1
|
Liu W, Teng Z, Li Z, Chen J. CVGAE: A Self-Supervised Generative Method for Gene Regulatory Network Inference Using Single-Cell RNA Sequencing Data. Interdiscip Sci 2024; 16:990-1004. [PMID: 38778003 DOI: 10.1007/s12539-024-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Gene regulatory network (GRN) inference based on single-cell RNA sequencing data (scRNAseq) plays a crucial role in understanding the regulatory mechanisms between genes. Various computational methods have been employed for GRN inference, but their performance in terms of network accuracy and model generalization is not satisfactory, and their poor performance is caused by high-dimensional data and network sparsity. In this paper, we propose a self-supervised method for gene regulatory network inference using single-cell RNA sequencing data (CVGAE). CVGAE uses graph neural network for inductive representation learning, which merges gene expression data and observed topology into a low-dimensional vector space. The well-trained vectors will be used to calculate mathematical distance of each gene, and further predict interactions between genes. In overall framework, FastICA is implemented to relief computational complexity caused by high dimensional data, and CVGAE adopts multi-stacked GraphSAGE layers as an encoder and an improved decoder to overcome network sparsity. CVGAE is evaluated on several single cell datasets containing four related ground-truth networks, and the result shows that CVGAE achieve better performance than comparative methods. To validate learning and generalization capabilities, CVGAE is applied in few-shot environment by change the ratio of train set and test set. In condition of few-shot, CVGAE obtains comparable or superior performance.
Collapse
Affiliation(s)
- Wei Liu
- School of Computer Science, Xiangtan University, Xiangtan, 411105, China.
| | - Zhijie Teng
- School of Computer Science, Xiangtan University, Xiangtan, 411105, China
| | - Zejun Li
- School of Computer Science and Engineering, Hunan Institute of Technology, Hengyang, 412002, China
| | - Jing Chen
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
2
|
Xiu YH, Sun SL, Zhou BW, Wan Y, Tang H, Long HX. DGSIST: Clustering spatial transcriptome data based on deep graph structure Infomax. Methods 2024; 231:226-236. [PMID: 39413889 DOI: 10.1016/j.ymeth.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
Although spatial transcriptomics data provide valuable insights into gene expression profiles and the spatial structure of tissues, most studies rely solely on gene expression information, underutilizing the spatial data. To fully leverage the potential of spatial transcriptomics and graph neural networks, the DGSI (Deep Graph Structure Infomax) model is proposed. This innovative graph data processing model uses graph convolutional neural networks and employs an unsupervised learning approach. It maximizes the mutual information between graph-level and node-level representations, emphasizing flexible sampling and aggregation of nodes and their neighbors. This effectively captures and incorporates local information from nodes into the overall graph structure. Additionally, this paper developed the DGSIST framework, an unsupervised cell clustering method that integrates the DGSI model, SVD dimensionality reduction algorithm, and k-means++ clustering algorithm. This aims to identify cell types accurately. DGSIST fully uses spatial transcriptomics data and outperforms existing methods in accuracy. Demonstrations of DGSIST's capability across various tissue types and technological platforms have shown its effectiveness in accurately identifying spatial domains in multiple tissue sections. Compared to other spatial clustering methods, DGSIST excels in cell clustering and effectively eliminates batch effects without needing batch correction. DGSIST excels in spatial clustering analysis, spatial variation identification, and differential gene expression detection and directly applies to graph analysis tasks, such as node classification, link prediction, or graph clustering. Anticipation lies in the contribution of the DGSIST framework to a deeper understanding of the spatial organizational structures of diseases such as cancer.
Collapse
Affiliation(s)
- Yu-Han Xiu
- College of Information Science Technology, Hainan Normal University, HaiKou City 571158, China; Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, HaiKou City 571158, China
| | - Si-Lin Sun
- College of Information Science Technology, Hainan Normal University, HaiKou City 571158, China; Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, HaiKou City 571158, China
| | - Bing-Wei Zhou
- College of Information Science Technology, Hainan Normal University, HaiKou City 571158, China; Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, HaiKou City 571158, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Medical Engineering & Medical Informatics Integration and Transformational Medicine Key Laboratory of Luzhou City, Luzhou 646000, China.
| | - Hai-Xia Long
- College of Information Science Technology, Hainan Normal University, HaiKou City 571158, China; Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, HaiKou City 571158, China.
| |
Collapse
|
3
|
Zhou Y, Gu X, Wang Z, Li X. Identification of drug use degree by integrating multi-modal features with dual-input deep learning method. Comput Methods Biomech Biomed Engin 2024:1-13. [PMID: 39468790 DOI: 10.1080/10255842.2024.2417206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Most of studies on drug use degree are based on subjective judgments without objective quantitative assessment, in this paper, a dual-input bimodal fusion algorithm is proposed to study drug use degree by using electroencephalogram (EEG) and near-infrared spectroscopy (NIRS). Firstly, this paper uses the optimized dual-input multi-modal TiCBnet for extracting the deep encoding features of the bimodal signal, then fuses and screens the features using different methods, and finally fused deep encoding features are classified. The classification accuracy of bimodal is found to be higher than that of single modal, and the classification accuracy is up to 89.9%.
Collapse
Affiliation(s)
- Yuxing Zhou
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xuelin Gu
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhen Wang
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaoou Li
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Shafiee S, Fathi A, Taherzadeh G. DP-site: A dual deep learning-based method for protein-peptide interaction site prediction. Methods 2024; 229:17-29. [PMID: 38871095 DOI: 10.1016/j.ymeth.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Protein-peptide interaction prediction is an important topic for several applications including various biological processes, understanding drug discovery, protein function abnormal cellular behaviors, and treating diseases. Over the years, studies have shown that experimental methods have improved the identification of this bio-molecular interaction. However, predicting protein-peptide interactions using these methods is laborious, time-consuming, dependent on third-party tools, and costly. METHOD To address these previous drawbacks, this study introduces a computational framework called DP-Site. The proposed framework concentrates on using a compound of a dual pipeline along with a combination predictor. A deep convolutional neural network for feature extraction and classification is embedded in pipeline 1. In addition, pipeline 2 includes a deep long-short-term memory-based and a random forest classifier for feature extraction and classification. In this investigation, the evolutionary, structure-based, sequence-based, and physicochemical information of proteins is utilized for identifying protein-peptide interaction at the residue level. RESULTS The proposed method is evaluated on both the ten-fold cross-validation and independent test sets. The robust and consistent results between cross-validation and independent test sets confirm the ability of the proposed method to predict peptide binding residues in proteins. Moreover, experimental findings demonstrate that DP-Site has significantly outperformed other state-of-the-art sequence-based and structure-based methods. The proposed method achieves a remarkable balance between a specificity of 0.799 and a sensitivity of 0.770, along with the best f-measure of 0.661 and the highest precision of 0.580 using an independent test set. CONCLUSIONS The outcome of various experiments confirms the proficiency of the proposed method and outperforms state-of-the-art sequence-based and structure-based methods in terms of the mentioned criteria. DP-Site can be accessed at https://github.com/shafiee 95/shima.shafiee.DP-Site.
Collapse
Affiliation(s)
- Shima Shafiee
- Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran.
| | - Abdolhossein Fathi
- Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran.
| | - Ghazaleh Taherzadeh
- Department of Math, Physics, and Computer Science, Wilkes University, Pennsylvania, USA.
| |
Collapse
|
5
|
Liu Y, Zhang F, Ding Y, Fei R, Li J, Wu FX. MRDPDA: A multi-Laplacian regularized deepFM model for predicting piRNA-disease associations. J Cell Mol Med 2024; 28:e70046. [PMID: 39228010 PMCID: PMC11371490 DOI: 10.1111/jcmm.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a typical class of small non-coding RNAs, which are essential for gene regulation, genome stability and so on. Accumulating studies have revealed that piRNAs have significant potential as biomarkers and therapeutic targets for a variety of diseases. However current computational methods face the challenge in effectively capturing piRNA-disease associations (PDAs) from limited data. In this study, we propose a novel method, MRDPDA, for predicting PDAs based on limited data from multiple sources. Specifically, MRDPDA integrates a deep factorization machine (deepFM) model with regularizations derived from multiple yet limited datasets, utilizing separate Laplacians instead of a simple average similarity network. Moreover, a unified objective function to combine embedding loss about similarities is proposed to ensure that the embedding is suitable for the prediction task. In addition, a balanced benchmark dataset based on piRPheno is constructed and a deep autoencoder is applied for creating reliable negative set from the unlabeled dataset. Compared with three latest methods, MRDPDA achieves the best performance on the pirpheno dataset in terms of the five-fold cross validation test and independent test set, and case studies further demonstrate the effectiveness of MRDPDA.
Collapse
Affiliation(s)
- Yajun Liu
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China
| | - Fan Zhang
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China
| | - Yulian Ding
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rong Fei
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China
| | - Junhuai Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, China
| | - Fang-Xiang Wu
- Department of Computer Science, Biomedical Engineering and Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Peng L, Liu X, Chen M, Liao W, Mao J, Zhou L. MGNDTI: A Drug-Target Interaction Prediction Framework Based on Multimodal Representation Learning and the Gating Mechanism. J Chem Inf Model 2024; 64:6684-6698. [PMID: 39137398 DOI: 10.1021/acs.jcim.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Drug-Target Interaction (DTI) prediction facilitates acceleration of drug discovery and promotes drug repositioning. Most existing deep learning-based DTI prediction methods can better extract discriminative features for drugs and proteins, but they rarely consider multimodal features of drugs. Moreover, learning the interaction representations between drugs and targets needs further exploration. Here, we proposed a simple M ulti-modal G ating N etwork for DTI prediction, MGNDTI, based on multimodal representation learning and the gating mechanism. MGNDTI first learns the sequence representations of drugs and targets using different retentive networks. Next, it extracts molecular graph features of drugs through a graph convolutional network. Subsequently, it devises a multimodal gating network to obtain the joint representations of drugs and targets. Finally, it builds a fully connected network for computing the interaction probability. MGNDTI was benchmarked against seven state-of-the-art DTI prediction models (CPI-GNN, TransformerCPI, MolTrans, BACPI, CPGL, GIFDTI, and FOTF-CPI) using four data sets (i.e., Human, C. elegans, BioSNAP, and BindingDB) under four different experimental settings. Through evaluation with AUROC, AUPRC, accuracy, F1 score, and MCC, MGNDTI significantly outperformed the above seven methods. MGNDTI is a powerful tool for DTI prediction, showcasing its superior robustness and generalization ability on diverse data sets and different experimental settings. It is freely available at https://github.com/plhhnu/MGNDTI.
Collapse
Affiliation(s)
- Lihong Peng
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Xin Liu
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Min Chen
- School of Computer Science and Engineering, Hunan Institute of Technology, Hengyang, Hunan 421002, China
| | - Wen Liao
- School of Computer Science, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Jiale Mao
- School of Computer Science, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Liqian Zhou
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| |
Collapse
|
7
|
Wang XF, Yu CQ, You ZH, Wang Y, Huang L, Qiao Y, Wang L, Li ZW. BEROLECMI: a novel prediction method to infer circRNA-miRNA interaction from the role definition of molecular attributes and biological networks. BMC Bioinformatics 2024; 25:264. [PMID: 39127625 DOI: 10.1186/s12859-024-05891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Circular RNA (CircRNA)-microRNA (miRNA) interaction (CMI) is an important model for the regulation of biological processes by non-coding RNA (ncRNA), which provides a new perspective for the study of human complex diseases. However, the existing CMI prediction models mainly rely on the nearest neighbor structure in the biological network, ignoring the molecular network topology, so it is difficult to improve the prediction performance. In this paper, we proposed a new CMI prediction method, BEROLECMI, which uses molecular sequence attributes, molecular self-similarity, and biological network topology to define the specific role feature representation for molecules to infer the new CMI. BEROLECMI effectively makes up for the lack of network topology in the CMI prediction model and achieves the highest prediction performance in three commonly used data sets. In the case study, 14 of the 15 pairs of unknown CMIs were correctly predicted.
Collapse
Affiliation(s)
- Xin-Fei Wang
- School of Information Engineering, Xijing University, Xi'an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi'an, China.
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China.
- School of Artificial Intelligence, Jilin University, Changchun, China.
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yan Qiao
- College of Agriculture and Forestry, Longdong University, Qingyang, China
| | - Lei Wang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
- Guangxi Academy of Sciences, Nanning, China
| | - Zheng-Wei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
8
|
Li G, Li S, Liang C, Xiao Q, Luo J. Drug repositioning based on residual attention network and free multiscale adversarial training. BMC Bioinformatics 2024; 25:261. [PMID: 39118000 PMCID: PMC11308596 DOI: 10.1186/s12859-024-05893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/06/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Conducting traditional wet experiments to guide drug development is an expensive, time-consuming and risky process. Analyzing drug function and repositioning plays a key role in identifying new therapeutic potential of approved drugs and discovering therapeutic approaches for untreated diseases. Exploring drug-disease associations has far-reaching implications for identifying disease pathogenesis and treatment. However, reliable detection of drug-disease relationships via traditional methods is costly and slow. Therefore, investigations into computational methods for predicting drug-disease associations are currently needed. RESULTS This paper presents a novel drug-disease association prediction method, RAFGAE. First, RAFGAE integrates known associations between diseases and drugs into a bipartite network. Second, RAFGAE designs the Re_GAT framework, which includes multilayer graph attention networks (GATs) and two residual networks. The multilayer GATs are utilized for learning the node embeddings, which is achieved by aggregating information from multihop neighbors. The two residual networks are used to alleviate the deep network oversmoothing problem, and an attention mechanism is introduced to combine the node embeddings from different attention layers. Third, two graph autoencoders (GAEs) with collaborative training are constructed to simulate label propagation to predict potential associations. On this basis, free multiscale adversarial training (FMAT) is introduced. FMAT enhances node feature quality through small gradient adversarial perturbation iterations, improving the prediction performance. Finally, tenfold cross-validations on two benchmark datasets show that RAFGAE outperforms current methods. In addition, case studies have confirmed that RAFGAE can detect novel drug-disease associations. CONCLUSIONS The comprehensive experimental results validate the utility and accuracy of RAFGAE. We believe that this method may serve as an excellent predictor for identifying unobserved disease-drug associations.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China.
| | - Shuwen Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Qiu Xiao
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
| |
Collapse
|
9
|
Li Q, Sun Y, Zhai K, Geng B, Dong Z, Ji L, Chen H, Cui Y. Microbiota-induced inflammatory responses in bladder tumors promote epithelial-mesenchymal transition and enhanced immune infiltration. Physiol Genomics 2024; 56:544-554. [PMID: 38808774 DOI: 10.1152/physiolgenomics.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024] Open
Abstract
The intratumoral microbiota can modulate the tumor immune microenvironment (TIME); however, the underlying mechanism by which intratumoral microbiota influences the TIME in urothelial carcinoma of the bladder (UCB) remains unclear. To address this, we collected samples from 402 patients with UCB, including paired host transcriptome and tumor microbiome data, from The Cancer Genome Atlas (TCGA). We found that the intratumoral microbiome profiles were significantly correlated with the expression pattern of epithelial-mesenchymal transition (EMT)-related genes. Furthermore, we detected that the genera Lachnoclostridium and Sutterella in tumors could indirectly promote the EMT program by inducing an inflammatory response. Moreover, the inflammatory response induced by these two intratumoral bacteria further enhanced intratumoral immune infiltration, affecting patient survival and response to immunotherapy. In addition, an independent immunotherapy cohort of 348 patients with bladder cancer was used to validate our results. Collectively, our study elucidates the potential mechanism by which the intratumoral microbiota influences the TIME of UCB and provides a new guiding strategy for the targeted therapy of UCB.NEW & NOTEWORTHY The intratumoral microbiota may mediate the bladder tumor inflammatory response, thereby promoting the epithelial-mesenchymal transition program and influencing tumor immune infiltration.
Collapse
Affiliation(s)
- Qiang Li
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Yichao Sun
- Department of Operating Room, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Kun Zhai
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Bingzhi Geng
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Zhenkun Dong
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing, People's Republic of China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, People's Republic of China
| | - Hui Chen
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Yan Cui
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| |
Collapse
|
10
|
Zhang C, Zhang Z, Zhang F, Zeng B, Liu X, Wang L. A computational model for potential microbe-disease association detection based on improved graph convolutional networks and multi-channel autoencoders. Front Microbiol 2024; 15:1435408. [PMID: 39144226 PMCID: PMC11322764 DOI: 10.3389/fmicb.2024.1435408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Accumulating evidence shows that human health and disease are closely related to the microbes in the human body. Methods In this manuscript, a new computational model based on graph attention networks and sparse autoencoders, called GCANCAE, was proposed for inferring possible microbe-disease associations. In GCANCAE, we first constructed a heterogeneous network by combining known microbe-disease relationships, disease similarity, and microbial similarity. Then, we adopted the improved GCN and the CSAE to extract neighbor relations in the adjacency matrix and novel feature representations in heterogeneous networks. After that, in order to estimate the likelihood of a potential microbe associated with a disease, we integrated these two types of representations to create unique eigenmatrices for diseases and microbes, respectively, and obtained predicted scores for potential microbe-disease associations by calculating the inner product of these two types of eigenmatrices. Results and discussion Based on the baseline databases such as the HMDAD and the Disbiome, intensive experiments were conducted to evaluate the prediction ability of GCANCAE, and the experimental results demonstrated that GCANCAE achieved better performance than state-of-the-art competitive methods under the frameworks of both 2-fold and 5-fold CV. Furthermore, case studies of three categories of common diseases, such as asthma, irritable bowel syndrome (IBS), and type 2 diabetes (T2D), confirmed the efficiency of GCANCAE.
Collapse
Affiliation(s)
| | - Zhen Zhang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| | | | | | - Xin Liu
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| | - Lei Wang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| |
Collapse
|
11
|
Liu S, Yu J, Ni N, Wang Z, Chen M, Li Y, Xu C, Ding Y, Zhang J, Yao X, Liu H. Versatile Framework for Drug-Target Interaction Prediction by Considering Domain-Specific Features. J Chem Inf Model 2024; 64:5646-5656. [PMID: 38976879 DOI: 10.1021/acs.jcim.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Predicting drug-target interactions (DTIs) is one of the crucial tasks in drug discovery, but traditional wet-lab experiments are costly and time-consuming. Recently, deep learning has emerged as a promising tool for accelerating DTI prediction due to its powerful performance. However, the models trained on limited known DTI data struggle to generalize effectively to novel drug-target pairs. In this work, we propose a strategy to train an ensemble of models by capturing both domain-generic and domain-specific features (E-DIS) to learn diverse domain features and adapt them to out-of-distribution data. Multiple experts were trained on different domains to capture and align domain-specific information from various distributions without accessing any data from unseen domains. E-DIS provides a comprehensive representation of proteins and ligands by capturing diverse features. Experimental results on four benchmark data sets in both in-domain and cross-domain settings demonstrated that E-DIS significantly improved model performance and domain generalization compared to existing methods. Our approach presents a significant advancement in DTI prediction by combining domain-generic and domain-specific features, enhancing the generalization ability of the DTI prediction model.
