1
|
Chen C, Zhao LL, Lang Q, Xu Y. A Novel Detection and Classification Framework for Diagnosing of Cerebral Microbleeds Using Transformer and Language. Bioengineering (Basel) 2024; 11:993. [PMID: 39451369 PMCID: PMC11504022 DOI: 10.3390/bioengineering11100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The detection of Cerebral Microbleeds (CMBs) is crucial for diagnosing cerebral small vessel disease. However, due to the small size and subtle appearance of CMBs in susceptibility-weighted imaging (SWI), manual detection is both time-consuming and labor-intensive. Meanwhile, the presence of similar-looking features in SWI images demands significant expertise from clinicians, further complicating this process. Recently, there has been a significant advancement in automated detection of CMBs using a Convolutional Neural Network (CNN) structure, aiming at enhancing diagnostic efficiency for neurologists. However, existing methods still show discrepancies when compared to the actual clinical diagnostic process. To bridge this gap, we introduce a novel multimodal detection and classification framework for CMBs' diagnosis, termed MM-UniCMBs. This framework includes a light-weight detection model and a multi-modal classification network. Specifically, we proposed a new CMBs detection network, CMBs-YOLO, designed to capture the salient features of CMBs in SWI images. Additionally, we design an innovative language-vision classification network, CMBsFormer (CF), which integrates patient textual descriptions-such as gender, age, and medical history-with image data. The MM-UniCMBs framework is designed to closely align with the diagnostic workflow of clinicians, offering greater interpretability and flexibility compared to existing methods. Extensive experimental results show that MM-UniCMBs achieves a sensitivity of 94% in CMBs' classification and can process a patient's data within 5 s.
Collapse
Affiliation(s)
- Cong Chen
- School of Clinical Medicine, College of Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lin-Lin Zhao
- Department of Computer Science and Technology, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Qin Lang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yun Xu
- School of Clinical Medicine, College of Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210008, China
| |
Collapse
|
2
|
Sundaresan V, Arthofer C, Zamboni G, Murchison AG, Dineen RA, Rothwell PM, Auer DP, Wang C, Miller KL, Tendler BC, Alfaro-Almagro F, Sotiropoulos SN, Sprigg N, Griffanti L, Jenkinson M. Automated detection of cerebral microbleeds on MR images using knowledge distillation framework. Front Neuroinform 2023; 17:1204186. [PMID: 37492242 PMCID: PMC10363739 DOI: 10.3389/fninf.2023.1204186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction Cerebral microbleeds (CMBs) are associated with white matter damage, and various neurodegenerative and cerebrovascular diseases. CMBs occur as small, circular hypointense lesions on T2*-weighted gradient recalled echo (GRE) and susceptibility-weighted imaging (SWI) images, and hyperintense on quantitative susceptibility mapping (QSM) images due to their paramagnetic nature. Accurate automated detection of CMBs would help to determine quantitative imaging biomarkers (e.g., CMB count) on large datasets. In this work, we propose a fully automated, deep learning-based, 3-step algorithm, using structural and anatomical properties of CMBs from any single input image modality (e.g., GRE/SWI/QSM) for their accurate detections. Methods In our method, the first step consists of an initial candidate detection step that detects CMBs with high sensitivity. In the second step, candidate discrimination step is performed using a knowledge distillation framework, with a multi-tasking teacher network that guides the student network to classify CMB and non-CMB instances in an offline manner. Finally, a morphological clean-up step further reduces false positives using anatomical constraints. We used four datasets consisting of different modalities specified above, acquired using various protocols and with a variety of pathological and demographic characteristics. Results On cross-validation within datasets, our method achieved a cluster-wise true positive rate (TPR) of over 90% with an average of <2 false positives per subject. The knowledge distillation framework improves the cluster-wise TPR of the student model by 15%. Our method is flexible in terms of the input modality and provides comparable cluster-wise TPR and better cluster-wise precision compared to existing state-of-the-art methods. When evaluating across different datasets, our method showed good generalizability with a cluster-wise TPR >80 % with different modalities. The python implementation of the proposed method is openly available.
