So the physicians are preferring the fast detection methods like chest radiography images and CT scans. At times some confusion in finding out the accurate disorder from chest radiography images can happen. To overcome this issue this study reviews several deep learning and machine learning procedures to be implemented in X-ray images of chest. This also helps the professionals to find out the other types of malfunctions happening in the chest other than COVID-19 also. This review can act as a guidance to the doctors and radiologists in identifying the COVID-19 and other types of viruses causing illness in the human anatomy and can provide aid soon.
Collapse
Affiliation(s)
- Saravanan Suba
- Department of Computer Science, Kamarajar Government Arts College, Tirunelveli, Surandai 627859, India
| | - M Muthulakshmi
- Department of Computer Science, Kamarajar Government Arts College, Tirunelveli, Surandai 627859, India
| |
Collapse
|
15
|
Podder P, Das SR, Mondal MRH, Bharati S, Maliha A, Hasan MJ, Piltan F. LDDNet: A Deep Learning Framework for the Diagnosis of Infectious Lung Diseases. SENSORS (BASEL, SWITZERLAND) 2023; 23:480. [PMID: 36617076 PMCID: PMC9824583 DOI: 10.3390/s23010480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
This paper proposes a new deep learning (DL) framework for the analysis of lung diseases, including COVID-19 and pneumonia, from chest CT scans and X-ray (CXR) images. This framework is termed optimized DenseNet201 for lung diseases (LDDNet). The proposed LDDNet was developed using additional layers of 2D global average pooling, dense and dropout layers, and batch normalization to the base DenseNet201 model. There are 1024 Relu-activated dense layers and 256 dense layers using the sigmoid activation method. The hyper-parameters of the model, including the learning rate, batch size, epochs, and dropout rate, were tuned for the model. Next, three datasets of lung diseases were formed from separate open-access sources. One was a CT scan dataset containing 1043 images. Two X-ray datasets comprising images of COVID-19-affected lungs, pneumonia-affected lungs, and healthy lungs exist, with one being an imbalanced dataset with 5935 images and the other being a balanced dataset with 5002 images. The performance of each model was analyzed using the Adam, Nadam, and SGD optimizers. The best results have been obtained for both the CT scan and CXR datasets using the Nadam optimizer. For the CT scan images, LDDNet showed a COVID-19-positive classification accuracy of 99.36%, a 100% precision recall of 98%, and an F1 score of 99%. For the X-ray dataset of 5935 images, LDDNet provides a 99.55% accuracy, 73% recall, 100% precision, and 85% F1 score using the Nadam optimizer in detecting COVID-19-affected patients. For the balanced X-ray dataset, LDDNet provides a 97.07% classification accuracy. For a given set of parameters, the performance results of LDDNet are better than the existing algorithms of ResNet152V2 and XceptionNet.
Collapse
Affiliation(s)
- Prajoy Podder
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Sanchita Rani Das
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - M. Rubaiyat Hossain Mondal
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Subrato Bharati
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Azra Maliha
- Faculty of Engineering and IT, The British University in Dubai, Dubai P.O. Box 345015, United Arab Emirates
| | - Md Junayed Hasan
- National Subsea Centre, Robert Gordon University, Aberdeen AB10 7AQ, UK
| | - Farzin Piltan
- Ulsan Industrial Artificial Intelligence (UIAI) Lab, Department of Electrical, Electronics and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
16
|
Sun H, Ren G, Teng X, Song L, Li K, Yang J, Hu X, Zhan Y, Wan SBN, Wong MFE, Chan KK, Tsang HCH, Xu L, Wu TC, Kong FM(S, Wang YXJ, Qin J, Chan WCL, Ying M, Cai J. Artificial intelligence-assisted multistrategy image enhancement of chest X-rays for COVID-19 classification. Quant Imaging Med Surg 2023; 13:394-416. [PMID: 36620146 PMCID: PMC9816729 DOI: 10.21037/qims-22-610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/17/2022] [Indexed: 11/13/2022]
Abstract
Background The coronavirus disease 2019 (COVID-19) led to a dramatic increase in the number of cases of patients with pneumonia worldwide. In this study, we aimed to develop an AI-assisted multistrategy image enhancement technique for chest X-ray (CXR) images to improve the accuracy of COVID-19 classification. Methods Our new classification strategy consisted of 3 parts. First, the improved U-Net model with a variational encoder segmented the lung region in the CXR images processed by histogram equalization. Second, the residual net (ResNet) model with multidilated-rate convolution layers was used to suppress the bone signals in the 217 lung-only CXR images. A total of 80% of the available data were allocated for training and validation. The other 