1
|
Huang T, Yin H, Huang X. Improved genetic algorithm for multi-threshold optimization in digital pathology image segmentation. Sci Rep 2024; 14:22454. [PMID: 39341998 PMCID: PMC11439074 DOI: 10.1038/s41598-024-73335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
This paper presents an improved genetic algorithm focused on multi-threshold optimization for image segmentation in digital pathology. By innovatively enhancing the selection mechanism and crossover operation, the limitations of traditional genetic algorithms are effectively addressed, significantly improving both segmentation accuracy and computational efficiency. Experimental results demonstrate that the improved genetic algorithm achieves the best balance between precision and recall within the threshold range of 0.02 to 0.05, and it significantly outperforms traditional methods in terms of segmentation performance. Segmentation quality is quantified using metrics such as precision, recall, and F1 score, and statistical tests confirm the superior performance of the algorithm, especially in its global search capabilities for complex optimization problems. Although the algorithm's computation time is relatively long, its notable advantages in segmentation quality, particularly in handling high-precision segmentation tasks for complex images, are highly pronounced. The experiments also show that the algorithm exhibits strong robustness and stability, maintaining reliable performance under different initial conditions. Compared to general segmentation models, this algorithm demonstrates significant advantages in specialized tasks, such as pathology image segmentation, especially in resource-constrained environments. Therefore, this improved genetic algorithm offers an efficient and precise multi-threshold optimization solution for image segmentation, providing valuable reference for practical applications.
Collapse
Affiliation(s)
- Tangsen Huang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
- School of Information Engineering, Hunan University of Science and Engineering, Yongzhou, 425199, China.
- Lishui Institute of Hangzhou Dianzi University, Lishui, 323000, China.
| | - Haibing Yin
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xingru Huang
- School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
- Lishui Institute of Hangzhou Dianzi University, Lishui, 323000, China
| |
Collapse
|
2
|
Zhu D, Shen J, Zheng Y, Li R, Zhou C, Cheng S, Yao Y. Multi-strategy learning-based particle swarm optimization algorithm for COVID-19 threshold segmentation. Comput Biol Med 2024; 176:108498. [PMID: 38744011 DOI: 10.1016/j.compbiomed.2024.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
With advancements in science and technology, the depth of human research on COVID-19 is increasing, making the investigation of medical images a focal point. Image segmentation, a crucial step preceding image processing, holds significance in the realm of medical image analysis. Traditional threshold image segmentation proves to be less efficient, posing challenges in selecting an appropriate threshold value. In response to these issues, this paper introduces Inner-based multi-strategy particle swarm optimization (IPSOsono) for conducting numerical experiments and enhancing threshold image segmentation in COVID-19 medical images. A novel dynamic oscillatory weight, derived from the PSO variant for single-objective numerical optimization (PSOsono) is incorporated. Simultaneously, the historical optimal positions of individuals in the particle swarm undergo random updates, diminishing the likelihood of algorithm stagnation and local optima. Moreover, an inner selection learning mechanism is proposed in the update of optimal positions, dynamically refining the global optimal solution. In the CEC 2013 benchmark test, PSOsono demonstrates a certain advantage in optimization capability compared to algorithms proposed in recent years, proving the effectiveness and feasibility of PSOsono. In the Minimum Cross Entropy threshold segmentation experiments for COVID-19, PSOsono exhibits a more prominent segmentation capability compared to other algorithms, showing good generalization across 6 CT images and further validating the practicality of the algorithm.
Collapse
Affiliation(s)
- Donglin Zhu
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaying Shen
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yangyang Zheng
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China.
| | - Rui Li
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China.
| | - Changjun Zhou
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China.
| | - Shi Cheng
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Yilin Yao
- College of Software Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, China.
| |
Collapse
|
3
|
Xu Z, Guo X, Wang J. Enhancing skin lesion segmentation with a fusion of convolutional neural networks and transformer models. Heliyon 2024; 10:e31395. [PMID: 38807881 PMCID: PMC11130697 DOI: 10.1016/j.heliyon.2024.e31395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Accurate segmentation is crucial in diagnosing and analyzing skin lesions. However, automatic segmentation of skin lesions is extremely challenging because of their variable sizes, uneven color distributions, irregular shapes, hair occlusions, and blurred boundaries. Owing to the limited range of convolutional networks receptive fields, shallow convolution cannot extract the global features of images and thus has limited segmentation performance. Because medical image datasets are small in scale, the use of excessively deep networks could cause overfitting and increase computational complexity. Although transformer networks can focus on extracting global information, they cannot extract sufficient local information and accurately segment detailed lesion features. In this study, we designed a dual-branch encoder that combines a convolution neural network (CNN) and a transformer. The CNN branch of the encoder comprises four layers, which learn the local features of images through layer-wise downsampling. The transformer branch also comprises four layers, enabling the learning of global image information through attention mechanisms. The feature fusion module in the network integrates local features and global information, emphasizes important channel features through the channel attention mechanism, and filters irrelevant feature expressions. The information exchange between the decoder and encoder is finally achieved through skip connections to supplement the information lost during the sampling process, thereby enhancing segmentation accuracy. The data used in this paper are from four public datasets, including images of melanoma, basal cell tumor, fibroma, and benign nevus. Because of the limited size of the image data, we enhanced them using methods such as random horizontal flipping, random vertical flipping, random brightness enhancement, random contrast enhancement, and rotation. The segmentation accuracy is evaluated through intersection over union and duration, integrity, commitment, and effort indicators, reaching 87.7 % and 93.21 %, 82.05 % and 89.19 %, 86.81 % and 92.72 %, and 92.79 % and 96.21 %, respectively, on the ISIC 2016, ISIC 2017, ISIC 2018, and PH2 datasets, respectively (code: https://github.com/hyjane/CCT-Net).