Collapse
Affiliation(s)
- Shuo Liu
- School of Pharmacy, Lanzhou University, Gansu 730000, China
- Huawei Technologies Co., Ltd., Hangzhou 310000, China
| | - Jialiang Yu
- Huawei Technologies Co., Ltd., Hangzhou 310000, China
| | - Ningxi Ni
- Huawei Technologies Co., Ltd., Hangzhou 310000, China
| | - Zidong Wang
- Huawei Technologies Co., Ltd., Hangzhou 310000, China
| | - Mengyun Chen
- Huawei Technologies Co., Ltd., Hangzhou 310000, China
| | - Yuquan Li
- College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000, China
| | - Chen Xu
- Huawei Technologies Co., Ltd., Hangzhou 310000, China
| | - Yahao Ding
- Huawei Technologies Co., Ltd., Hangzhou 310000, China
| | - Jun Zhang
- Changping Laboratory, Beijing 102200, China
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR 999078, China
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR 999078, China
| |
Collapse
|
12
|
Armingol E, Baghdassarian HM, Lewis NE. The diversification of methods for studying cell-cell interactions and communication. Nat Rev Genet 2024; 25:381-400. [PMID: 38238518 PMCID: PMC11139546 DOI: 10.1038/s41576-023-00685-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 05/20/2024]
Abstract
No cell lives in a vacuum, and the molecular interactions between cells define most phenotypes. Transcriptomics provides rich information to infer cell-cell interactions and communication, thus accelerating the discovery of the roles of cells within their communities. Such research relies heavily on algorithms that infer which cells are interacting and the ligands and receptors involved. Specific pressures on different research niches are driving the evolution of next-generation computational tools, enabling new conceptual opportunities and technological advances. More sophisticated algorithms now account for the heterogeneity and spatial organization of cells, multiple ligand types and intracellular signalling events, and enable the use of larger and more complex datasets, including single-cell and spatial transcriptomics. Similarly, new high-throughput experimental methods are increasing the number and resolution of interactions that can be analysed simultaneously. Here, we explore recent progress in cell-cell interaction research and highlight the diversification of the next generation of tools, which have yielded a rich ecosystem of tools for different applications and are enabling invaluable discoveries.
Collapse
Affiliation(s)
- Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Zhou L, Wang X, Peng L, Chen M, Wen H. SEnSCA: Identifying possible ligand-receptor interactions and its application in cell-cell communication inference. J Cell Mol Med 2024; 28:e18372. [PMID: 38747737 PMCID: PMC11095317 DOI: 10.1111/jcmm.18372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell-cell communication (CCC) is often mediated via ligand-receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K-means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D-convolutional neural networks and multi-head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three-point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA.
Collapse
Affiliation(s)
- Liqian Zhou
- School of Life Sciences and ChemistryHunan University of TechnologyHunanChina
| | - Xiwen Wang
- School of Life Sciences and ChemistryHunan University of TechnologyHunanChina
| | - Lihong Peng
- School of Life Sciences and ChemistryHunan University of TechnologyHunanChina
| | - Min Chen
- School of Computer ScienceHunan Institute of TechnologyHengyangChina
| | - Hong Wen
- School of Computer ScienceHunan University of TechnologyHunanChina
| |
Collapse
|
14
|
Chen M, Deng Y, Li Z, Ye Y, Zeng L, He Z, Peng G. SCPLPA: An miRNA-disease association prediction model based on spatial consistency projection and label propagation algorithm. J Cell Mol Med 2024; 28:e18345. [PMID: 38693850 PMCID: PMC11063733 DOI: 10.1111/jcmm.18345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Identifying the association between miRNA and diseases is helpful for disease prevention, diagnosis and treatment. It is of great significance to use computational methods to predict potential human miRNA disease associations. Considering the shortcomings of existing computational methods, such as low prediction accuracy and weak generalization, we propose a new method called SCPLPA to predict miRNA-disease associations. First, a heterogeneous disease similarity network was constructed using the disease semantic similarity network and the disease Gaussian interaction spectrum kernel similarity network, while a heterogeneous miRNA similarity network was constructed using the miRNA functional similarity network and the miRNA Gaussian interaction spectrum kernel similarity network. Then, the estimated miRNA-disease association scores were evaluated by integrating the outcomes obtained by implementing label propagation algorithms in the heterogeneous disease similarity network and the heterogeneous miRNA similarity network. Finally, the spatial consistency projection algorithm of the network was used to extract miRNA disease association features to predict unverified associations between miRNA and diseases. SCPLPA was compared with four classical methods (MDHGI, NSEMDA, RFMDA and SNMFMDA), and the results of multiple evaluation metrics showed that SCPLPA exhibited the most outstanding predictive performance. Case studies have shown that SCPLPA can effectively identify miRNAs associated with colon neoplasms and kidney neoplasms. In summary, our proposed SCPLPA algorithm is easy to implement and can effectively predict miRNA disease associations, making it a reliable auxiliary tool for biomedical research.
Collapse
Affiliation(s)
- Min Chen
- Hunan Institute of TechnologySchool of Computer Science and EngineeringHengyang 421002China
| | - Yingwei Deng
- Hunan Institute of TechnologySchool of Computer Science and EngineeringHengyang 421002China
| | - Zejun Li
- Hunan Institute of TechnologySchool of Computer Science and EngineeringHengyang 421002China
| | - Yifan Ye
- Hunan Institute of TechnologySchool of Computer Science and EngineeringHengyang 421002China
| | - Lijun Zeng
- Hunan Institute of TechnologySchool of Computer Science and EngineeringHengyang 421002China
| | - Ziyi He
- Hunan Institute of TechnologySchool of Computer Science and EngineeringHengyang 421002China
| | - Guofang Peng
- Hunan Institute of TechnologySchool of Computer Science and EngineeringHengyang 421002China
| |
Collapse
|
15
|
Rafiei F, Zeraati H, Abbasi K, Razzaghi P, Ghasemi JB, Parsaeian M, Masoudi-Nejad A. CFSSynergy: Combining Feature-Based and Similarity-Based Methods for Drug Synergy Prediction. J Chem Inf Model 2024; 64:2577-2585. [PMID: 38514966 DOI: 10.1021/acs.jcim.3c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Drug synergy prediction plays a vital role in cancer treatment. Because experimental approaches are labor-intensive and expensive, computational-based approaches get more attention. There are two types of computational methods for drug synergy prediction: feature-based and similarity-based. In feature-based methods, the main focus is to extract more discriminative features from drug pairs and cell lines to pass to the task predictor. In similarity-based methods, the similarities among all drugs and cell lines are utilized as features and fed into the task predictor. In this work, a novel approach, called CFSSynergy, that combines these two viewpoints is proposed. First, a discriminative representation is extracted for paired drugs and cell lines as input. We have utilized transformer-based architecture for drugs. For cell lines, we have created a similarity matrix between proteins using the Node2Vec algorithm. Then, the new cell line representation is computed by multiplying the protein-protein similarity matrix and the initial cell line representation. Next, we compute the similarity between unique drugs and unique cells using the learned representation for paired drugs and cell lines. Then, we compute a new representation for paired drugs and cell lines based on the similarity-based features and the learned features. Finally, these features are fed to XGBoost as a task predictor. Two well-known data sets were used to evaluate the performance of our proposed method: DrugCombDB and OncologyScreen. The CFSSynergy approach consistently outperformed existing methods in comparative evaluations. This substantiates the efficacy of our approach in capturing complex synergistic interactions between drugs and cell lines, setting it apart from conventional similarity-based or feature-based methods.
Collapse
Affiliation(s)
- Fatemeh Rafiei
- Department of Epidemiology and Biostatistics, School of Health, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Hojjat Zeraati
- Department of Epidemiology and Biostatistics, School of Health, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
| | - Karim Abbasi
- Laboratory of System Biology, Bioinformatics & Artificial Intelligence in Medicine (LBB&AI), Faculty of Mathematics and Computer Science, Kharazmi University, Tehran 14588-89694, Iran
| | - Parvin Razzaghi
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Jahan B Ghasemi
- Chemistry Department, Faculty of Chemistry, School of Sciences, University of Tehran, Tehran 14174-66191, Iran
| | - Mahboubeh Parsaeian
- Department of Epidemiology and Biostatistics, School of Health, Tehran University of Medical Sciences, Tehran 14167-53955, Iran
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, U.K
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran 13145-1365, Iran
| |
Collapse
|
16
|
Zhou L, Peng X, Zeng L, Peng L. Finding potential lncRNA-disease associations using a boosting-based ensemble learning model. Front Genet 2024; 15:1356205. [PMID: 38495672 PMCID: PMC10940470 DOI: 10.3389/fgene.2024.1356205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: Long non-coding RNAs (lncRNAs) have been in the clinical use as potential prognostic biomarkers of various types of cancer. Identifying associations between lncRNAs and diseases helps capture the potential biomarkers and design efficient therapeutic options for diseases. Wet experiments for identifying these associations are costly and laborious. Methods: We developed LDA-SABC, a novel boosting-based framework for lncRNA-disease association (LDA) prediction. LDA-SABC extracts LDA features based on singular value decomposition (SVD) and classifies lncRNA-disease pairs (LDPs) by incorporating LightGBM and AdaBoost into the convolutional neural network. Results: The LDA-SABC performance was evaluated under five-fold cross validations (CVs) on lncRNAs, diseases, and LDPs. It obviously outperformed four other classical LDA inference methods (SDLDA, LDNFSGB, LDASR, and IPCAF) through precision, recall, accuracy, F1 score, AUC, and AUPR. Based on the accurate LDA prediction performance of LDA-SABC, we used it to find potential lncRNA biomarkers for lung cancer. The results elucidated that 7SK and HULC could have a relationship with non-small-cell lung cancer (NSCLC) and lung adenocarcinoma (LUAD), respectively. Conclusion: We hope that our proposed LDA-SABC method can help improve the LDA identification.
Collapse
Affiliation(s)
- Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Xinhuai Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, Hunan, China
| | - Lijun Zeng
- School of Computer Science, Hunan Institute of Technology, Hengyang, China
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, Hunan, China
| |
Collapse
|
17
|
Peng L, Gao P, Xiong W, Li Z, Chen X. Identifying potential ligand-receptor interactions based on gradient boosted neural network and interpretable boosting machine for intercellular communication analysis. Comput Biol Med 2024; 171:108110. [PMID: 38367445 DOI: 10.1016/j.compbiomed.2024.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/19/2024]
Abstract
Cell-cell communication is essential to many key biological processes. Intercellular communication is generally mediated by ligand-receptor interactions (LRIs). Thus, building a comprehensive and high-quality LRI resource can significantly improve intercellular communication analysis. Meantime, due to lack of a "gold standard" dataset, it remains a challenge to evaluate LRI-mediated intercellular communication results. Here, we introduce CellGiQ, a high-confident LRI prediction framework for intercellular communication analysis. Highly confident LRIs are first inferred by LRI feature extraction with BioTriangle, LRI selection using LightGBM, and LRI classification based on ensemble of gradient boosted neural network and interpretable boosting machine. Subsequently, known and identified high-confident LRIs are filtered by combining single-cell RNA sequencing (scRNA-seq) data and further applied to intercellular communication inference through a quartile scoring strategy. To validation the predictions, CellGiQ exploited several evaluation strategies: using AUC and AUPR, it surpassed six competing LRI prediction models on four LRI datasets; through Venn diagrams and molecular docking, its predicted LRIs were validated by five other popular intercellular communication inference methods; based on the overlapping LRIs, it computed high Jaccard index with six other state-of-the-art intercellular communication prediction tools within human HNSCC tissues; by comparing with classical models and literature retrieve, its inferred HNSCC-related intercellular communication results was further validated. The novelty of this study is to identify high-confident LRIs based on machine learning as well as design several LRI validation ways, providing reference for computational LRI prediction. CellGiQ provides an open-source and useful tool to decompose LRI-mediated intercellular communication at single cell resolution. CellGiQ is freely available at https://github.com/plhhnu/CellGiQ.
Collapse
Affiliation(s)
- Lihong Peng
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| | - Pengfei Gao
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| | - Wei Xiong
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| | - Zejun Li
- School of Computer Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, Hunan, China.
| | - Xing Chen
- School of Science, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
18
|
Peng L, Yang Y, Yang C, Li Z, Cheong N. HRGCNLDA: Forecasting of lncRNA-disease association based on hierarchical refinement graph convolutional neural network. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:4814-4834. [PMID: 38872515 DOI: 10.3934/mbe.2024212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Long non-coding RNA (lncRNA) is considered to be a crucial regulator involved in various human biological processes, including the regulation of tumor immune checkpoint proteins. It has great potential as both a cancer biomolecular biomarker and therapeutic target. Nevertheless, conventional biological experimental techniques are both resource-intensive and laborious, making it essential to develop an accurate and efficient computational method to facilitate the discovery of potential links between lncRNAs and diseases. In this study, we proposed HRGCNLDA, a computational approach utilizing hierarchical refinement of graph convolutional neural networks for forecasting lncRNA-disease potential associations. This approach effectively addresses the over-smoothing problem that arises from stacking multiple layers of graph convolutional neural networks. Specifically, HRGCNLDA enhances the layer representation during message propagation and node updates, thereby amplifying the contribution of hidden layers that resemble the ego layer while reducing discrepancies. The results of the experiments showed that HRGCNLDA achieved the highest AUC-ROC (area under the receiver operating characteristic curve, AUC for short) and AUC-PR (area under the precision versus recall curve, AUPR for short) values compared to other methods. Finally, to further demonstrate the reliability and efficacy of our approach, we performed case studies on the case of three prevalent human diseases, namely, breast cancer, lung cancer and gastric cancer.
Collapse
Affiliation(s)
- Li Peng
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Key Laboratory for Service Computing and Novel Software Technology, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yujie Yang
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Cheng Yang
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zejun Li
- School of Computer Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ngai Cheong
- Faculty of Applied Sciences, Macao Polytechnic University, Macau 999078, China
| |
Collapse
|
19
|
Liu X, Qu C, Liu C, Zhu N, Huang H, Teng F, Huang C, Luo B, Liu X, Xie M, Xi F, Li M, Wu L, Li Y, Chen A, Xu X, Liao S, Zhang J. StereoSiTE: a framework to spatially and quantitatively profile the cellular neighborhood organized iTME. Gigascience 2024; 13:giae078. [PMID: 39452614 PMCID: PMC11503478 DOI: 10.1093/gigascience/giae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Spatial transcriptome (ST) technologies are emerging as powerful tools for studying tumor biology. However, existing tools for analyzing ST data are limited, as they mainly rely on algorithms developed for single-cell RNA sequencing data and do not fully utilize the spatial information. While some algorithms have been developed for ST data, they are often designed for specific tasks, lacking a comprehensive analytical framework for leveraging spatial information. RESULTS In this study, we present StereoSiTE, an analytical framework that combines open-source bioinformatics tools with custom algorithms to accurately infer the functional spatial cell interaction intensity (SCII) within the cellular neighborhood (CN) of interest. We applied StereoSiTE to decode ST datasets from xenograft models and found that the CN efficiently distinguished different cellular contexts, while the SCII analysis provided more precise insights into intercellular interactions by incorporating spatial information. By applying StereoSiTE to multiple samples, we successfully identified a CN region dominated by neutrophils, suggesting their potential role in remodeling the immune tumor microenvironment (iTME) after treatment. Moreover, the SCII analysis within the CN region revealed neutrophil-mediated communication, supported by pathway enrichment, transcription factor regulon activities, and protein-protein interactions. CONCLUSIONS StereoSiTE represents a promising framework for unraveling the mechanisms underlying treatment response within the iTME by leveraging CN-based tissue domain identification and SCII-inferred spatial intercellular interactions. The software is designed to be scalable, modular, and user-friendly, making it accessible to a wide range of researchers.
Collapse
Affiliation(s)
- Xing Liu
- BGI Research, Chongqing 401329, PR China
- BGI Research, Shenzhen 518083, PR China
| | - Chi Qu
- BGI Research, Chongqing 401329, PR China
- BGI Research, Shenzhen 518083, PR China
- JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| | - Chuandong Liu
- BGI Research, Chongqing 401329, PR China
- BGI Research, Shenzhen 518083, PR China
| | - Na Zhu
- BGI Research, Shenzhen 518083, PR China
| | - Huaqiang Huang
- BGI Research, Chongqing 401329, PR China
- BGI Research, Shenzhen 518083, PR China
| | - Fei Teng
- BGI Research, Shenzhen 518083, PR China
| | | | | | | | - Min Xie
- BGI Research, Chongqing 401329, PR China
- BGI Research, Shenzhen 518083, PR China
- JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| | - Feng Xi
- BGI Research, Chongqing 401329, PR China
- BGI Research, Shenzhen 518083, PR China
- JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| | - Mei Li
- BGI Research, Shenzhen 518083, PR China
| | - Liang Wu
- BGI Research, Chongqing 401329, PR China
- BGI Research, Shenzhen 518083, PR China
- JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| | | | - Ao Chen
- BGI Research, Chongqing 401329, PR China
- BGI Research, Shenzhen 518083, PR China
- JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| | - Xun Xu
- BGI Research, Chongqing 401329, PR China
- BGI Research, Shenzhen 518083, PR China
- JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| | - Sha Liao
- BGI Research, Chongqing 401329, PR China
- BGI Research, Shenzhen 518083, PR China
- JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| | - Jiajun Zhang
- BGI Research, Chongqing 401329, PR China
- BGI Research, Shenzhen 518083, PR China
- JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
20
|
Peng L, Huang L, Su Q, Tian G, Chen M, Han G. LDA-VGHB: identifying potential lncRNA-disease associations with singular value decomposition, variational graph auto-encoder and heterogeneous Newton boosting machine. Brief Bioinform 2023; 25:bbad466. [PMID: 38127089 PMCID: PMC10734633 DOI: 10.1093/bib/bbad466] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/05/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) participate in various biological processes and have close linkages with diseases. In vivo and in vitro experiments have validated many associations between lncRNAs and diseases. However, biological experiments are time-consuming and expensive. Here, we introduce LDA-VGHB, an lncRNA-disease association (LDA) identification framework, by incorporating feature extraction based on singular value decomposition and variational graph autoencoder and LDA classification based on heterogeneous Newton boosting machine. LDA-VGHB was compared with four classical LDA prediction methods (i.e. SDLDA, LDNFSGB, IPCARF and LDASR) and four popular boosting models (XGBoost, AdaBoost, CatBoost and LightGBM) under 5-fold cross-validations on lncRNAs, diseases, lncRNA-disease pairs and independent lncRNAs and independent diseases, respectively. It greatly outperformed the other methods with its prominent performance under four different cross-validations on the lncRNADisease and MNDR databases. We further investigated potential lncRNAs for lung cancer, breast cancer, colorectal cancer and kidney neoplasms and inferred the top 20 lncRNAs associated with them among all their unobserved lncRNAs. The results showed that most of the predicted top 20 lncRNAs have been verified by biomedical experiments provided by the Lnc2Cancer 3.0, lncRNADisease v2.0 and RNADisease databases as well as publications. We found that HAR1A, KCNQ1DN, ZFAT-AS1 and HAR1B could associate with lung cancer, breast cancer, colorectal cancer and kidney neoplasms, respectively. The results need further biological experimental validation. We foresee that LDA-VGHB was capable of identifying possible lncRNAs for complex diseases. LDA-VGHB is publicly available at https://github.com/plhhnu/LDA-VGHB.
Collapse
Affiliation(s)
- Lihong Peng
- School of Computer Science, Hunan University of Technology, 412007, Hunan, China
- College of Life Sciences and Chemistry, Hunan University of Technology, 412007, Hunan, China
| | - Liangliang Huang
- School of Computer Science, Hunan University of Technology, 412007, Hunan, China
| | - Qiongli Su
- Department of Pharmacy, the Affiliated Zhuzhou Hospital Xiangya Medical College CSU, 412007, Hunan, China
| | - Geng Tian
- Geneis (Beijing) Co. Ltd, China, 100102, Beijing, China
| | - Min Chen
- School of Computer Science, Hunan Institute of Technology, 421002, No. 18 Henghua Road, Zhuhui District, Hengyang, Hunan, China
| | - Guosheng Han
- School of Mathematics and Computational Science, Xiangtan University, 411105, Yuhu District, Xiangtan, Hunan, China
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, 411105, Yuhu District, Xiangtan, Hunan, China
| |
Collapse
|
21
|
Chu J. Exploration of the molecular mechanism of intercellular communication in paediatric neuroblastoma by single-cell sequencing. Sci Rep 2023; 13:20406. [PMID: 37990103 PMCID: PMC10663476 DOI: 10.1038/s41598-023-47796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
Neuroblastoma (NB) is an embryonic tumour that originates in the sympathetic nervous system and occurs most often in infants and children under 2 years of age. Moreover, it is the most common extracranial solid tumour in children. Increasing studies suggest that intercellular communication within the tumour microenvironment is closely related to tumour development. This study aimed to construct a prognosis-related intercellular communication-associated genes model by single-cell sequencing and transcriptome sequencing to predict the prognosis of patients with NB for precise management. Single-cell data from patients with NB were downloaded from the gene expression omnibus database for comprehensive analysis. Furthermore, prognosis-related genes were screened in the TARGET database based on epithelial cell marker genes through a combination of Cox regression and Lasso regression analyses, using GSE62564 and GSE85047 for external validation. The patients' risk scores were calculated, followed by immune infiltration analysis, drug sensitivity analysis, and enrichment analysis of risk scores, which were conducted for the prognostic model. I used the Lasso regression feature selection algorithm to screen characteristic genes in NB and developed a 21-gene prognostic model. The risk scores were highly correlated with multiple immune cells and common anti-tumour drugs. Furthermore, the risk score was identified as an independent prognostic factor for NB. In this study, I constructed and validated a prognostic signature based on epithelial marker genes, which may provide useful information on the development and prognosis of NB.
Collapse
Affiliation(s)
- Jing Chu
- Department of Pathology, Anhui Provincial Children's Hospital, 39 Wangjiang East Road, Hefei, 230051, Anhui, China.
| |
Collapse
|
22
|
Fu X, Chen Y, Tian S. DlncRNALoc: A discrete wavelet transform-based model for predicting lncRNA subcellular localization. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:20648-20667. [PMID: 38124569 DOI: 10.3934/mbe.2023913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The prediction of long non-coding RNA (lncRNA) subcellular localization is essential to the understanding of its function and involvement in cellular regulation. Traditional biological experimental methods are costly and time-consuming, making computational methods the preferred approach for predicting lncRNA subcellular localization (LSL). However, existing computational methods have limitations due to the structural characteristics of lncRNAs and the uneven distribution of data across subcellular compartments. We propose a discrete wavelet transform (DWT)-based model for predicting LSL, called DlncRNALoc. We construct a physicochemical property matrix of a 2-tuple bases based on lncRNA sequences, and we introduce a DWT lncRNA feature extraction method. We use the Synthetic Minority Over-sampling Technique (SMOTE) for oversampling and the local fisher discriminant analysis (LFDA) algorithm to optimize feature information. The optimized feature vectors are fed into support vector machine (SVM) to construct a predictive model. DlncRNALoc has been applied for a five-fold cross-validation on the three sets of benchmark datasets. Extensive experiments have demonstrated the superiority and effectiveness of the DlncRNALoc model in predicting LSL.
Collapse
Affiliation(s)
- Xiangzheng Fu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, China
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan, China
| | - Yifan Chen
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, China
- Department of Basic Biology, Changsha Medical College, Changsha, Hunan, China
| | - Sha Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
23
|
Peng L, He X, Peng X, Li Z, Zhang L. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering. Comput Biol Med 2023; 166:107440. [PMID: 37738898 DOI: 10.1016/j.compbiomed.2023.107440] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background. METHODS We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots' embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets. RESULTS We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters. CONCLUSION We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks.
Collapse
Affiliation(s)
- Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, Hunan, China; College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| | - Xianzhi He
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| | - Xinhuai Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| | - Zejun Li
- School of Computer Science, Hunan Institute of Technology, Hengyang, 421002, Hunan, China.
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
24
|
Peng L, Huang L, Tian G, Wu Y, Li G, Cao J, Wang P, Li Z, Duan L. Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network. Front Microbiol 2023; 14:1244527. [PMID: 37789848 PMCID: PMC10543759 DOI: 10.3389/fmicb.2023.1244527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Background Microbes have dense linkages with human diseases. Balanced microorganisms protect human body against physiological disorders while unbalanced ones may cause diseases. Thus, identification of potential associations between microbes and diseases can contribute to the diagnosis and therapy of various complex diseases. Biological experiments for microbe-disease association (MDA) prediction are expensive, time-consuming, and labor-intensive. Methods We developed a computational MDA prediction method called GPUDMDA by combining graph attention autoencoder, positive-unlabeled learning, and deep neural network. First, GPUDMDA computes disease similarity and microbe similarity matrices by integrating their functional similarity and Gaussian association profile kernel similarity, respectively. Next, it learns the feature representation of each microbe-disease pair using graph attention autoencoder based on the obtained disease similarity and microbe similarity matrices. Third, it selects a few reliable negative MDAs based on positive-unlabeled learning. Finally, it takes the learned MDA features and the selected negative MDAs as inputs and designed a deep neural network to predict potential MDAs. Results GPUDMDA was compared with four state-of-the-art MDA identification models (i.e., MNNMDA, GATMDA, LRLSHMDA, and NTSHMDA) on the HMDAD and Disbiome databases under five-fold cross validations on microbes, diseases, and microbe-disease pairs. Under the three five-fold cross validations, GPUDMDA computed the best AUCs of 0.7121, 0.9454, and 0.9501 on the HMDAD database and 0.8372, 0.8908, and 0.8948 on the Disbiome database, respectively, outperforming the other four MDA prediction methods. Asthma is the most common chronic respiratory condition and affects ~339 million people worldwide. Inflammatory bowel disease is a class of globally chronic intestinal disease widely existed in the gut and gastrointestinal tract and extraintestinal organs of patients. Particularly, inflammatory bowel disease severely affects the growth and development of children. We used the proposed GPUDMDA method and found that Enterobacter hormaechei had potential associations with both asthma and inflammatory bowel disease and need further biological experimental validation. Conclusion The proposed GPUDMDA demonstrated the powerful MDA prediction ability. We anticipate that GPUDMDA helps screen the therapeutic clues for microbe-related diseases.
Collapse
Affiliation(s)
- Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Liangliang Huang
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Geng Tian
- Geneis (Beijing) Co. Ltd., Beijing, China
| | - Yan Wu
- Geneis (Beijing) Co. Ltd., Beijing, China
| | - Guang Li
- Faculty of Pediatrics, The Chinese PLA General Hospital, Beijing, China
- Department of Pediatric Surgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Jianying Cao
- Faculty of Pediatrics, The Chinese PLA General Hospital, Beijing, China
- Department of Pediatric Surgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Peng Wang
- School of Computer Science, Hunan Institute of Technology, Hengyang, China
| | - Zejun Li
- School of Computer Science, Hunan Institute of Technology, Hengyang, China
| | - Lian Duan
- Faculty of Pediatrics, The Chinese PLA General Hospital, Beijing, China
- Department of Pediatric Surgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| |
Collapse
|
25
|
Su Z, Lu H, Wu Y, Li Z, Duan L. Predicting potential lncRNA biomarkers for lung cancer and neuroblastoma based on an ensemble of a deep neural network and LightGBM. Front Genet 2023; 14:1238095. [PMID: 37655066 PMCID: PMC10466784 DOI: 10.3389/fgene.2023.1238095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction: Lung cancer is one of the most frequent neoplasms worldwide with approximately 2.2 million new cases and 1.8 million deaths each year. The expression levels of programmed death ligand-1 (PDL1) demonstrate a complex association with lung cancer. Neuroblastoma is a high-risk malignant tumor and is mainly involved in childhood patients. Identification of new biomarkers for these two diseases can significantly promote their diagnosis and therapy. However, in vivo experiments to discover potential biomarkers are costly and laborious. Consequently, artificial intelligence technologies, especially machine learning methods, provide a powerful avenue to find new biomarkers for various diseases. Methods: We developed a machine learning-based method named LDAenDL to detect potential long noncoding RNA (lncRNA) biomarkers for lung cancer and neuroblastoma using an ensemble of a deep neural network and LightGBM. LDAenDL first computes the Gaussian kernel similarity and functional similarity of lncRNAs and the Gaussian kernel similarity and semantic similarity of diseases to obtain their similar networks. Next, LDAenDL combines a graph convolutional network, graph attention network, and convolutional neural network to learn the biological features of the lncRNAs and diseases based on their similarity networks. Third, these features are concatenated and fed to an ensemble model composed of a deep neural network and LightGBM to find new lncRNA-disease associations (LDAs). Finally, the proposed LDAenDL method is applied to identify possible lncRNA biomarkers associated with lung cancer and neuroblastoma. Results: The experimental results show that LDAenDL computed the best AUCs of 0.8701, 107 0.8953, and 0.9110 under cross-validation on lncRNAs, diseases, and lncRNA-disease pairs on Dataset 1, respectively, and 0.9490, 0.9157, and 0.9708 on Dataset 2, respectively. Furthermore, AUPRs of 0.8903, 0.9061, and 0.9166 under three cross-validations were obtained on Dataset 1, and 0.9582, 0.9122, and 0.9743 on Dataset 2. The results demonstrate that LDAenDL significantly outperformed the other four classical LDA prediction methods (i.e., SDLDA, LDNFSGB, IPCAF, and LDASR). Case studies demonstrate that CCDC26 and IFNG-AS1 may be new biomarkers of lung cancer, SNHG3 may associate with PDL1 for lung cancer, and HOTAIR and BDNF-AS may be potential biomarkers of neuroblastoma. Conclusion: We hope that the proposed LDAenDL method can help the development of targeted therapies for these two diseases.
Collapse
Affiliation(s)
- Zhenguo Su
- Clinical Lab, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Huihui Lu
- Department of Thoracic Cardiovascular Surgery, Hunan Province Directly Affiliated TCM Hospital, Zhuzhou, China
| | - Yan Wu
- Geneis (Beijing) Co., Ltd., Beijing, China
| | - Zejun Li
- School of Computer Science, Hunan Institute of Technology, Hengyang, China
| | - Lian Duan
- Faculty of Pediatrics, The Chinese PLA General Hospital, Beijing, China
- Department of Pediatric Surgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| |
Collapse
|