1
|
Godase SS, Kulkarni NS, Dhole SN. A Comprehensive Review on Novel Lipid-Based Nano Drug Delivery. Adv Pharm Bull 2024; 14:34-47. [PMID: 38585464 PMCID: PMC10997939 DOI: 10.34172/apb.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 02/21/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Novel drug delivery system opens the doors towards nano/micro formulation strategies to overcome the challenges associated with the poorly soluble and permeable drugs. Lipid based nanoparticles are widely accepted that includes liposomes, niosomes and micelles which are FDA approved. Such lipid based drug delivery allows delivery for natural phytoconstituents, biopharmaceutical classification system (BCS) class II and class IV drugs are effectively delivered to improve its solubility, permeability and bioavailability. The article provides the recent advances and application of lipid based dosage form for improvement of therapeutic efficacy.
Collapse
Affiliation(s)
| | - Nilesh Shrikant Kulkarni
- Department of Pharmaceutics, PES Modern college of Pharmacy (for ladies) Moshi, Pune. Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India
| | | |
Collapse
|
2
|
Endres S, Karaev E, Hanio S, Schlauersbach J, Kraft C, Rasmussen T, Luxenhofer R, Böttcher B, Meinel L, Pöppler AC. Concentration and composition dependent aggregation of Pluronic- and Poly-(2-oxazolin)-Efavirenz formulations in biorelevant media. J Colloid Interface Sci 2022; 606:1179-1192. [PMID: 34487937 DOI: 10.1016/j.jcis.2021.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/26/2021] [Accepted: 08/07/2021] [Indexed: 01/03/2023]
Abstract
Many drugs and drug candidates are poorly water-soluble. Intestinal fluids play an important role in their solubilization. However, the interactions of intestinal fluids with polymer excipients, drugs and their formulations are not fully understood. Here, diffusion ordered spectroscopy (DOSY) and nuclear Overhauser effect spectroscopy (NOESY), complemented by cryo-TEM were employed to address this. Efavirenz (EFV) as model drug, the triblock copolymers Pluronic® F-127 (PF127) and poly(2-oxazoline) based pMeOx-b-pPrOzi-b-pMeOx (pOx/pOzi) and their respective formulations were studied in simulated fed-state intestinal fluid (FeSSIF). For the individual polymers, the bile interfering nature of PF127 was confirmed and pure pOx/pOzi was newly classified as non-interfering. A different and more complex behaviour was however observed if EFV was involved. PF127/EFV formulations in FeSSIF showed concentration dependent aggregation with separate colloids at low formulation concentrations, a merging of individual particles at the solubility limit of EFV in FeSSIF and joint aggregates above this concentration. In the case of pOx/pOzi/EFV formulations, coincident diffusion coefficients for pOx/pOzi, lipids and EFV indicate joint aggregates across the studied concentration range. This demonstrates that separate evaluation of polymers and drugs in biorelevant media is not sufficient and their mixtures need to be studied to learn about concentration and composition dependent behaviour.
Collapse
Affiliation(s)
- Sebastian Endres
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Emil Karaev
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Simon Hanio
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Jonas Schlauersbach
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Christian Kraft
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg 97080, Germany
| | - Tim Rasmussen
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg 97080, Germany; Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Robert Luxenhofer
- Soft Matter Chemistry, Department of Chemistry, Helsinki University, Helsinki 00014, Finland
| | - Bettina Böttcher
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg 97080, Germany; Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany; Helmholtz Institute for RNA-based Infection Biology (HIRI), Wuerzburg DE-97070, Germany
| | - Ann-Christin Pöppler
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany.
| |
Collapse
|
3
|
Kannan R, Przekwas A. A multiscale absorption and transit model for oral delivery of hydroxychloroquine: Pharmacokinetic modeling and intestinal concentration prediction to assess toxicity and drug-induced damage in healthy subjects. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3403. [PMID: 33029911 DOI: 10.1002/cnm.3403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Hydroxychloroquine (HCQ) is commonly used in the treatment of malaria and rheumatic diseases. Recently it has also been identified as possible therapeutic option in combating COVID-19. However, the use of HCQ is known to induce cytotoxicity. In 2020, we developed a multiscale absorption and transit (MAT) toolkit to simulate the dissolution, transport, absorption, distribution, metabolism, and elimination of orally administered drugs in the human GIT at multiple levels. MAT was constructed by integrating the spatially accurate first-principles driven high-fidelity drug transport, dissolution, and absorption model in the human stomach and GIT using the recently published Quasi-3D framework. The computational results showed that MAT was able to match the experimental concentration results better than the traditional compartmental models. In this study, we adapted MAT, to predict the pharmacokinetics of orally delivered HCQ in healthy subjects. The computational results matched the experimental concentration results. The simulated stomach and intestinal fluid and enterocyte concentrations were compared with the in vitro CC50 values. While the peak enterocyte concentrations were several orders lower than the in vitro CC50 values, the peak stomach and the intestinal fluid concentrations were only one order smaller than the in vitro CC50 values. In particular, the peak stomach and the duodenum fluid concentrations were just 3× smaller than the in vitro CC50 values. This implies that the lumen walls are much more susceptible to cytotoxicity-based damage than the enterocyte layers. We envision that MAT can be used to optimize the dosing regimen of HCQ by maximizing its bioavailability, while simultaneously minimizing the cytotoxic damage.
Collapse
|
4
|
Alshehri AS, Gani R, You F. Deep learning and knowledge-based methods for computer-aided molecular design—toward a unified approach: State-of-the-art and future directions. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2020.107005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Kannan R, Przekwas A. A multiscale absorption and transit model for oral drug delivery: Formulation and applications during fasting conditions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3317. [PMID: 32011090 DOI: 10.1002/cnm.3317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Most Food and Drug Administration (FDA)-approved drugs are administered orally, despite the complex process of oral drug absorption that is difficult to analyze experimentally. Oral bioavailability is dependent on the drug compound as well as the physiological and anatomical states of the user. Thus, computational models have emerged to mechanistically capture and predict the oral absorption process. The current models are generally 0D compartmental models and are limited by (a) simplified physiological characteristics of the gastrointestinal tract (GIT), (b) semiempirical/analytical dissolution profiles of the tested drugs, (c) incorrect absorption for some drug BCS classes (class IIa, for example), (d) GITs size variability among population, (e) incorrectly predicting the absorption of drugs that are GIT target specific, and (f) erroneous mixing in the domain. In this study, we have developed a multiscale absorption and transit (MAT) toolkit to simulate the dissolution, transport, absorption, distribution, metabolism, and elimination of orally administered drugs in the human GIT at multiple levels. MAT was constructed by integrating the spatially accurate first-principles driven high-fidelity drug transport, dissolution, and absorption model in the human stomach and GIT using our recently published quasi-3D (Q3D) framework. The process integrated the multilayer intestine physiologically based pharmacokinetics models with the whole-body compartmental models to predict the systemic pharmacokinetics of oral drugs. The computational results showed that this multiscale tool was able to match the experimental concentration results (individual and population) better than the traditional compartmental models. Ultimately, MAT will be developed into a commercial product to meet urgent demands from pharmaceutical and biomedical industries.
Collapse
Affiliation(s)
| | - Andrzej Przekwas
- Research Department, CFD Research Corporation, Huntsville, Alabama
| |
Collapse
|
6
|
Jourdan N, Neveux T, Potier O, Kanniche M, Wicks J, Nopens I, Rehman U, Le Moullec Y. Compartmental Modelling in chemical engineering: A critical review. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Achenie LE, Pavurala N. On the modeling of oral drug delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-63964-6.00010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
8
|
|
9
|
New comprehensive mathematical model for HPMC-MCC based matrices to design oral controlled release systems. Eur J Pharm Biopharm 2017; 121:61-72. [DOI: 10.1016/j.ejpb.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/14/2017] [Accepted: 09/11/2017] [Indexed: 02/01/2023]
|
10
|
B. Shekhawat P, B. Pokharkar V. Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm Sin B 2017; 7:260-280. [PMID: 28540164 PMCID: PMC5430883 DOI: 10.1016/j.apsb.2016.09.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/06/2016] [Accepted: 09/21/2016] [Indexed: 11/10/2022] Open
Abstract
Oral drug absorption is a process influenced by the physicochemical and biopharmaceutical properties of the drug and its inter-relationship with the gastrointestinal tract. Drug solubility, dissolution and permeability across intestinal barrier are the key parameters controlling absorption. This review provides an overview of the factors that affect drug absorption and the classification of a drug on the basis of solubility and permeability. The biopharmaceutical classification system (BCS) was introduced in early 90׳s and is a regulatory tool used to predict bioavailability problems associated with a new entity, thereby helping in the development of a drug product. Strategies to combat solubility and permeability issues are also discussed.
Collapse
Key Words
- ABC, ATP-binding cassette
- AP, absorption potential
- API, active pharmaceutical ingredient
- ATP, adenosine triphosphate
- AZT, azidothymidine
- BA/BE, bioavailability/bioequivalence
- BCRP, breast cancer resistance protein
- BCS
- BCS, biopharmaceutical classification system
- BDDS, biopharmaceutical drug disposition system
- BSP, bromosulfophthalein
- CD, cyclodextrin
- CDER, Centre for Drug Evaluation and Research
- CNT, Na+-dependent concentrative transporter
- CNT, concentrative nucleoside transporter
- CYP, cytochrome P450
- D:S, dose:solubility
- E217G, estradiol 17β-glucuronide
- EMEA, European Medicines Agency
- ENT, equilibrative nucleoside transporter
- FATP, fatty acid transporter protein
- FDA, U.S. Food and Drug Administration
- FIP, International Pharmaceutical Federation
- FaSSIF, fasted state simulated intestinal fluid
- Factors affecting absorption
- FeSSIF, fed state simulated intestinal fluid
- Formulation strategies
- GIS, gastrointestinal simulator
- GIT, gastrointestinal tract
- GITA, gastrointestinal transit and absorption
- GLUT, sodium-independent facilitated diffusion transporter
- GRAS, generally recognized as safe
- HIV, human immunodeficiency disease
- HPC-SL, LBDDS, lipid based drug delivery system
- HUGO, Human Genome Organization
- ICH, International Council of Harmonization
- IDR, intrinsic dissolution rate
- IR, immediate release
- ISBT, sodium dependent bile salt transporter
- MCT, monocarboxylate transporter
- MPP, 1-methyl-4-phenylpyridinium
- MRP, multidrug resistance associated protein
- NLC, nanostructured lipid carrier
- NME, new molecular entity
- NTCP, sodium-dependent taurocholate co-transporting polypeptide
- OAT, organic anion transporter
- OATP, organic anion transporting polypeptide
- OCT, organic cationic transporter
- OCTN, organic cationic/carnitine transporter
- OMM, ordered mesoporous material
- P-gp, P-glycoprotein
- PAH, p-aminohippurate
- PAMPA, parallel artificial membrane permeability assay
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PEPT, peptide transporter
- PGA, polyglycolic acid
- PLA, poly(lactic acid)
- PLGA, poly-d,l-lactide-co-glycoside
- PMAT, plasma membrane monoamine transport
- PSA, polar surface area
- PVDF, polyvinylidene difluoride
- Papp, apparent permeability
- Peff, effective permeability
- Permeability
- Psi, porous silicon
- RFC, reduced folate transporter
- SDS, sodium dodecyl sulphate
- SGLT, sodium dependent secondary active transporter
- SIF, simulated intestinal fluid
- SLC, solute carrier
- SLCO, solute carrier organic anion
- SLN, solid lipid nanoparticles
- SMVT, sodium dependent multivitamin transporter
- SPIP, single pass intestinal perfusion
- SUPAC, scale-up and post approval changes
- SVCT, sodium-dependent vitamin C transporter
- Solubility
- TEOS, tetraethylortho silicate
- UWL, unstirred water layer
- VDAD, volume to dissolve applied dose
- WHO, World Health Organization
- pMMA, polymethyl methacrylate
- vit. E TPGS, vitamin E tocopherol polyethylene glycol succinate
Collapse
|
11
|
Austin ND, Sahinidis NV, Trahan DW. Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2016.10.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Abbiati RA, Lamberti G, Grassi M, Trotta F, Manca D. Definition and validation of a patient-individualized physiologically-based pharmacokinetic model. Comput Chem Eng 2016. [DOI: 10.1016/j.compchemeng.2015.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Rojas-Aguirre Y, Medina-Franco JL. Analysis of structure-Caco-2 permeability relationships using a property landscape approach. Mol Divers 2014; 18:599-610. [DOI: 10.1007/s11030-014-9514-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/28/2014] [Indexed: 12/14/2022]
|