Collapse
Affiliation(s)
- Vaanathi Sundaresan
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christoph Arthofer
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Giovanna Zamboni
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Universitá di Modena e Reggio Emilia, Modena, Italy
| | - Andrew G. Murchison
- Department of Neuroradiology, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Robert A. Dineen
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Peter M. Rothwell
- Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Dorothee P. Auer
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chaoyue Wang
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Benjamin C. Tendler
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fidel Alfaro-Almagro
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stamatios N. Sotiropoulos
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Nikola Sprigg
- Stroke Trials Unit, Mental Health and Clinical Neuroscience, University of Nottingham, Nottingham, United Kingdom
| | - Ludovica Griffanti
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Australian Institute for Machine Learning, School of Computer Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Lu S, Xia K, Wang SH. Diagnosis of cerebral microbleed via VGG and extreme learning machine trained by Gaussian map bat algorithm. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2023; 14:5395-5406. [PMID: 37223108 PMCID: PMC7614565 DOI: 10.1007/s12652-020-01789-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/18/2020] [Indexed: 05/25/2023]
Abstract
Cerebral microbleed (CMB) is a serious public health concern. It is associated with dementia, which can be detected with brain magnetic resonance image (MRI). CMBs often appear as tiny round dots on MRIs, and they can be spotted anywhere over brain. Therefore, manual inspection is tedious and lengthy, and the results are often short in reproducible. In this paper, a novel automatic CMB diagnosis method was proposed based on deep learning and optimization algorithms, which used the brain MRI as the input and output the diagnosis results as CMB and non-CMB. Firstly, sliding window processing was employed to generate the dataset from brain MRIs. Then, a pre-trained VGG was employed to obtain the image features from the dataset. Finally, an ELM was trained by Gaussian-map bat algorithm (GBA) for identification. Results showed that the proposed method VGG-ELM-GBA provided better generalization performance than several state-of-the-art approaches.
Collapse
Affiliation(s)
- Siyuan Lu
- School of Informatics, University of Leicester, Leicester LE1 7RH, UK
| | - Kaijian Xia
- The Affiliated Changshu Hospital of Soochow University (Changshu No. 1 People’s Hospital), Changshu 215500, Jiangsu, China
- School of Computer Science and Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Shui-Hua Wang
- School of Informatics, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
4
|
Dadar M, Zhernovaia M, Mahmoud S, Camicioli R, Maranzano J, Duchesne S. Using transfer learning for automated microbleed segmentation. FRONTIERS IN NEUROIMAGING 2022; 1:940849. [PMID: 37555147 PMCID: PMC10406212 DOI: 10.3389/fnimg.2022.940849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Cerebral microbleeds are small perivascular hemorrhages that can occur in both gray and white matter brain regions. Microbleeds are a marker of cerebrovascular pathology and are associated with an increased risk of cognitive decline and dementia. Microbleeds can be identified and manually segmented by expert radiologists and neurologists, usually from susceptibility-contrast MRI. The latter is hard to harmonize across scanners, while manual segmentation is laborious, time-consuming, and subject to interrater and intrarater variability. Automated techniques so far have shown high accuracy at a neighborhood ("patch") level at the expense of a high number of false positive voxel-wise lesions. We aimed to develop an automated, more precise microbleed segmentation tool that can use standardizable MRI contrasts. METHODS We first trained a ResNet50 network on another MRI segmentation task (cerebrospinal fluid vs. background segmentation) using T1-weighted, T2-weighted, and T2* MRIs. We then used transfer learning to train the network for the detection of microbleeds with the same contrasts. As a final step, we employed a combination of morphological operators and rules at the local lesion level to remove false positives. Manual segmentation of microbleeds from 78 participants was used to train and validate the system. We assessed the impact of patch size, freezing weights of the initial layers, mini-batch size, learning rate, and data augmentation on the performance of the Microbleed ResNet50 network. RESULTS The proposed method achieved high performance, with a patch-level sensitivity, specificity, and accuracy of 99.57, 99.16, and 99.93%, respectively. At a per lesion level, sensitivity, precision, and Dice similarity index values were 89.1, 20.1, and 0.28% for cortical GM; 100, 100, and 1.0% for deep GM; and 91.1, 44.3, and 0.58% for WM, respectively. DISCUSSION The proposed microbleed segmentation method is more suitable for the automated detection of microbleeds with high sensitivity.