20% of the remaining data were used for testing. The enhanced CXR images containing only soft tissue information were obtained. Third, the neural network model with a residual cascade was used for the super-resolution reconstruction of low-resolution bone-suppressed CXR images. The training and testing data consisted of 1,200 and 100 CXR images, respectively. To evaluate the new strategy, improved visual geometry group (VGG)-16 and ResNet-18 models were used for the COVID-19 classification task of 2,767 CXR images. The accuracy of the multistrategy enhanced CXR images was verified through comparative experiments with various enhancement images. In terms of quantitative verification, 8-fold cross-validation was performed on the bone suppression model. In terms of evaluating the COVID-19 classification, the CXR images obtained by the improved method were used to train 2 classification models. Results Compared with other methods, the CXR images obtained based on the proposed model had better performance in the metrics of peak signal-to-noise ratio and root mean square error. The super-resolution CXR images of bone suppression obtained based on the neural network model were also anatomically close to the real CXR images. Compared with the initial CXR images, the classification accuracy rates of the internal and external testing data on the VGG-16 model increased by 5.09% and 12.81%, respectively, while the values increased by 3.51% and 18.20%, respectively, for the ResNet-18 model. The numerical results were better than those of the single-enhancement, double-enhancement, and no-enhancement CXR images. Conclusions The multistrategy enhanced CXR images can help to classify COVID-19 more accurately than the other existing methods.
Collapse
Affiliation(s)
- Hongfei Sun
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Ge Ren
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Liming Song
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kang Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianhua Yang
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuefu Zhan
- Department of Radiology, Hainan Women and Children’s Medical Center, Hainan, China
| | - Shiu Bun Nelson Wan
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Man Fung Esther Wong
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - King Kwong Chan
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong, China
| | | | - Lu Xu
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong, China
| | - Tak Chiu Wu
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, China
| | | | - Yi Xiang J. Wang
- Deparment of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Qin
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wing Chi Lawrence Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael Ying
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
17
|
Celik G. Detection of Covid-19 and other pneumonia cases from CT and X-ray chest images using deep learning based on feature reuse residual block and depthwise dilated convolutions neural network. Appl Soft Comput 2023; 133:109906. [PMID: 36504726 PMCID: PMC9726212 DOI: 10.1016/j.asoc.2022.109906] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Covid-19 has become a worldwide epidemic which has caused the death of millions in a very short time. This disease, which is transmitted rapidly, has mutated and different variations have emerged. Early diagnosis is important to prevent the spread of this disease. In this study, a new deep learning-based architecture is proposed for rapid detection of Covid-19 and other symptoms using CT and X-ray chest images. This method, called CovidDWNet, is based on a structure based on feature reuse residual block (FRB) and depthwise dilated convolutions (DDC) units. The FRB and DDC units efficiently acquired various features in the chest scan images and it was seen that the proposed architecture significantly improved its performance. In addition, the feature maps obtained with the CovidDWNet architecture were estimated with the Gradient boosting (GB) algorithm. With the CovidDWNet+GB architecture, which is a combination of CovidDWNet and GB, a performance increase of approximately 7% in CT images and between 3% and 4% in X-ray images has been achieved. The CovidDWNet+GB architecture achieved the highest success compared to other architectures, with 99.84% and 100% accuracy rates, respectively, on different datasets containing binary class (Covid-19 and Normal) CT images. Similarly, the proposed architecture showed the highest success with 96.81% accuracy in multi-class (Covid-19, Lung Opacity, Normal and Viral Pneumonia) X-ray images and 96.32% accuracy in the dataset containing X-ray and CT images. When the time to predict the disease in CT or X-ray images is examined, it is possible to say that it has a high speed because the CovidDWNet+GB method predicts thousands of images within seconds.