Collapse
Affiliation(s)
- Zhijian Xu
- School of Electronic Information Engineering, China West Normal University, No. 1 Shida Road, Nanchong, Sichuan, 637009, China
| | - Xingyue Guo
- School of Computer Science, China West Normal University, No. 1 Shida Road, Nanchong, Sichuan, 637009, China
| | - Juan Wang
- School of Computer Science, China West Normal University, No. 1 Shida Road, Nanchong, Sichuan, 637009, China
| |
Collapse
|
4
|
Hu Y, Mu N, Liu L, Zhang L, Jiang J, Li X. Slimmable transformer with hybrid axial-attention for medical image segmentation. Comput Biol Med 2024; 173:108370. [PMID: 38564854 DOI: 10.1016/j.compbiomed.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a slimmable transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI) and observe that ROIs are sensitive to different position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with pixel-level spatial structure and relative position information as inductive bias. Moreover, we introduce a gating mechanism to achieve efficient feature selection and further improve the representation quality over small-scale datasets. Experiments on LGG and COVID-19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to validate our success better; the proposed slimmable transformer has the potential to be further developed into a visual software tool for improving computer-aided lesion diagnosis and treatment planning.
Collapse
Affiliation(s)
- Yiyue Hu
- College of Computer Science, Sichuan Normal University, Chengdu, 610101, China
| | - Nan Mu
- College of Computer Science, Sichuan Normal University, Chengdu, 610101, China; Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931, USA; Visual Computing and Virtual Reality Key Laboratory of Sichuan, Sichuan Normal University, Chengdu, 610068, China.
| | - Lei Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
| | - Lei Zhang
- College of Computer Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931, USA
| | - Xiaoning Li
- College of Computer Science, Sichuan Normal University, Chengdu, 610101, China; Education Big Data Collaborative Innovation Center of Sichuan 2011, Chengdu, 610101, China
| |
Collapse
|
5
|
K AK, T Y S, Ahmed ST, Mathivanan SK, Varadhan S, Shah MA. Trained neural networking framework based skin cancer diagnosis and categorization using grey wolf optimization. Sci Rep 2024; 14:9388. [PMID: 38654051 DOI: 10.1038/s41598-024-59979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Skin Cancer is caused due to the mutational differences in epidermis hormones and patch appearances. Many studies are focused on the design and development of effective approaches in diagnosis and categorization of skin cancer. The decisions are made on independent training dataset under limited editions and scenarios. In this research, the kaggle based datasets are optimized and categorized into a labeled data array towards indexing using Federated learning (FL). The technique is developed on grey wolf optimization algorithm to assure the dataset attribute dependencies are extracted and dimensional mapping is processed. The threshold value validation of the dimensional mapping datasets is effectively optimized and trained under the neural networking framework further expanded via federated learning standards. The technique has demonstrated 95.82% accuracy under GWO technique and 94.9% on inter-combination of Trained Neural Networking (TNN) framework and Recessive Learning (RL) in accuracy.
Collapse
Affiliation(s)
- Amit Kumar K
- School of Engineering, CMR University, Bengaluru, India
| | - Satheesha T Y
- School of Computer Science and Engineering, REVA University, Bengaluru, India
| | - Syed Thouheed Ahmed
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India.
| | | | - Sangeetha Varadhan
- Department of Computer Applications, Dr. MGR Educational and Research Institute, Chennai, 600095, India
| | - Mohd Asif Shah
- Kebri Dehar University, Kebri Dehar, Somali, 250, Ethiopia.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India.
| |
Collapse
|
6
|
Lin Y, Wang J, Liu Q, Zhang K, Liu M, Wang Y. CFANet: Context fusing attentional network for preoperative CT image segmentation in robotic surgery. Comput Biol Med 2024; 171:108115. [PMID: 38402837 DOI: 10.1016/j.compbiomed.2024.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
Accurate segmentation of CT images is crucial for clinical diagnosis and preoperative evaluation of robotic surgery, but challenges arise from fuzzy boundaries and small-sized targets. In response, a novel 2D segmentation network named Context Fusing Attentional Network (CFANet) is proposed. CFANet incorporates three key modules to address these challenges, namely pyramid fusing module (PFM), parallel dilated convolution module (PDCM) and scale attention module (SAM). Integration of these modules into the encoder-decoder structure enables effective utilization of multi-level and multi-scale features. Compared with advanced segmentation method, the Dice score improved by 2.14% on the dataset of liver tumor. This improvement is expected to have a positive impact on the preoperative evaluation of robotic surgery and to support clinical diagnosis, especially in early tumor detection.