Collapse
Affiliation(s)
- Mahsa Dadar
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Maryna Zhernovaia
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Sawsan Mahmoud
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Richard Camicioli
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Josefina Maranzano
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Simon Duchesne
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
5
|
Matsoukas S, Scaggiante J, Schuldt BR, Smith CJ, Chennareddy S, Kalagara R, Majidi S, Bederson JB, Fifi JT, Mocco J, Kellner CP. Accuracy of artificial intelligence for the detection of intracranial hemorrhage and chronic cerebral microbleeds: a systematic review and pooled analysis. LA RADIOLOGIA MEDICA 2022; 127:1106-1123. [PMID: 35962888 DOI: 10.1007/s11547-022-01530-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Artificial intelligence (AI)-driven software has been developed and become commercially available within the past few years for the detection of intracranial hemorrhage (ICH) and chronic cerebral microbleeds (CMBs). However, there is currently no systematic review that summarizes all of these tools or provides pooled estimates of their performance. METHODS In this PROSPERO-registered, PRISMA compliant systematic review, we sought to compile and review all MEDLINE and EMBASE published studies that have developed and/or tested AI algorithms for ICH detection on non-contrast CT scans (NCCTs) or MRI scans and CMBs detection on MRI scans. RESULTS In total, 40 studies described AI algorithms for ICH detection in NCCTs/MRIs and 19 for CMBs detection in MRIs. The overall sensitivity, specificity, and accuracy were 92.06%, 93.54%, and 93.46%, respectively, for ICH detection and 91.6%, 93.9%, and 92.7% for CMBs detection. Some of the challenges encountered in the development of these algorithms include the laborious work of creating large, labeled and balanced datasets, the volumetric nature of the imaging examinations, the fine tuning of the algorithms, and the reduction in false positives. CONCLUSIONS Numerous AI-driven software tools have been developed over the last decade. On average, they are characterized by high performance and expert-level accuracy for the diagnosis of ICH and CMBs. As a result, implementing these tools in clinical practice may improve workflow and act as a failsafe for the detection of such lesions. REGISTRATION-URL: https://www.crd.york.ac.uk/prospero/ Unique Identifier: CRD42021246848.
Collapse
Affiliation(s)
- Stavros Matsoukas
- Department of Neurosurgery, Mount Sinai Health System, Annenberg Building, Room 20-86, 1468 Madison Ave, New York, NY, 10029, USA.
| | - Jacopo Scaggiante
- Department of Neurosurgery, Mount Sinai Health System, Annenberg Building, Room 20-86, 1468 Madison Ave, New York, NY, 10029, USA
| | - Braxton R Schuldt
- Department of Neurosurgery, Mount Sinai Health System, Annenberg Building, Room 20-86, 1468 Madison Ave, New York, NY, 10029, USA
| | - Colton J Smith
- Department of Neurosurgery, Mount Sinai Health System, Annenberg Building, Room 20-86, 1468 Madison Ave, New York, NY, 10029, USA
| | - Susmita Chennareddy
- Department of Neurosurgery, Mount Sinai Health System, Annenberg Building, Room 20-86, 1468 Madison Ave, New York, NY, 10029, USA
| | - Roshini Kalagara
- Department of Neurosurgery, Mount Sinai Health System, Annenberg Building, Room 20-86, 1468 Madison Ave, New York, NY, 10029, USA
| | - Shahram Majidi
- Department of Neurosurgery, Mount Sinai Health System, Annenberg Building, Room 20-86, 1468 Madison Ave, New York, NY, 10029, USA
| | - Joshua B Bederson
- Department of Neurosurgery, Mount Sinai Health System, Annenberg Building, Room 20-86, 1468 Madison Ave, New York, NY, 10029, USA
| | - Johanna T Fifi
- Department of Neurosurgery, Mount Sinai Health System, Annenberg Building, Room 20-86, 1468 Madison Ave, New York, NY, 10029, USA
| | - J Mocco
- Department of Neurosurgery, Mount Sinai Health System, Annenberg Building, Room 20-86, 1468 Madison Ave, New York, NY, 10029, USA
| | - Christopher P Kellner
- Department of Neurosurgery, Mount Sinai Health System, Annenberg Building, Room 20-86, 1468 Madison Ave, New York, NY, 10029, USA
| |
Collapse
|
6
|
Jiang J, Wang D, Song Y, Sachdev PS, Wen W. Computer-Aided Extraction of Select MRI Markers of Cerebral Small Vessel Disease: A Systematic Review. Neuroimage 2022; 261:119528. [PMID: 35914668 DOI: 10.1016/j.neuroimage.2022.119528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a major vascular contributor to cognitive impairment in ageing, including dementias. Imaging remains the most promising method for in vivo studies of CSVD. To replace the subjective and laborious visual rating approaches, emerging studies have applied state-of-the-art artificial intelligence to extract imaging biomarkers of CSVD from MRI scans. We aimed to summarise published computer-aided methods for the examination of three imaging biomarkers of CSVD, namely cerebral microbleeds (CMB), dilated perivascular spaces (PVS), and lacunes of presumed vascular origin. Seventy classical image processing, classical machine learning, and deep learning studies were identified. Transfer learning and weak supervision techniques have been applied to accommodate the limitations in the training data. While good performance metrics were achieved in local datasets, there have not been generalisable pipelines validated in different research and/or clinical cohorts. Future studies could consider pooling data from multiple sources to increase data size and diversity, and evaluating performance using both image processing metrics and associations with clinical measures.
Collapse
Affiliation(s)
- Jiyang Jiang
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, NSW 2052, Australia.
| | - Dadong Wang
- Quantitative Imaging Research Team, Data61, CSIRO, Marsfield, NSW 2122, Australia
| | - Yang Song
- School of Computer Science and Engineering, University of New South Wales, NSW 2052, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, NSW 2052, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, NSW 2052, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| |
Collapse
|
7
|
Sundaresan V, Arthofer C, Zamboni G, Dineen RA, Rothwell PM, Sotiropoulos SN, Auer DP, Tozer DJ, Markus HS, Miller KL, Dragonu I, Sprigg N, Alfaro-Almagro F, Jenkinson M, Griffanti L. Automated Detection of Candidate Subjects With Cerebral Microbleeds Using Machine Learning. Front Neuroinform 2022; 15:777828. [PMID: 35126079 PMCID: PMC8811357 DOI: 10.3389/fninf.2021.777828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
Cerebral microbleeds (CMBs) appear as small, circular, well defined hypointense lesions of a few mm in size on T2*-weighted gradient recalled echo (T2*-GRE) images and appear enhanced on susceptibility weighted images (SWI). Due to their small size, contrast variations and other mimics (e.g., blood vessels), CMBs are highly challenging to detect automatically. In large datasets (e.g., the UK Biobank dataset), exhaustively labelling CMBs manually is difficult and time consuming. Hence it would be useful to preselect candidate CMB subjects in order to focus on those for manual labelling, which is essential for training and testing automated CMB detection tools on these datasets. In this work, we aim to detect CMB candidate subjects from a larger dataset, UK Biobank, using a machine learning-based, computationally light pipeline. For our evaluation, we used 3 different datasets, with different intensity characteristics, acquired with different scanners. They include the UK Biobank dataset and two clinical datasets with different pathological conditions. We developed and evaluated our pipelines on different types of images, consisting of SWI or GRE images. We also used the UK Biobank dataset to compare our approach with alternative CMB preselection methods using non-imaging factors and/or imaging data. Finally, we evaluated the pipeline's generalisability across datasets. Our method provided subject-level detection accuracy > 80% on all the datasets (within-dataset results), and showed good generalisability across datasets, providing a consistent accuracy of over 80%, even when evaluated across different modalities.
Collapse
Affiliation(s)
- Vaanathi Sundaresan
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
- Oxford-Nottingham Centre for Doctoral Training in Biomedical Imaging, University of Oxford, Oxford, United Kingdom
| | - Christoph Arthofer
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Giovanna Zamboni
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Robert A. Dineen
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Peter M. Rothwell
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stamatios N. Sotiropoulos
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Dorothee P. Auer
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Daniel J. Tozer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Hugh S. Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Karla L. Miller
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Iulius Dragonu
- Siemens Healthcare Ltd., Research and Collaborations GB & I, Frimley, United Kingdom
| | - Nikola Sprigg
- Stroke Trials Unit, Mental Health and Clinical Neuroscience, University of Nottingham, Nottingham, United Kingdom
| | - Fidel Alfaro-Almagro
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Mark Jenkinson
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Australian Institute for Machine Learning (AIML), School of Computer Science, The University of Adelaide, Adelaide, SA, Australia
| | - Ludovica Griffanti
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
- *Correspondence: Ludovica Griffanti
| |
Collapse
|
8
|
Momeni S, Fazlollahi A, Lebrat L, Yates P, Rowe C, Gao Y, Liew AWC, Salvado O. Generative Model of Brain Microbleeds for MRI Detection of Vascular Marker of Neurodegenerative Diseases. Front Neurosci 2022; 15:778767. [PMID: 34975381 PMCID: PMC8716785 DOI: 10.3389/fnins.2021.778767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral microbleeds (CMB) are increasingly present with aging and can reveal vascular pathologies associated with neurodegeneration. Deep learning-based classifiers can detect and quantify CMB from MRI, such as susceptibility imaging, but are challenging to train because of the limited availability of ground truth and many confounding imaging features, such as vessels or infarcts. In this study, we present a novel generative adversarial network (GAN) that has been trained to generate three-dimensional lesions, conditioned by volume and location. This allows one to investigate CMB characteristics and create large training datasets for deep learning-based detectors. We demonstrate the benefit of this approach by achieving state-of-the-art CMB detection of real CMB using a convolutional neural network classifier trained on synthetic CMB. Moreover, we showed that our proposed 3D lesion GAN model can be applied on unseen dataset, with different MRI parameters and diseases, to generate synthetic lesions with high diversity and without needing laboriously marked ground truth.
Collapse
Affiliation(s)
- Saba Momeni
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Data61, Brisbane, QLD, Australia.,School of Engineering and Built Environment, Griffith University, Nathan, QLD, Australia
| | - Amir Fazlollahi
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian E-Health Research Centre, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Leo Lebrat
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Australian E-Health Research Centre, Brisbane, QLD, Australia
| | - Paul Yates
- Department of Geriatric Medicine, Austin Health, Heidelberg, VIC, Australia
| | - Christopher Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia.,The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yongsheng Gao
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, Australia
| | - Alan Wee-Chung Liew
- School of Information and Communication Technology, Griffith University, Nathan, QLD, Australia
| | - Olivier Salvado
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Data61, Brisbane, QLD, Australia.,Department of Nuclear Medicine, Centre for PET, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
9
|
Lu S, Liu S, Wang SH, Zhang YD. Cerebral Microbleed Detection via Convolutional Neural Network and Extreme Learning Machine. Front Comput Neurosci 2021; 15:738885. [PMID: 34566615 PMCID: PMC8461250 DOI: 10.3389/fncom.2021.738885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022] Open
Abstract
Aim: Cerebral microbleeds (CMBs) are small round dots distributed over the brain which contribute to stroke, dementia, and death. The early diagnosis is significant for the treatment. Method: In this paper, a new CMB detection approach was put forward for brain magnetic resonance images. We leveraged a sliding window to obtain training and testing samples from input brain images. Then, a 13-layer convolutional neural network (CNN) was designed and trained. Finally, we proposed to utilize an extreme learning machine (ELM) to substitute the last several layers in the CNN for detection. We carried out an experiment to decide the optimal number of layers to be substituted. The parameters in ELM were optimized by a heuristic algorithm named bat algorithm. The evaluation of our approach was based on hold-out validation, and the final predictions were generated by averaging the performance of five runs. Results: Through the experiments, we found replacing the last five layers with ELM can get the optimal results. Conclusion: We offered a comparison with state-of-the-art algorithms, and it can be revealed that our method was accurate in CMB detection.
Collapse
Affiliation(s)
- Siyuan Lu
- School of Informatics, University of Leicester, Leicester, United Kingdom
| | - Shuaiqi Liu
- College of Electronic and Information Engineering, Hebei University, Baoding, China
| | - Shui-Hua Wang
- School of Mathematics and Actuarial Science, University of Leicester, Leicester, United Kingdom
| | - Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
10
|
Lu SY, Nayak DR, Wang SH, Zhang YD. A cerebral microbleed diagnosis method via FeatureNet and ensembled randomized neural networks. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Momeni S, Fazlollahi A, Yates P, Rowe C, Gao Y, Liew AWC, Salvado O. Synthetic microbleeds generation for classifier training without ground truth. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 207:106127. [PMID: 34051412 DOI: 10.1016/j.cmpb.2021.106127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Cerebral microbleeds (CMB) are important biomarkers of cerebrovascular diseases and cognitive dysfunctions. Susceptibility weighted imaging (SWI) is a common MRI sequence where CMB appear as small hypointense blobs. The prevalence of CMB in the population and in each scan is low, resulting in tedious and time-consuming visual assessment. Automated detection methods would be of value but are challenged by the CMB low prevalence, the presence of mimics such as blood vessels, and the difficulty to obtain sufficient ground truth for training and testing. In this paper, synthetic CMB (sCMB) generation using an analytical model is proposed for training and testing machine learning methods. The main aim is creating perfect synthetic ground truth as similar as reals, in high number, with a high diversity of shape, volume, intensity, and location to improve training of supervised methods. METHOD sCMB were modelled with a random Gaussian shape and added to healthy brain locations. We compared training on our synthetic data to standard augmentation techniques. We performed a validation experiment using sCMB and report result for whole brain detection using a 10-fold cross validation design with an ensemble of 10 neural networks. RESULTS Performance was close to state of the art (~9 false positives per scan), when random forest was trained on synthetic only and tested on real lesion. Other experiments showed that top detection performance could be achieved when training on synthetic CMB only. Our dataset is made available, including a version with 37,000 synthetic lesions, that could be used for benchmarking and training. CONCLUSION Our proposed synthetic microbleeds model is a powerful data augmentation approach for CMB classification with and should be considered for training automated lesion detection system from MRI SWI.
Collapse
Affiliation(s)
- Saba Momeni
- CSIRO Health and Biosecurity, Australian E-Health Research Centre, Brisbane, Australia; School of Engineering and Built Environment, Griffith University, Brisbane, Australia.
| | - Amir Fazlollahi
- CSIRO Health and Biosecurity, Australian E-Health Research Centre, Brisbane, Australia
| | - Paul Yates
- Department of Aged Care, Austin Health, Heidelberg, Victoria, Australia
| | - Christopher Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Australia
| | - Yongsheng Gao
- School of Engineering and Built Environment, Griffith University, Brisbane, Australia
| | - Alan Wee-Chung Liew
- School of Information & Communication Technology, Griffith University, Gold Coast, Australia
| | | |
Collapse
|
12
|
Wang S, Tang C, Sun J, Zhang Y. Cerebral Micro-Bleeding Detection Based on Densely Connected Neural Network. Front Neurosci 2019; 13:422. [PMID: 31156359 PMCID: PMC6533830 DOI: 10.3389/fnins.2019.00422] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 01/14/2023] Open
Abstract
Cerebral micro-bleedings (CMBs) are small chronic brain hemorrhages that have many side effects. For example, CMBs can result in long-term disability, neurologic dysfunction, cognitive impairment and side effects from other medications and treatment. Therefore, it is important and essential to detect CMBs timely and in an early stage for prompt treatment. In this research, because of the limited labeled samples, it is hard to train a classifier to achieve high accuracy. Therefore, we proposed employing Densely connected neural network (DenseNet) as the basic algorithm for transfer learning to detect CMBs. To generate the subsamples for training and test, we used a sliding window to cover the whole original images from left to right and from top to bottom. Based on the central pixel of the subsamples, we could decide the target value. Considering the data imbalance, the cost matrix was also employed. Then, based on the new model, we tested the classification accuracy, and it achieved 97.71%, which provided better performance than the state of art methods.
Collapse
Affiliation(s)
- Shuihua Wang
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Chaosheng Tang
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Junding Sun
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Yudong Zhang
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
- Department of Informatics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
13
|
Vander Linden C, Verhelst H, Genbrugge E, Deschepper E, Caeyenberghs K, Vingerhoets G, Deblaere K. Is diffuse axonal injury on susceptibility weighted imaging a biomarker for executive functioning in adolescents with traumatic brain injury? Eur J Paediatr Neurol 2019; 23:525-536. [PMID: 31023628 DOI: 10.1016/j.ejpn.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/23/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023]
Abstract
Traumatic brain injury (TBI) is a heterogeneous disorder in which diffuse axonal injury (DAI) is an important component contributing to executive dysfunction. During adolescence, developing brain networks are especially vulnerable to acceleration-deceleration forces. We aimed to examine the correlation between DAI (number and localization) and executive functioning in adolescents with TBI. We recruited 18 adolescents with a mean age of 15y8m (SD = 1y7m), averaging 2.5 years after sustaining a moderate-to-severe TBI with documented DAI. Susceptibility Weighted Imaging sequence was administered to localize the DAI lesions. The adolescents performed a neurocognitive test-battery, addressing different aspects of executive functioning (working memory, attention, processing speed, planning ability) and their parents completed the Behavior Rating Inventory of Executive Function (BRIEF) - questionnaire. Executive performance of the TBI-group was compared with an age and gender matched control group of typically developing peers. Based on these results we focused on the Stockings of Cambridge test and the BRIEF to correlate with the total number and location of DAI. Results revealed that the anatomical distribution of DAI, especially in the corpus callosum and the deep brain nuclei, may have more implications for executive functioning than the total amount of DAI in adolescents. Results of this study may help guide targeted rehabilitation to redirect the disturbed development of executive function in adolescents with TBI.
Collapse
Affiliation(s)
- Catharine Vander Linden
- Ghent University Hospital, Child Rehabilitation Center K7, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Helena Verhelst
- Ghent University, Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Henri Dunantlaan 2, 9000, Ghent, Belgium.
| | - Eva Genbrugge
- Ghent University Hospital, Department of Neuroradiology, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Ellen Deschepper
- Ghent University, Biostatistics Unit, Department of Public Health, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Karen Caeyenberghs
- Australian Catholic University, Mary McKillop Institute for Health Research, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia.
| | - Guy Vingerhoets
- Ghent University, Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Henri Dunantlaan 2, 9000, Ghent, Belgium.
| | - Karel Deblaere
- Ghent University Hospital, Department of Neuroradiology, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
14
|
Ting FF, Sim KS, Lim CP. Case-control comparison brain lesion segmentation for early infarct detection. Comput Med Imaging Graph 2018; 69:82-95. [PMID: 30219737 DOI: 10.1016/j.compmedimag.2018.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022]
Abstract
Computed Tomography (CT) images are widely used for the identification of abnormal brain tissues following infarct and hemorrhage of a stroke. The treatment of this medical condition mainly depends on doctors' experience. While manual lesion delineation by medical doctors is currently considered as the standard approach, it is time-consuming and dependent on each doctor's expertise and experience. In this study, a case-control comparison brain lesion segmentation (CCBLS) method is proposed to segment the region pertaining to brain injury by comparing the voxel intensity of CT images between control subjects and stroke patients. The method is able to segment the brain lesion from the stacked CT images automatically without prior knowledge of the location or the presence of the lesion. The aim is to reduce medical doctors' burden and assist them in making an accurate diagnosis. A case study with 300 sets of CT images from control subjects and stroke patients is conducted. Comparing with other existing methods, the outcome ascertains the effectiveness of the proposed method in detecting brain infarct of stroke patients.
Collapse
Affiliation(s)
- Fung Fung Ting
- Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka, Malaysia.
| | - Kok Swee Sim
- Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka, Malaysia.
| | - Chee Peng Lim
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
15
|
Weber SA, Patel RK, Lutsep HL. Cerebral amyloid angiopathy: diagnosis and potential therapies. Expert Rev Neurother 2018; 18:503-513. [DOI: 10.1080/14737175.2018.1480938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Stewart A. Weber
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Ranish K. Patel
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Helmi L. Lutsep
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
16
|
Data Augmentation Using Synthetic Lesions Improves Machine Learning Detection of Microbleeds from MRI. SIMULATION AND SYNTHESIS IN MEDICAL IMAGING 2018. [DOI: 10.1007/978-3-030-00536-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Early detection of cerebral microbleeds following traumatic brain injury using MRI in the hyper-acute phase. Neurosci Lett 2017; 655:143-150. [PMID: 28663054 PMCID: PMC5541760 DOI: 10.1016/j.neulet.2017.06.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/13/2017] [Accepted: 06/24/2017] [Indexed: 12/12/2022]
Abstract
Traumatic cerebral microbleeds (TCMBS) can be identified using susceptibility weighted imaging in the first few hours after injury. TCMBs are a useful indicator of severity in this time frame. The presence of TCMBs is an early indicator of injury severity following trauma. There is a relationship between decreasing size of TCMBs and recovery.
Background Traumatic brain injury (TBI) is a leading cause of death and disability in people under 45. Advanced imaging techniques to identify injury and classify severity in the first few hours and days following trauma could improve patient stratification and aid clinical decision making. Traumatic cerebral microbleeds (TCMBs), detectable on magnetic resonance susceptibility weighted imaging (SWI), can be used as markers of long-term clinical outcome. However, the relationship between TCMBs and injury severity in the first few hours after injury, and their natural evolution, is unknown. Methods We obtained SWI scans in 10 healthy controls, and 13 patients scanned 3–24 h following TBI and again at 7–15 days. TCMBs were identified and total volume quantified for every lesion in each scan. Results TCMBs were present in 6 patients, all with more severe injury classified by GCS. No lesions were identified in patients with an initial GCS of 15. Improvement in GCS in the first 15 days following injury was significantly associated with a reduction in microbleed volume over the same time-period. Conclusion MRI is feasible in severely injured patients in the first 24 h after trauma. Detection of TCMBs using SWI provides an objective early marker of injury severity following trauma. TCMBs revealed in this time frame, offer the potential to help determine the degree of injury, improving stratification, in order to identify patients who require admission to hospital, transfer to a specialist center, or an extended period of intubation on intensive care.
Collapse
|
18
|
De Guio F, Jouvent E, