1
|
Sachio S, Likozar B, Kontoravdi C, Papathanasiou MM. Computer-aided design space identification for screening of protein A affinity chromatography resins. J Chromatogr A 2024; 1722:464890. [PMID: 38598892 DOI: 10.1016/j.chroma.2024.464890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
The rapidly growing market of monoclonal antibodies (mAbs) within the biopharmaceutical industry has incentivised numerous works on the design of more efficient production processes. Protein A affinity chromatography is regarded as one of the best processes for the capture of mAbs. Although the screening of Protein A resins has been previously examined, process flexibility has not been considered to date. Examining performance alongside flexibility is crucial for the design of processes that can handle disturbances arising from the feed stream. In this work, we present a model-based approach for the identification of design spaces, enhanced by machine learning. We demonstrate its capabilities on the design of a Protein A chromatography unit, screening five industrially relevant resins. The computational results favourably compare to experimental data and a resin performance comparison is presented. An improvement on the computational time by a factor of 300,000 is achieved using the machine learning aided methodology. This allowed for the identification of 5,120 different design spaces in only 19 h.
Collapse
Affiliation(s)
- Steven Sachio
- Sargent Centre for Process Systems Engineering, Imperial College London, SW7 2AZ, UK; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana 1001, Slovenia
| | - Cleo Kontoravdi
- Sargent Centre for Process Systems Engineering, Imperial College London, SW7 2AZ, UK; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK
| | - Maria M Papathanasiou
- Sargent Centre for Process Systems Engineering, Imperial College London, SW7 2AZ, UK; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Triantafyllou N, Sarkis M, Krassakopoulou A, Shah N, Papathanasiou MM, Kontoravdi C. Uncertainty quantification for gene delivery methods: A roadmap for pDNA manufacturing from phase I clinical trials to commercialization. Biotechnol J 2024; 19:e2300103. [PMID: 37797343 DOI: 10.1002/biot.202300103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/01/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
The fast-growing interest in cell and gene therapy (C>) products has led to a growing demand for the production of plasmid DNA (pDNA) and viral vectors for clinical and commercial use. Manufacturers, regulators, and suppliers need to develop strategies for establishing robust and agile supply chains in the otherwise empirical field of C>. A model-based methodology that has great potential to support the wider adoption of C> is presented, by ensuring efficient timelines, scalability, and cost-effectiveness in the production of key raw materials. Specifically, key process and economic parameters are identified for (1) the production of pDNA for the forward-looking scenario of non-viral-based Chimeric Antigen Receptor (CAR) T-cell therapies from clinical (200 doses) to commercial (40,000 doses) scale and (2) the commercial (40,000 doses) production of pDNA and lentiviral vectors for the current state-of-the-art viral vector-based CAR T-cell therapies. By applying a systematic global sensitivity analysis, we quantify uncertainty in the manufacturing process and apportion it to key process and economic parameters, highlighting cost drivers and limitations that steer decision-making. The results underline the cost-efficiency and operational flexibility of non-viral-based therapies in the overall C> supply chain, as well as the importance of economies-of-scale in the production of pDNA.
Collapse
Affiliation(s)
- Niki Triantafyllou
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Miriam Sarkis
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | | | - Nilay Shah
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Maria M Papathanasiou
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Cleo Kontoravdi
- The Sargent Centre for Process Systems Engineering, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
3
|
The Role of Process Systems Engineering in Applying Quality by Design (QbD) in Mesenchymal Stem Cell Production. Comput Chem Eng 2023. [DOI: 10.1016/j.compchemeng.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Hirono K, A. Udugama I, Hayashi Y, Kino-oka M, Sugiyama H. A Dynamic and Probabilistic Design Space Determination Method for Mesenchymal Stem Cell Cultivation Processes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keita Hirono
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Isuru A. Udugama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Hayashi
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Destro F, Barolo M. A review on the modernization of pharmaceutical development and manufacturing - Trends, perspectives, and the role of mathematical modeling. Int J Pharm 2022; 620:121715. [PMID: 35367580 DOI: 10.1016/j.ijpharm.2022.121715] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 01/20/2023]
Abstract
Recently, the pharmaceutical industry has been facing several challenges associated to the use of outdated development and manufacturing technologies. The return on investment on research and development has been shrinking, and, at the same time, an alarming number of shortages and recalls for quality concerns has been registered. The pharmaceutical industry has been responding to these issues through a technological modernization of development and manufacturing, under the support of initiatives and activities such as quality-by-design (QbD), process analytical technology, and pharmaceutical emerging technology. In this review, we analyze this modernization trend, with emphasis on the role that mathematical modeling plays within it. We begin by outlining the main socio-economic trends of the pharmaceutical industry, and by highlighting the life-cycle stages of a pharmaceutical product in which technological modernization can help both achieve consistently high product quality and increase return on investment. Then, we review the historical evolution of the pharmaceutical regulatory framework, and we discuss the current state of implementation and future trends of QbD. The pharmaceutical emerging technology is reviewed afterwards, and a discussion on the evolution of QbD into the more effective quality-by-control (QbC) paradigm is presented. Further, we illustrate how mathematical modeling can support the implementation of QbD and QbC across all stages of the pharmaceutical life-cycle. In this respect, we review academic and industrial applications demonstrating the impact of mathematical modeling on three key activities within pharmaceutical development and manufacturing, namely design space description, process monitoring, and active process control. Finally, we discuss some future research opportunities on the use of mathematical modeling in industrial pharmaceutical environments.
Collapse
Affiliation(s)
- Francesco Destro
- CAPE-Lab - Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD, Italy
| | - Massimiliano Barolo
- CAPE-Lab - Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD, Italy.
| |
Collapse
|
6
|
Hayashi Y, Kino-oka M, Sugiyama H. Hybrid-model-based design of fill-freeze-thaw processes for human induced pluripotent stem cells considering productivity and quality. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2021.107566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Zhu Q, Zhao Z, Liu F. Developing new products with kernel partial least squares model inversion. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Antonakoudis A, Strain B, Barbosa R, Jimenez del Val I, Kontoravdi C. Synergising stoichiometric modelling with artificial neural networks to predict antibody glycosylation patterns in Chinese hamster ovary cells. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Kotidis P, Pappas I, Avraamidou S, Pistikopoulos EN, Kontoravdi C, Papathanasiou MM. DigiGlyc: A hybrid tool for reactive scheduling in cell culture systems. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Park SY, Park CH, Choi DH, Hong JK, Lee DY. Bioprocess digital twins of mammalian cell culture for advanced biomanufacturing. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Rathore AS, Mishra S, Nikita S, Priyanka P. Bioprocess Control: Current Progress and Future Perspectives. Life (Basel) 2021; 11:life11060557. [PMID: 34199245 PMCID: PMC8231968 DOI: 10.3390/life11060557] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Typical bioprocess comprises of different unit operations wherein a near optimal environment is required for cells to grow, divide, and synthesize the desired product. However, bioprocess control caters to unique challenges that arise due to non-linearity, variability, and complexity of biotech processes. This article presents a review of modern control strategies employed in bioprocessing. Conventional control strategies (open loop, closed loop) along with modern control schemes such as fuzzy logic, model predictive control, adaptive control and neural network-based control are illustrated, and their effectiveness is highlighted. Furthermore, it is elucidated that bioprocess control is more than just automation, and includes aspects such as system architecture, software applications, hardware, and interfaces, all of which are optimized and compiled as per demand. This needs to be accomplished while keeping process requirement, production cost, market value of product, regulatory constraints, and data acquisition requirements in our purview. This article aims to offer an overview of the current best practices in bioprocess control, monitoring, and automation.
Collapse
|
12
|
Ochoa M, García-Muñoz S, Stamatis S, Grossmann I. Novel flexibility index formulations for the selection of the operating range within a design space. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Fung Shek C, Kotidis P, Betenbaugh M. Mechanistic and data-driven modeling of protein glycosylation. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
O'Brien CM, Zhang Q, Daoutidis P, Hu WS. A hybrid mechanistic-empirical model for in silico mammalian cell bioprocess simulation. Metab Eng 2021; 66:31-40. [PMID: 33813033 DOI: 10.1016/j.ymben.2021.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/10/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022]
Abstract
In cell culture processes cell growth and metabolism drive changes in the chemical environment of the culture. These environmental changes elicit reactor control actions, cell growth response, and are sensed by cell signaling pathways that influence metabolism. The interplay of these forces shapes the culture dynamics through different stages of cell cultivation and the outcome greatly affects process productivity, product quality, and robustness. Developing a systems model that describes the interactions of those major players in the cell culture system can lead to better process understanding and enhance process robustness. Here we report the construction of a hybrid mechanistic-empirical bioprocess model which integrates a mechanistic metabolic model with subcomponent models for cell growth, signaling regulation, and the bioreactor environment for in silico exploration of process scenarios. Model parameters were optimized by fitting to a dataset of cell culture manufacturing process which exhibits variability in metabolism and productivity. The model fitting process was broken into multiple steps to mitigate the substantial numerical challenges related to the first-principles model components. The optimized model captured the dynamics of metabolism and the variability of the process runs with different kinetic profiles and productivity. The variability of the process was attributed in part to the metabolic state of cell inoculum. The model was then used to identify potential mitigation strategies to reduce process variability by altering the initial process conditions as well as to explore the effect of changing CO2 removal capacity in different bioreactor scales on process performance. By incorporating a mechanistic model of cell metabolism and appropriately fitting it to a large dataset, the hybrid model can describe the different metabolic phases in culture and the variability in manufacturing runs. This approach of employing a hybrid model has the potential to greatly facilitate process development and reactor scaling.
Collapse
Affiliation(s)
- Conor M O'Brien
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455-0132, USA
| | - Qi Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455-0132, USA
| | - Prodromos Daoutidis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455-0132, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455-0132, USA.
| |
Collapse
|
15
|
Emerging Challenges and Opportunities in Pharmaceutical Manufacturing and Distribution. Processes (Basel) 2021. [DOI: 10.3390/pr9030457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The rise of personalised and highly complex drug product profiles necessitates significant advancements in pharmaceutical manufacturing and distribution. Efforts to develop more agile, responsive, and reproducible manufacturing processes are being combined with the application of digital tools for seamless communication between process units, plants, and distribution nodes. In this paper, we discuss how novel therapeutics of high-specificity and sensitive nature are reshaping well-established paradigms in the pharmaceutical industry. We present an overview of recent research directions in pharmaceutical manufacturing and supply chain design and operations. We discuss topical challenges and opportunities related to small molecules and biologics, dividing the latter into patient- and non-specific. Lastly, we present the role of process systems engineering in generating decision-making tools to assist manufacturing and distribution strategies in the pharmaceutical sector and ultimately embrace the benefits of digitalised operations.
Collapse
|
16
|
Usage of Digital Twins Along a Typical Process Development Cycle. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020. [PMID: 33346864 DOI: 10.1007/10_2020_149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Digital methods for process design, monitoring, and control can convert classical trial-and-error bioprocess development to a quantitative engineering approach. By interconnecting hardware, software, data, and humans currently untapped process optimization potential can be accessed. The key component within such a framework is a digital twin interacting with its physical process counterpart. In this chapter, we show how digital twin guided process development can be applied on an exemplary microbial cultivation process. The usage of digital twins is described along a typical process development cycle, ranging from early strain characterization to real-time control applications. Along an illustrative case study on microbial upstream bioprocessing, we emphasize that digital twins can integrate entire process development cycles if the digital twin itself and the underlying models are continuously adapted to newly available data. Therefore, the digital twin can be regarded as a powerful knowledge management tool and a decision support system for efficient process development. Its full potential can be deployed in a real-time environment where targeted control actions can further improve process performance.
Collapse
|
17
|
Digital Twins in Pharmaceutical and Biopharmaceutical Manufacturing: A Literature Review. Processes (Basel) 2020. [DOI: 10.3390/pr8091088] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development and application of emerging technologies of Industry 4.0 enable the realization of digital twins (DT), which facilitates the transformation of the manufacturing sector to a more agile and intelligent one. DTs are virtual constructs of physical systems that mirror the behavior and dynamics of such physical systems. A fully developed DT consists of physical components, virtual components, and information communications between the two. Integrated DTs are being applied in various processes and product industries. Although the pharmaceutical industry has evolved recently to adopt Quality-by-Design (QbD) initiatives and is undergoing a paradigm shift of digitalization to embrace Industry 4.0, there has not been a full DT application in pharmaceutical manufacturing. Therefore, there is a critical need to examine the progress of the pharmaceutical industry towards implementing DT solutions. The aim of this narrative literature review is to give an overview of the current status of DT development and its application in pharmaceutical and biopharmaceutical manufacturing. State-of-the-art Process Analytical Technology (PAT) developments, process modeling approaches, and data integration studies are reviewed. Challenges and opportunities for future research in this field are also discussed.