Collapse
Affiliation(s)
- Yao Lin
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China; National Engineering Research Center of Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China
| | - Jiazheng Wang
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China; National Engineering Research Center of Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China.
| | - Qinghao Liu
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China; National Engineering Research Center of Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China
| | - Kang Zhang
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China; National Engineering Research Center of Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China
| | - Min Liu
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China; National Engineering Research Center of Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China; Research Institute of Hunan University in Chongqing, Chongqing, 401135, China.
| | - Yaonan Wang
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China; National Engineering Research Center of Robot Visual Perception and Control Technology, Hunan University, Changsha, 410082, China
| |
Collapse
|
7
|
Li W, Song H, Ai D, Shi J, Wang Y, Wu W, Yang J. Semi-supervised segmentation of orbit in CT images with paired copy-paste strategy. Comput Biol Med 2024; 171:108176. [PMID: 38401453 DOI: 10.1016/j.compbiomed.2024.108176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The segmentation of the orbit in computed tomography (CT) images plays a crucial role in facilitating the quantitative analysis of orbital decompression surgery for patients with Thyroid-associated Ophthalmopathy (TAO). However, the task of orbit segmentation, particularly in postoperative images, remains challenging due to the significant shape variation and limited amount of labeled data. In this paper, we present a two-stage semi-supervised framework for the automatic segmentation of the orbit in both preoperative and postoperative images, which consists of a pseudo-label generation stage and a semi-supervised segmentation stage. A Paired Copy-Paste strategy is concurrently introduced to proficiently amalgamate features extracted from both preoperative and postoperative images, thereby augmenting the network discriminative capability in discerning changes within orbital boundaries. More specifically, we employ a random cropping technique to transfer regions from labeled preoperative images (foreground) onto unlabeled postoperative images (background), as well as unlabeled preoperative images (foreground) onto labeled postoperative images (background). It is imperative to acknowledge that every set of preoperative and postoperative images belongs to the identical patient. The semi-supervised segmentation network (stage 2) utilizes a combination of mixed supervisory signals from pseudo labels (stage 1) and ground truth to process the two mixed images. The training and testing of the proposed method have been conducted on the CT dataset obtained from the Eye Hospital of Wenzhou Medical University. The experimental results demonstrate that the proposed method achieves a mean Dice similarity coefficient (DSC) of 91.92% with only 5% labeled data, surpassing the performance of the current state-of-the-art method by 2.4%.
Collapse
Affiliation(s)
- Wentao Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Hong Song
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Danni Ai
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jieliang Shi
- Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yuanyuan Wang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Wencan Wu
- Eye Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jian Yang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
8
|
Li Y, Zhao D, Ma C, Escorcia-Gutierrez J, Aljehane NO, Ye X. CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images. Comput Biol Med 2024; 169:107838. [PMID: 38171259 DOI: 10.1016/j.compbiomed.2023.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
To improve the detection of COVID-19, this paper researches and proposes an effective swarm intelligence algorithm-driven multi-threshold image segmentation (MTIS) method. First, this paper proposes a novel RIME structure integrating the Co-adaptive hunting and dispersed foraging strategies, called CDRIME. Specifically, the Co-adaptive hunting strategy works in coordination with the basic search rules of RIME at the individual level, which not only facilitates the algorithm to explore the global optimal solution but also enriches the population diversity to a certain extent. The dispersed foraging strategy further enriches the population diversity to help the algorithm break the limitation of local search and thus obtain better convergence. Then, on this basis, a new multi-threshold image segmentation method is proposed by combining the 2D non-local histogram with 2D Kapur entropy, called CDRIME-MTIS. Finally, the results of experiments based on IEEE CEC2017, IEEE CEC2019, and IEEE CEC2022 demonstrate that CDRIME has superior performance than some other basic, advanced, and state-of-the-art algorithms in terms of global search, convergence performance, and escape from local optimality. Meanwhile, the segmentation experiments on COVID-19 X-ray images demonstrate that CDRIME is more advantageous than RIME and other peers in terms of segmentation effect and adaptability to different threshold levels. In conclusion, the proposed CDRIME significantly enhances the global optimization performance and image segmentation of RIME and has great potential to improve COVID-19 diagnosis.
Collapse
Affiliation(s)
- Yupeng Li
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Chao Ma
- School of Digital Media, Shenzhen Institute of Information Technology, Shenzhen, 518172, China.
| | - José Escorcia-Gutierrez
- Department of Computational Science and Electronics, Universidad de la Costa, CUC, Barranquilla, 080002, Colombia.
| | - Nojood O Aljehane
- Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
| | - Xia Ye
- School of the 1st Clinical Medical Sciences (School of Information and Engineering), Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
9
|
Yao Y, Yang J, Sun H, Kong H, Wang S, Xu K, Dai W, Jiang S, Bai Q, Xing S, Yuan J, Liu X, Lu F, Chen Z, Qu J, Su J. DeepGraFT: A novel semantic segmentation auxiliary ROI-based deep learning framework for effective fundus tessellation classification. Comput Biol Med 2024; 169:107881. [PMID: 38159401 DOI: 10.1016/j.compbiomed.2023.107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Fundus tessellation (FT) is a prevalent clinical feature associated with myopia and has implications in the development of myopic maculopathy, which causes irreversible visual impairment. Accurate classification of FT in color fundus photo can help predict the disease progression and prognosis. However, the lack of precise detection and classification tools has created an unmet medical need, underscoring the importance of exploring the clinical utility of FT. Thus, to address this gap, we introduce an automatic FT grading system (called DeepGraFT) using classification-and-segmentation co-decision models by deep learning. ConvNeXt, utilizing transfer learning from pretrained ImageNet weights, was employed for the classification algorithm, aligning with a region of interest based on the ETDRS grading system to boost performance. A segmentation model was developed to detect FT exits, complementing the classification for improved grading accuracy. The training set of DeepGraFT was from our in-house cohort (MAGIC), and the validation sets consisted of the rest part of in-house cohort and an independent public cohort (UK Biobank). DeepGraFT demonstrated a high performance in the training stage and achieved an impressive accuracy in validation phase (in-house cohort: 86.85 %; public cohort: 81.50 %). Furthermore, our findings demonstrated that DeepGraFT surpasses machine learning-based classification models in FT classification, achieving a 5.57 % increase in accuracy. Ablation analysis revealed that the introduced modules significantly enhanced classification effectiveness and elevated accuracy from 79.85 % to 86.85 %. Further analysis using the results provided by DeepGraFT unveiled a significant negative association between FT and spherical equivalent (SE) in the UK Biobank cohort. In conclusion, DeepGraFT accentuates potential benefits of the deep learning model in automating the grading of FT and allows for potential utility as a clinical-decision support tool for predicting progression of pathological myopia.
Collapse
Affiliation(s)
- Yinghao Yao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, Zhejiang, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jiaying Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, Zhejiang, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Haojun Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, Zhejiang, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Hengte Kong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, Zhejiang, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Sheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, Zhejiang, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Ke Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Wei Dai
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Siyi Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, Zhejiang, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - QingShi Bai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, Zhejiang, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shilai Xing
- Institute of PSI Genomics, Wenzhou Global Eye & Vision Innovation Center, Wenzhou, 325024, China
| | - Jian Yuan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xinting Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fan Lu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, Zhejiang, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhenhui Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jia Qu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, Zhejiang, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jianzhong Su
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, Zhejiang, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
10
|
Gong Z, Feng W, Su X, Choi C. System for automatically assessing the likelihood of inferior alveolar nerve injury. Comput Biol Med 2024; 169:107923. [PMID: 38199211 DOI: 10.1016/j.compbiomed.2024.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Inferior alveolar nerve (IAN) injury is a severe complication associated with mandibular third molar (MM3) extraction. Consequently, the likelihood of IAN injury must be assessed before performing such an extraction. However, existing deep learning methods for classifying the likelihood of IAN injury that rely on mask images often suffer from limited accuracy and lack of interpretability. In this paper, we propose an automated system based on panoramic radiographs, featuring a novel segmentation model SS-TransUnet and classification algorithm CD-IAN injury class. Our objective was to enhance the precision of segmentation of MM3 and mandibular canal (MC) and classification accuracy of the likelihood of IAN injury, ultimately reducing the occurrence of IAN injuries and providing a certain degree of interpretable foundation for diagnosis. The proposed segmentation model demonstrated a 0.9 % and 2.6 % enhancement in dice coefficient for MM3 and MC, accompanied by a reduction in 95 % Hausdorff distance, reaching 1.619 and 1.886, respectively. Additionally, our classification algorithm achieved an accuracy of 0.846, surpassing deep learning-based models by 3.8 %, confirming the effectiveness of our system.
Collapse
Affiliation(s)
- Ziyang Gong
- Department of Computer Engineering, Gachon University, Seongnam-si, 13120, Republic of Korea
| | - Weikang Feng
- College of Information Science and Engineering, Hohai University, Changzhou, 213000, China
| | - Xin Su
- College of Information Science and Engineering, Hohai University, Changzhou, 213000, China
| | - Chang Choi
- Department of Computer Engineering, Gachon University, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
11
|
Zhang X, Yang S, Shi Y, Ji J, Liu Y, Wang Z, Xu H. Weakly guided attention model with hierarchical interaction for brain CT report generation. Comput Biol Med 2023; 167:107650. [PMID: 37976828 DOI: 10.1016/j.compbiomed.2023.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Brain Computed Tomography (CT) report generation, which aims to assist radiologists in diagnosing cerebrovascular diseases efficiently, is challenging in feature representation for dozens of images and language descriptions with several sentences. Existing report generation methods have achieved significant achievement based on the encoder-decoder framework and attention mechanism. However, current research has limitations in solving the many-to-many alignment between the multi-images of Brain CT imaging and the multi-sentences of Brain CT report, and fails to attend to critical images and lesion areas, resulting in inaccurate descriptions. In this paper, we propose a novel Weakly Guided Attention Model with Hierarchical Interaction, named WGAM-HI, to improve Brain CT report generation. Specifically, WGAM-HI conducts many-to-many matching for multiple visual images and semantic sentences via a hierarchical interaction framework with a two-layer attention model and a two-layer report generator. In addition, two weakly guided mechanisms are proposed to facilitate the attention model to focus more on important images and lesion areas under the guidance of pathological events and Gradient-weighted Class Activation Mapping (Grad-CAM) respectively. The pathological event acts as a bridge between the essential serial images and the corresponding sentence, and the Grad-CAM bridges the lesion areas and pathology words. Therefore, under the hierarchical interaction with the weakly guided attention model, the report generator generates more accurate words and sentences. Experiments on the Brain CT dataset demonstrate the effectiveness of WGAM-HI in attending to important images and lesion areas gradually, and generating more accurate reports.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Faculty of Information Technology, Beijing University of Technology, Beijing, China.
| | - Sisi Yang
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Yanzhao Shi
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Junzhong Ji
- Faculty of Information Technology, Beijing University of Technology, Beijing, China.
| | - Ying Liu
- Department of Radiology, Peking University Third Hospital, Beijing, China.