Collapse
Affiliation(s)
- Gaffari Celik
- Agri Ibrahim Cecen University, Department of Computer Technology, Agri, Turkey
| |
Collapse
|
18
|
Deep Convolutional Spiking Neural Network optimized with Arithmetic optimization algorithm for lung disease detection using chest X-ray images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Chow LS, Tang GS, Solihin MI, Gowdh NM, Ramli N, Rahmat K. Quantitative and Qualitative Analysis of 18 Deep Convolutional Neural Network (CNN) Models with Transfer Learning to Diagnose COVID-19 on Chest X-Ray (CXR) Images. SN COMPUTER SCIENCE 2023; 4:141. [PMID: 36624807 PMCID: PMC9813876 DOI: 10.1007/s42979-022-01545-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/03/2022] [Indexed: 01/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a disease caused by a novel strain of coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severely affecting the lungs. Our study aims to combine both quantitative and qualitative analysis of the convolutional neural network (CNN) model to diagnose COVID-19 on chest X-ray (CXR) images. We investigated 18 state-of-the-art CNN models with transfer learning, which include AlexNet, DarkNet-19, DarkNet-53, DenseNet-201, GoogLeNet, Inception-ResNet-v2, Inception-v3, MobileNet-v2, NasNet-Large, NasNet-Mobile, ResNet-18, ResNet-50, ResNet-101, ShuffleNet, SqueezeNet, VGG-16, VGG-19, and Xception. Their performances were evaluated quantitatively using six assessment metrics: specificity, sensitivity, precision, negative predictive value (NPV), accuracy, and F1-score. The top four models with accuracy higher than 90% are VGG-16, ResNet-101, VGG-19, and SqueezeNet. The accuracy of these top four models is between 90.7% and 94.3%; the F1-score is between 90.8% and 94.3%. The VGG-16 scored the highest accuracy of 94.3% and F1-score of 94.3%. The majority voting with all the 18 CNN models and top 4 models produced an accuracy of 93.0% and 94.0%, respectively. The top four and bottom three models were chosen for the qualitative analysis. A gradient-weighted class activation mapping (Grad-CAM) was used to visualize the significant region of activation for the decision-making of image classification. Two certified radiologists performed blinded subjective voting on the Grad-CAM images in comparison with their diagnosis. The qualitative analysis showed that SqueezeNet is the closest model to the diagnosis of two certified radiologists. It demonstrated a competitively good accuracy of 90.7% and F1-score of 90.8% with 111 times fewer parameters and 7.7 times faster than VGG-16. Therefore, this study recommends both VGG-16 and SqueezeNet as additional tools for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Li Sze Chow
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Goon Sheng Tang
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Mahmud Iwan Solihin
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nadia Muhammad Gowdh
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Norlisah Ramli
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kartini Rahmat
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Lasker A, Ghosh M, Obaidullah SM, Chakraborty C, Roy K. LWSNet - a novel deep-learning architecture to segregate Covid-19 and pneumonia from x-ray imagery. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:21801-21823. [PMID: 36532598 PMCID: PMC9734972 DOI: 10.1007/s11042-022-14247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 05/27/2023]
Abstract
Automatic detection of lung diseases using AI-based tools became very much necessary to handle the huge number of cases occurring across the globe and support the doctors. This paper proposed a novel deep learning architecture named LWSNet (Light Weight Stacking Network) to separate Covid-19, cold pneumonia, and normal chest x-ray images. This framework is based on single, double, triple, and quadruple stack mechanisms to address the above-mentioned tri-class problem. In this framework, a truncated version of standard deep learning models and a lightweight CNN model was considered to conviniently deploy in resource-constraint devices. An evaluation was conducted on three publicly available datasets alongwith their combination. We received 97.28%, 96.50%, 97.41%, and 98.54% highest classification accuracies using quadruple stack. On further investigation, we found, using LWSNet, the average accuracy got improved from individual model to quadruple model by 2.31%, 2.55%, 2.88%, and 2.26% on four respective datasets.
Collapse
Affiliation(s)
- Asifuzzaman Lasker
- Department of Computer Science & Engineering, Aliah University, Kolkata, India
| | - Mridul Ghosh
- Department of Computer Science, Shyampur Siddheswari Mahavidyalaya, Howrah, India
| | - Sk Md Obaidullah
- Department of Computer Science & Engineering, Aliah University, Kolkata, India
| | | | - Kaushik Roy
- Department of Computer Science, West Bengal State University, Barasat, India
| |
Collapse
|
21
|
Lasker A, Ghosh M, Obaidullah SM, Chakraborty C, Roy K. LWSNet - a novel deep-learning architecture to segregate Covid-19 and pneumonia from x-ray imagery. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:1-23. [PMID: 36532598 DOI: 10.1007/s11042-022-13740-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 05/23/2023]
Abstract
Automatic detection of lung diseases using AI-based tools became very much necessary to handle the huge number of cases occurring across the globe and support the doctors. This paper proposed a novel deep learning architecture named LWSNet (Light Weight Stacking Network) to separate Covid-19, cold pneumonia, and normal chest x-ray images. This framework is based on single, double, triple, and quadruple stack mechanisms to address the above-mentioned tri-class problem. In this framework, a truncated version of standard deep learning models and a lightweight CNN model was considered to conviniently deploy in resource-constraint devices. An evaluation was conducted on three publicly available datasets alongwith their combination. We received 97.28%, 96.50%, 97.41%, and 98.54% highest classification accuracies using quadruple stack. On further investigation, we found, using LWSNet, the average accuracy got improved from individual model to quadruple model by 2.31%, 2.55%, 2.88%, and 2.26% on four respective datasets.