Collapse
|
18
|
Williams B, Löbel W, Finklea F, Halloin C, Ritzenhoff K, Manstein F, Mohammadi S, Hashemi M, Zweigerdt R, Lipke E, Cremaschi S. Prediction of Human Induced Pluripotent Stem Cell Cardiac Differentiation Outcome by Multifactorial Process Modeling. Front Bioeng Biotechnol 2020; 8:851. [PMID: 32793579 PMCID: PMC7390976 DOI: 10.3389/fbioe.2020.00851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Human cardiomyocytes (CMs) have potential for use in therapeutic cell therapy and high-throughput drug screening. Because of the inability to expand adult CMs, their large-scale production from human pluripotent stem cells (hPSC) has been suggested. Significant improvements have been made in understanding directed differentiation processes of CMs from hPSCs and their suspension culture-based production at chemically defined conditions. However, optimization experiments are costly, time-consuming, and highly variable, leading to challenges in developing reliable and consistent protocols for the generation of large CM numbers at high purity. This study examined the ability of data-driven modeling with machine learning for identifying key experimental conditions and predicting final CM content using data collected during hPSC-cardiac differentiation in advanced stirred tank bioreactors (STBRs). Through feature selection, we identified process conditions, features, and patterns that are the most influential on and predictive of the CM content at the process endpoint, on differentiation day 10 (dd10). Process-related features were extracted from experimental data collected from 58 differentiation experiments by feature engineering. These features included data continuously collected online by the bioreactor system, such as dissolved oxygen concentration and pH patterns, as well as offline determined data, including the cell density, cell aggregate size, and nutrient concentrations. The selected features were used as inputs to construct models to classify the resulting CM content as being "sufficient" or "insufficient" regarding pre-defined thresholds. The models built using random forests and Gaussian process modeling predicted insufficient CM content for a differentiation process with 90% accuracy and precision on dd7 of the protocol and with 85% accuracy and 82% precision at a substantially earlier stage: dd5. These models provide insight into potential key factors affecting hPSC cardiac differentiation to aid in selecting future experimental conditions and can predict the final CM content at earlier process timepoints, providing cost and time savings. This study suggests that data-driven models and machine learning techniques can be employed using existing data for understanding and improving production of a specific cell type, which is potentially applicable to other lineages and critical for realization of their therapeutic applications.
Collapse
Affiliation(s)
- Bianca Williams
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Wiebke Löbel
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Ferdous Finklea
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Katharina Ritzenhoff
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Felix Manstein
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Samira Mohammadi
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | | | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Elizabeth Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| | - Selen Cremaschi
- Department of Chemical Engineering, Auburn University, Auburn, AL, United States
| |
Collapse
|
19
|
|
20
|
Abstract
Global Sensitivity Analysis (GSA) is a technique that numerically evaluates the significance of model parameters with the aim of reducing the number of parameters that need to be estimated accurately from experimental data. In the work presented herein, we explore different methods and criteria in the sensitivity analysis of a recently developed mathematical model to describe Chinese hamster ovary (CHO) cell metabolism in order to establish a strategic, transferable framework for parameterizing mechanistic cell culture models. For that reason, several types of GSA employing different sampling methods (Sobol’, Pseudo-random and Scrambled-Sobol’), parameter deviations (10%, 30% and 50%) and sensitivity index significance thresholds (0.05, 0.1 and 0.2) were examined. The results were evaluated according to the goodness of fit between the simulation results and experimental data from fed-batch CHO cell cultures. Then, the predictive capability of the model was tested against four different feeding experiments. Parameter value deviation levels proved not to have a significant effect on the results of the sensitivity analysis, while the Sobol’ and Scrambled-Sobol’ sampling methods and a 0.1 significance threshold were found to be the optimum settings. The resulting framework was finally used to calibrate the model for another CHO cell line, resulting in a good overall fit. The results of this work set the basis for the use of a single mechanistic metabolic model that can be easily adapted through the proposed sensitivity analysis method to the behavior of different cell lines and therefore minimize the experimental cost of model development.
Collapse
|