| | - Zheng Wang
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Huimin Xu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
12
|
Chan S, Wu B, Wang H, Zhou X, Zhang G, Wang G. Cross-domain mechanism for few-shot object detection on Urine Sediment Image. Comput Biol Med 2023; 166:107487. [PMID: 37801918 DOI: 10.1016/j.compbiomed.2023.107487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Deep learning object detection networks require a large amount of box annotation data for training, which is difficult to obtain in the medical image field. The few-shot object detection algorithm is significant for an unseen category, which can be identified and localized with a few labeled data. For medical image datasets, the image style and target features are incredibly different from the knowledge obtained from training on the original dataset. We propose a background suppression attention(BSA) and feature space fine-tuning module (FSF) for this cross-domain situation where there is a large gap between the source and target domains. The background suppression attention reduces the influence of background information in the training process. The feature space fine-tuning module adjusts the feature distribution of the interest features, which helps to make better predictions. Our approach improves detection performance by using only the information extracted from the model without maintaining additional information, which is convenient and can be easily plugged into other networks. We evaluate the detection performance in the in-domain situation and cross-domain situation. In-domain experiments on the VOC and COCO datasets and the cross-domain experiments on the VOC to medical image dataset UriSed2K show that our proposed method effectively improves the few-shot detection performance.
Collapse
Affiliation(s)
- Sixian Chan
- School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Binghui Wu
- School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| | - Hongqiang Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Xiaolong Zhou
- College of Electrical and Information Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Guodao Zhang
- Department of Digital Media Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China.
| | - Guoqing Wang
- Zhejiang Suosi Technology Co. Ltd, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
13
|
Peng L, Cai Z, Heidari AA, Zhang L, Chen H. Hierarchical Harris hawks optimizer for feature selection. J Adv Res 2023; 53:261-278. [PMID: 36690206 PMCID: PMC10658428 DOI: 10.1016/j.jare.2023.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION The main feature selection methods include filter, wrapper-based, and embedded methods. Because of its characteristics, the wrapper method must include a swarm intelligence algorithm, and its performance in feature selection is closely related to the algorithm's quality. Therefore, it is essential to choose and design a suitable algorithm to improve the performance of the feature selection method based on the wrapper. Harris hawks optimization (HHO) is a superb optimization approach that has just been introduced. It has a high convergence rate and a powerful global search capability but it has an unsatisfactory optimization effect on high dimensional problems or complex problems. Therefore, we introduced a hierarchy to improve HHO's ability to deal with complex problems and feature selection. OBJECTIVES To make the algorithm obtain good accuracy with fewer features and run faster in feature selection, we improved HHO and named it EHHO. On 30 UCI datasets, the improved HHO (EHHO) can achieve very high classification accuracy with less running time and fewer features. METHODS We first conducted extensive experiments on 23 classical benchmark functions and compared EHHO with many state-of-the-art metaheuristic algorithms. Then we transform EHHO into binary EHHO (bEHHO) through the conversion function and verify the algorithm's ability in feature extraction on 30 UCI data sets. RESULTS Experiments on 23 benchmark functions show that EHHO has better convergence speed and minimum convergence than other peers. At the same time, compared with HHO, EHHO can significantly improve the weakness of HHO in dealing with complex functions. Moreover, on 30 datasets in the UCI repository, the performance of bEHHO is better than other comparative optimization algorithms. CONCLUSION Compared with the original bHHO, bEHHO can achieve excellent classification accuracy with fewer features and is also better than bHHO in running time.
Collapse
Affiliation(s)
- Lemin Peng
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China.
| | - Zhennao Cai
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Lejun Zhang
- Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou 510006, China; College of Information Engineering, Yangzhou University, Yangzhou 225127, China; Research and Development Center for E-Learning , Ministry of Education, Beijing 100039, China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
14
|
Hu B, Tao Y, Yang M. Detecting depression based on facial cues elicited by emotional stimuli in video. Comput Biol Med 2023; 165:107457. [PMID: 37708718 DOI: 10.1016/j.compbiomed.2023.107457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Recently, depression research has received considerable attention and there is an urgent need for objective and validated methods to detect depression. Depression detection based on facial expressions may be a promising adjunct to depression detection due to its non-contact nature. Stimulated facial expressions may contain more information that is useful in detecting depression than natural facial expressions. To explore facial cues in healthy controls and depressed patients in response to different emotional stimuli, facial expressions of 62 subjects were collected while watching video stimuli, and a local face reorganization method for depression detection is proposed. The method extracts the local phase pattern features, facial action unit (AU) features and head motion features of a local face reconstructed according to facial proportions, and then fed into the classifier for classification. The classification accuracy was 76.25%, with a recall of 80.44% and a specificity of 83.21%. The results demonstrated that the negative video stimuli in the single-attribute stimulus analysis were more effective in eliciting changes in facial expressions in both healthy controls and depressed patients. Fusion of facial features under both neutral and negative stimuli was found to be useful in discriminating between healthy controls and depressed individuals. The Pearson correlation coefficient (PCC) showed that changes in the emotional stimulus paradigm were more strongly correlated with changes in subjects' facial AU when exposed to negative stimuli compared to stimuli of other attributes. These results demonstrate the feasibility of our proposed method and provide a framework for future work in assisting diagnosis.
Collapse
Affiliation(s)
- Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computin, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Yongfeng Tao
- Gansu Provincial Key Laboratory of Wearable Computin, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Minqiang Yang
- Gansu Provincial Key Laboratory of Wearable Computin, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
15
|
Zhou T, Liu F, Ye X, Wang H, Lu H. CCGL-YOLOV5:A cross-modal cross-scale global-local attention YOLOV5 lung tumor detection model. Comput Biol Med 2023; 165:107387. [PMID: 37659112 DOI: 10.1016/j.compbiomed.2023.107387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/29/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Multimodal medical image detection is a key technology in medical image analysis, which plays an important role in tumor diagnosis. There are different sizes lesions and different shapes lesions in multimodal lung tumor images, which makes it difficult to effectively extract key features of lung tumor lesions. METHODS A Cross-modal Cross-scale Clobal-Local Attention YOLOV5 Lung Tumor Detection Model (CCGL-YOLOV5) is proposed in this paper. The main works are as follows: Firstly, the Cross-Modal Fusion Transformer Module (CMFTM) is designed to improve the multimodal key lesion feature extraction ability and fusion ability through the interactive assisted fusion of multimodal features; Secondly, the Global-Local Feature Interaction Module (GLFIM) is proposed to enhance the interaction ability between multimodal global features and multimodal local features through bidirectional interactive branches. Thirdly, the Cross-Scale Attention Fusion Module (CSAFM) is designed to obtain rich multi-scale features through grouping multi-scale attention for feature fusion. RESULTS The comparison experiments with advanced networks are done. The Acc, Rec, mAP, F1 score and FPS of CCGL-YOLOV5 model on multimodal lung tumor PET/CT dataset are 97.83%, 97.39%, 96.67%, 97.61% and 98.59, respectively; The experimental results show that the performance of CCGL-YOLOV5 model in this paper are better than other typical models. CONCLUSION The CCGL-YOLOV5 model can effectively use the multimodal feature information. There are important implications for multimodal medical image research and clinical disease diagnosis in CCGL-YOLOV5 model.
Collapse
Affiliation(s)
- Tao Zhou
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Fengzhen Liu
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Xinyu Ye
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Hongwei Wang
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Huiling Lu
- School of Medical Information and Engineering, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
16
|
Wang T, Liu X, Dai J, Zhang C, He W, Liu L, Chan Y, He Y, Zhao H, Xie Y, Liang X. An unsupervised dual contrastive learning framework for scatter correction in cone-beam CT image. Comput Biol Med 2023; 165:107377. [PMID: 37651766 DOI: 10.1016/j.compbiomed.2023.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Cone-beam computed tomography (CBCT) is widely utilized in modern radiotherapy; however, CBCT images exhibit increased scatter artifacts compared to planning CT (pCT), compromising image quality and limiting further applications. Scatter correction is thus crucial for improving CBCT image quality. METHODS In this study, we proposed an unsupervised contrastive learning method for CBCT scatter correction. Initially, we transformed low-quality CBCT into high-quality synthetic pCT (spCT) and generated forward projections of CBCT and spCT. By computing the difference between these projections, we obtained a residual image containing image details and scatter artifacts. Image details primarily comprise high-frequency signals, while scatter artifacts consist mainly of low-frequency signals. We extracted the scatter projection signal by applying a low-pass filter to remove image details. The corrected CBCT (cCBCT) projection signal was obtained by subtracting the scatter artifacts projection signal from the original CBCT projection. Finally, we employed the FDK reconstruction algorithm to generate the cCBCT image. RESULTS To evaluate cCBCT image quality, we aligned the CBCT and pCT of six patients. In comparison to CBCT, cCBCT maintains anatomical consistency and significantly enhances CT number, spatial homogeneity, and artifact suppression. The mean absolute error (MAE) of the test data decreased from 88.0623 ± 26.6700 HU to 17.5086 ± 3.1785 HU. The MAE of fat regions of interest (ROIs) declined from 370.2980 ± 64.9730 HU to 8.5149 ± 1.8265 HU, and the error between their maximum and minimum CT numbers decreased from 572.7528 HU to 132.4648 HU. The MAE of muscle ROIs reduced from 354.7689 ± 25.0139 HU to 16.4475 ± 3.6812 HU. We also compared our proposed method with several conventional unsupervised synthetic image generation techniques, demonstrating superior performance. CONCLUSIONS Our approach effectively enhances CBCT image quality and shows promising potential for future clinical adoption.
Collapse
Affiliation(s)
- Tangsheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Xuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Jingjing Dai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Chulong Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Wenfeng He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Lin Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yinping Chan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yutong He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Hanqing Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yaoqin Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Xiaokun Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
17
|
Sun S, Wang Y, Yang J, Feng Y, Tang L, Liu S, Ning H. Topology-sensitive weighting model for myocardial segmentation. Comput Biol Med 2023; 165:107286. [PMID: 37633088 DOI: 10.1016/j.compbiomed.2023.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023]
Abstract
Accurate myocardial segmentation is crucial for the diagnosis of various heart diseases. However, segmentation results often suffer from topology structural errors, such as broken connections and holes, especially in cases of poor image quality. These errors are unacceptable in clinical diagnosis. We proposed a Topology-Sensitive Weight (TSW) model to keep both pixel-wise accuracy and topological correctness. Specifically, the Position Weighting Update (PWU) strategy with the Boundary-Sensitive Topology (BST) module can guide the model to focus on positions where topological features are sensitive to pixel values. The Myocardial Integrity Topology (MIT) module can serve as a guide for maintaining myocardial integrity. We evaluate the TSW model on the CAMUS dataset and a private echocardiography myocardial segmentation dataset. The qualitative and quantitative experimental results show that the TSW model significantly enhances topological accuracy while maintaining pixel-wise precision.
Collapse
Affiliation(s)
- Song Sun
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Shenyang, China
| | - Yonghuai Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Jinzhu Yang
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Yong Feng
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Lingzhi Tang
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Shuo Liu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Hongxia Ning
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Krishnan SD, Pelusi D, Daniel A, Suresh V, Balusamy B. Improved graph neural network-based green anaconda optimization for segmenting and classifying the lung cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:17138-17157. [PMID: 37920050 DOI: 10.3934/mbe.2023764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Normal lung cells incur genetic damage over time, which causes unchecked cell growth and ultimately leads to lung cancer. Nearly 85% of lung cancer cases are caused by smoking, but there exists factual evidence that beta-carotene supplements and arsenic in water may raise the risk of developing the illness. Asbestos, polycyclic aromatic hydrocarbons, arsenic, radon gas, nickel, chromium and hereditary factors represent various lung cancer-causing agents. Therefore, deep learning approaches are employed to quicken the crucial procedure of diagnosing lung cancer. The effectiveness of these methods has increased when used to examine cancer histopathology slides. Initially, the data is gathered from the standard benchmark dataset. Further, the pre-processing of the collected images is accomplished using the Gabor filter method. The segmentation of these pre-processed images is done through the modified expectation maximization (MEM) algorithm method. Next, using the histogram of oriented gradient (HOG) scheme, the features are extracted from these segmented images. Finally, the classification of lung cancer is performed by the improved graph neural network (IGNN), where the parameter optimization of graph neural network (GNN) is done by the green anaconda optimization (GAO) algorithm in order to derive the accuracy maximization as the major objective function. This IGNN classifies lung cancer into normal, adeno carcinoma and squamous cell carcinoma as the final output. On comparison with existing methods with respect to distinct performance measures, the simulation findings reveal the betterment of the introduced method.
Collapse
Affiliation(s)
- S Dinesh Krishnan
- Assistant professor, B V Raju Institute of Technology, Narsapur, Telangana, India
| | - Danilo Pelusi
- Department of Communication Sciences, University of Teramo, Italy
| | - A Daniel
- Associate Professor, Amity University, Gwalior, Madhya Pradesh, India
| | - V Suresh
- Assistant professor, Dr. N. G. P Institute of Technology, Coimbatore, India
| | | |
Collapse
|
19
|
Singh S, Mittal N, Singh H, Oliva D. Improving the segmentation of digital images by using a modified Otsu's between-class variance. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-43. [PMID: 37362708 PMCID: PMC10063435 DOI: 10.1007/s11042-023-15129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/08/2022] [Accepted: 03/13/2023] [Indexed: 06/28/2023]
Abstract
Image segmentation is a critical stage in the analysis and pre-processing of images. It comprises dividing the pixels according to threshold values into several segments depending on their intensity levels. Selecting the best threshold values is the most challenging task in segmentation. Because of their simplicity, resilience, reduced convergence time, and accuracy, standard multi-level thresholding (MT) approaches are more effective than bi-level thresholding methods. With increasing thresholds, computer complexity grows exponentially. A considerable number of metaheuristics were used to optimize these problems. One of the best image segmentation methods is Otsu's between-class variance. It maximizes the between-class variance to determine image threshold values. In this manuscript, a new modified Otsu function is proposed that hybridizes the concept of Otsu's between class variance and Kapur's entropy. For Kapur's entropy, a threshold value of an image is selected by maximizing the entropy of the object and background pixels. The proposed modified Otsu technique combines the ability to find an optimal threshold that maximizes the overall entropy from Kapur's and the maximum variance value of the different classes from Otsu. The novelty of the proposal is the merging of two methodologies. Clearly, Otsu's variance could be improved since the entropy (Kapur) is a method used to verify the uncertainty of a set of information. This paper applies the proposed technique over a set of images with diverse histograms, which are taken from Berkeley Segmentation Data Set 500 (BSDS500). For the search capability of the segmentation methodology, the Arithmetic Optimization algorithm (AOA), the Hybrid Dragonfly algorithm, and Firefly Algorithm (HDAFA) are employed. The proposed approach is compared with the existing state-of-art objective function of Otsu and Kapur. Qualitative experimental outcomes demonstrate that modified Otsu is highly efficient in terms of performance metrics such as PSNR, mean, threshold values, number of iterations taken to converge, and image segmentation quality.
Collapse
Affiliation(s)
- Simrandeep Singh
- Department of Computer Science and Engineering, AWaDH, IIT Ropar, Rupnagar, 140001 India
- Department of Electronics & Communication Engineering, UCRD, Chandigarh University, Gharuan, Punjab India
| | - Nitin Mittal
- Department of Skill Faculty of Science and Technology, Shri Vishwakarma Skill University, Palwal, Haryana 121102 India
| | - Harbinder Singh
- Department of Electronics & Communication Engineering, Chandigarh Engineering College, Landran, Punjab India
| | - Diego Oliva
- Depto. de Innovación Basada en la Información y el Conocimiento, Universidad de Guadalajara, CUCEI, Guadalajara, Jal Mexico
| |
Collapse
|
20
|
Ranjbarzadeh R, Dorosti S, Jafarzadeh Ghoushchi S, Caputo A, Tirkolaee EB, Ali SS, Arshadi Z, Bendechache M. Breast tumor localization and segmentation using machine learning techniques: Overview of datasets, findings, and methods. Comput Biol Med 2023; 152:106443. [PMID: 36563539 DOI: 10.1016/j.compbiomed.2022.106443] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The Global Cancer Statistics 2020 reported breast cancer (BC) as the most common diagnosis of cancer type. Therefore, early detection of such type of cancer would reduce the risk of death from it. Breast imaging techniques are one of the most frequently used techniques to detect the position of cancerous cells or suspicious lesions. Computer-aided diagnosis (CAD) is a particular generation of computer systems that assist experts in detecting medical image abnormalities. In the last decades, CAD has applied deep learning (DL) and machine learning approaches to perform complex medical tasks in the computer vision area and improve the ability to make decisions for doctors and radiologists. The most popular and widely used technique of image processing in CAD systems is segmentation which consists of extracting the region of interest (ROI) through various techniques. This research provides a detailed description of the main categories of segmentation procedures which are classified into three classes: supervised, unsupervised, and DL. The main aim of this work is to provide an overview of each of these techniques and discuss their pros and cons. This will help researchers better understand these techniques and assist them in choosing the appropriate method for a given use case.
Collapse
Affiliation(s)
- Ramin Ranjbarzadeh
- School of Computing, Faculty of Engineering and Computing, Dublin City University, Ireland.
| | - Shadi Dorosti
- Department of Industrial Engineering, Urmia University of Technology, Urmia, Iran.
| | | | - Annalina Caputo
- School of Computing, Faculty of Engineering and Computing, Dublin City University, Ireland.
| | | | - Sadia Samar Ali
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Zahra Arshadi
- Faculty of Electronics, Telecommunications and Physics Engineering, Polytechnic University, Turin, Italy.
| | - Malika Bendechache
- Lero & ADAPT Research Centres, School of Computer Science, University of Galway, Ireland.
| |
Collapse
|
21
|
Liu L, Kuang F, Li L, Xu S, Liang Y. An efficient multi-threshold image segmentation for skin cancer using boosting whale optimizer. Comput Biol Med 2022; 151:106227. [PMID: 36368112 DOI: 10.1016/j.compbiomed.2022.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 12/27/2022]
Abstract
Due to the terrible manifestations of skin cancer, it seriously disturbs the quality of life status and health of patients, so we needs treatment plans to detect it early and avoid it causing more harm to patients. Medical disease image threshold segmentation technique can well extract the region of interest and effectively assist in disease recognition. Moreover, in multi-threshold image segmentation, the selection of the threshold set determines the image segmentation quality. Among the common threshold selection methods, the selection based on metaheuristic algorithm has the advantages of simplicity, easy implementation and avoidable local optimization. However, different algorithms have different performances for different medical disease images. For example, the Whale Optimization Algorithm (WOA) does not give a satisfactory performance for thresholding skin cancer images. We propose an improved WOA (LCWOA) in which the Levy operator and chaotic random mutation strategy are introduced to enhance the ability of the algorithm to jump out of the local optimum and to explore the search space. Comparing with different existing WOA variants on the CEC2014 function set, our proposed and improved algorithm improves the efficiency of the search. Experimental results show that our method outperforms the extant WOA variants in terms of optimization performances, improving the convergence accuracy and velocity. The method is also applied to solve the threshold selection in the skin cancer image segmentation problem, and LCWOA also gives excellent performance in obtaining optimal segmentation results.
Collapse
Affiliation(s)
- Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Fangjun Kuang
- School of Information Engineering, Wenzhou Business College, Wenzhou, 325035, China.
| | - Lingzhi Li
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, China.
| | - Suling Xu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, China.
| | - Yingqi Liang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
22
|
Yang X, Ye X, Zhao D, Heidari AA, Xu Z, Chen H, Li Y. Multi-threshold image segmentation for melanoma based on Kapur’s entropy using enhanced ant colony optimization. Front Neuroinform 2022; 16:1041799. [PMID: 36387585 PMCID: PMC9663822 DOI: 10.3389/fninf.2022.1041799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Melanoma is a malignant tumor formed by the cancerous transformation of melanocytes, and its medical images contain much information. However, the percentage of the critical information in the image is small, and the noise is non-uniformly distributed. We propose a new multi-threshold image segmentation model based on the two-dimensional histogram approach to the above problem. We present an enhanced ant colony optimization for continuous domains (EACOR) in the proposed model based on the soft besiege and chase strategies. Further, EACOR is combined with two-dimensional Kapur’s entropy to search for the optimal thresholds. An experiment on the IEEE CEC2014 benchmark function was conducted to measure the reliable global search capability of the EACOR algorithm in the proposed model. Moreover, we have also conducted several sets of experiments to test the validity of the image segmentation model proposed in this paper. The experimental results show that the segmented images from the proposed model outperform the comparison method in several evaluation metrics. Ultimately, the model proposed in this paper can provide high-quality samples for subsequent analysis of melanoma pathology images.
Collapse
Affiliation(s)
- Xiao Yang
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xiaojia Ye
- School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai, China
- *Correspondence: Xiaojia Ye,
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
- Dong Zhao,
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zhangze Xu
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Yangyang Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Yangyang Li,
| |
Collapse
|