Collapse
Affiliation(s)
- Asifuzzaman Lasker
- Department of Computer Science & Engineering, Aliah University, Kolkata, India
| | - Mridul Ghosh
- Department of Computer Science, Shyampur Siddheswari Mahavidyalaya, Howrah, India
| | - Sk Md Obaidullah
- Department of Computer Science & Engineering, Aliah University, Kolkata, India
| | | | - Kaushik Roy
- Department of Computer Science, West Bengal State University, Barasat, India
| |
Collapse
|
22
|
Reis HC, Turk V. COVID-DSNet: A novel deep convolutional neural network for detection of coronavirus (SARS-CoV-2) cases from CT and Chest X-Ray images. Artif Intell Med 2022; 134:102427. [PMID: 36462906 PMCID: PMC9574866 DOI: 10.1016/j.artmed.2022.102427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
COVID-19 (SARS-CoV-2), which causes acute respiratory syndrome, is a contagious and deadly disease that has devastating effects on society and human life. COVID-19 can cause serious complications, especially in patients with pre-existing chronic health problems such as diabetes, hypertension, lung cancer, weakened immune systems, and the elderly. The most critical step in the fight against COVID-19 is the rapid diagnosis of infected patients. Computed Tomography (CT), chest X-ray (CXR), and RT-PCR diagnostic kits are frequently used to diagnose the disease. However, due to difficulties such as the inadequacy of RT-PCR test kits and false negative (FN) results in the early stages of the disease, the time-consuming examination of medical images obtained from CT and CXR imaging techniques by specialists/doctors, and the increasing workload on specialists, it is challenging to detect COVID-19. Therefore, researchers have suggested searching for new methods in COVID- 19 detection. In analysis studies with CT and CXR radiography images, it was determined that COVID-19-infected patients experienced abnormalities related to COVID-19. The anomalies observed here are the primary motivation for artificial intelligence researchers to develop COVID-19 detection applications with deep convolutional neural networks. Here, convolutional neural network-based deep learning algorithms from artificial intelligence technologies with high discrimination capabilities can be considered as an alternative approach in the disease detection process. This study proposes a deep convolutional neural network, COVID-DSNet, to diagnose typical pneumonia (bacterial, viral) and COVID-19 diseases from CT, CXR, hybrid CT + CXR images. In the multi-classification study with the CT dataset, 97.60 % accuracy and 97.60 % sensitivity values were obtained from the COVID-DSNet model, and 100 %, 96.30 %, and 96.58 % sensitivity values were obtained in the detection of typical, common pneumonia and COVID-19, respectively. The proposed model is an economical, practical deep learning network that data scientists can benefit from and develop. Although it is not a definitive solution in disease diagnosis, it may help experts as it produces successful results in detecting pneumonia and COVID-19.
Collapse
Affiliation(s)
- Hatice Catal Reis
- Department of Geomatics Engineering, Gumushane University, Gumushane 2900, Turkey,Corresponding author at: Department of Geomatics Engineering, Gumushane University, Gumushane 2900, Turkey
| | - Veysel Turk
- Department of Computer Engineering, University of Harran, Sanliurfa, Turkey
| |
Collapse
|
23
|
Hamza A, Attique Khan M, Wang SH, Alhaisoni M, Alharbi M, Hussein HS, Alshazly H, Kim YJ, Cha J. COVID-19 classification using chest X-ray images based on fusion-assisted deep Bayesian optimization and Grad-CAM visualization. Front Public Health 2022; 10:1046296. [PMID: 36408000 PMCID: PMC9672507 DOI: 10.3389/fpubh.2022.1046296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The COVID-19 virus's rapid global spread has caused millions of illnesses and deaths. As a result, it has disastrous consequences for people's lives, public health, and the global economy. Clinical studies have revealed a link between the severity of COVID-19 cases and the amount of virus present in infected people's lungs. Imaging techniques such as computed tomography (CT) and chest x-rays can detect COVID-19 (CXR). Manual inspection of these images is a difficult process, so computerized techniques are widely used. Deep convolutional neural networks (DCNNs) are a type of machine learning that is frequently used in computer vision applications, particularly in medical imaging, to detect and classify infected regions. These techniques can assist medical personnel in the detection of patients with COVID-19. In this article, a Bayesian optimized DCNN and explainable AI-based framework is proposed for the classification of COVID-19 from the chest X-ray images. The proposed method starts with a multi-filter contrast enhancement technique that increases the visibility of the infected part. Two pre-trained deep models, namely, EfficientNet-B0 and MobileNet-V2, are fine-tuned according to the target classes and then trained by employing Bayesian optimization (BO). Through BO, hyperparameters have been selected instead of static initialization. Features are extracted from the trained model and fused using a slicing-based serial fusion approach. The fused features are classified using machine learning classifiers for the final classification. Moreover, visualization is performed using a Grad-CAM that highlights the infected part in the image. Three publically available COVID-19 datasets are used for the experimental process to obtain improved accuracies of 98.8, 97.9, and 99.4%, respectively.
Collapse
Affiliation(s)
- Ameer Hamza
- Department of Computer Science, HITEC University, Taxila, Pakistan
| | - Muhammad Attique Khan
- Department of Computer Science, HITEC University, Taxila, Pakistan,*Correspondence: Muhammad Attique Khan
| | - Shui-Hua Wang
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Majed Alhaisoni
- Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Meshal Alharbi
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hany S. Hussein
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia,Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, Egypt
| | - Hammam Alshazly
- Faculty of Computers and Information, South Valley University, Qena, Egypt
| | - Ye Jin Kim
- Department of Computer Science, Hanyang University, Seoul, South Korea
| | - Jaehyuk Cha
- Department of Computer Science, Hanyang University, Seoul, South Korea,Jaehyuk Cha
| |
Collapse
|
24
|
Gopatoti A, P V. Multi-texture features and optimized DeepNet for COVID-19 detection using chest x-ray images. CONCURRENCY AND COMPUTATION : PRACTICE & EXPERIENCE 2022; 34:e7157. [PMID: 36246408 PMCID: PMC9538201 DOI: 10.1002/cpe.7157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
The corona virus disease 2019 (COVID-19) pandemic has a severe influence on population health all over the world. Various methods are developed for detecting the COVID-19, but the process of diagnosing this problem from radiology and radiography images is one of the effective procedures for diagnosing the affected patients. Therefore, a robust and effective multi-local texture features (MLTF)-based feature extraction approach and Improved Weed Sea-based DeepNet (IWS-based DeepNet) approach is proposed for detecting the COVID-19 at an earlier stage. The developed IWS-based DeepNet is developed for detecting COVID-19to optimize the structure of the Deep Convolutional Neural Network (Deep CNN). The IWS is devised by incorporating the Improved Invasive Weed Optimization (IIWO) and Sea Lion Optimization (SLnO), respectively. The noises present in the input chest x-ray (CXR) image are discarded using Region of Interest (RoI) extraction by adaptive thresholding technique. For feature extraction, the proposed MLFT is newly developed by considering various texture features for extracting the best features. Finally, the COVID-19 detection is performed using the proposed IWS-based DeepNet. Furthermore, the proposed technique achieved effective performance in terms of True Positive Rate (TPR), True Negative Rate (TNR), and accuracy with the maximum values of 0.933%, 0.890%, and 0.919%.
Collapse
Affiliation(s)
- Anandbabu Gopatoti
- Department of Electronics and Communication Engineering Hindusthan College of Engineering and Technology Coimbatore Tamil Nadu India
- Anna University Chennai Tamil Nadu India
| | - Vijayalakshmi P
- Department of Electronics and Communication Engineering Hindusthan College of Engineering and Technology Coimbatore Tamil Nadu India
| |
Collapse
|
25
|
Atteia G, Alhussan AA, Samee NA. BO-ALLCNN: Bayesian-Based Optimized CNN for Acute Lymphoblastic Leukemia Detection in Microscopic Blood Smear Images. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155520. [PMID: 35898023 PMCID: PMC9329984 DOI: 10.3390/s22155520] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 06/12/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a deadly cancer characterized by aberrant accumulation of immature lymphocytes in the blood or bone marrow. Effective treatment of ALL is strongly associated with the early diagnosis of the disease. Current practice for initial ALL diagnosis is performed through manual evaluation of stained blood smear microscopy images, which is a time-consuming and error-prone process. Deep learning-based human-centric biomedical diagnosis has recently emerged as a powerful tool for assisting physicians in making medical decisions. Therefore, numerous computer-aided diagnostic systems have been developed to autonomously identify ALL in blood images. In this study, a new Bayesian-based optimized convolutional neural network (CNN) is introduced for the detection of ALL in microscopic smear images. To promote classification performance, the architecture of the proposed CNN and its hyperparameters are customized to input data through the Bayesian optimization approach. The Bayesian optimization technique adopts an informed iterative procedure to search the hyperparameter space for the optimal set of network hyperparameters that minimizes an objective error function. The proposed CNN is trained and validated using a hybrid dataset which is formed by integrating two public ALL datasets. Data augmentation has been adopted to further supplement the hybrid image set to boost classification performance. The Bayesian search-derived optimal CNN model recorded an improved performance of image-based ALL classification on test set. The findings of this study reveal the superiority of the proposed Bayesian-optimized CNN over other optimized deep learning ALL classification models.
Collapse
Affiliation(s)
- Ghada Atteia
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (G.A.); (N.A.S.)
| | - Amel A. Alhussan
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nagwan Abdel Samee
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (G.A.); (N.A.S.)
| |
Collapse
|
26
|
A Comprehensive Performance Analysis of Transfer Learning Optimization in Visual Field Defect Classification. Diagnostics (Basel) 2022; 12:diagnostics12051258. [PMID: 35626413 PMCID: PMC9140208 DOI: 10.3390/diagnostics12051258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Numerous research have demonstrated that Convolutional Neural Network (CNN) models are capable of classifying visual field (VF) defects with great accuracy. In this study, we evaluated the performance of different pre-trained models (VGG-Net, MobileNet, ResNet, and DenseNet) in classifying VF defects and produced a comprehensive comparative analysis to compare the performance of different CNN models before and after hyperparameter tuning and fine-tuning. Using 32 batch sizes, 50 epochs, and ADAM as the optimizer to optimize weight, bias, and learning rate, VGG-16 obtained the highest accuracy of 97.63 percent, according to experimental findings. Subsequently, Bayesian optimization was utilized to execute automated hyperparameter tuning and automated fine-tuning layers of the pre-trained models to determine the optimal hyperparameter and fine-tuning layer for classifying many VF defect with the highest accuracy. We found that the combination of different hyperparameters and fine-tuning of the pre-trained models significantly impact the performance of deep learning models for this classification task. In addition, we also discovered that the automated selection of optimal hyperparameters and fine-tuning by Bayesian has significantly enhanced the performance of the pre-trained models. The results observed the best performance for the DenseNet-121 model with a validation accuracy of 98.46% and a test accuracy of 99.57% for the tested datasets.
Collapse
|
27
|
Pneumonia Recognition by Deep Learning: A Comparative Investigation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pneumonia is a common infectious disease. Currently, the most common method of pneumonia identification is manual diagnosis by professional doctors, but the accuracy and identification efficiency of this method is not satisfactory, and computer-aided diagnosis technology has emerged. With the development of artificial intelligence, deep learning has also been applied to pneumonia diagnosis and can achieve high accuracy. In this paper, we compare five deep learning models in different situations for pneumonia recognition. The objective was to employ five deep learning models to identify pneumonia X-ray images and to compare and analyze them in different cases, thus screening out the optimal model for each type of case to improve the efficiency of pneumonia recognition and further apply it to the computer-aided diagnosis of pneumonia species. In the proposed framework: (1) datasets are collected and processed, (2) five deep learning models for pneumonia recognition are built, (3) the five models are compared, and the optimal model for each case is selected. The results show that the LeNet5 and AlexNet models achieved better pneumonia recognition for small datasets, while the MobileNet and ResNet18 models were more suitable for pneumonia recognition for large datasets. The comparative analysis of each model under different situations can provide a deeper understanding of the efficiency of each model in identifying pneumonia, thus making the practical application and selection of deep learning models for pneumonia recognition more convenient.
Collapse
|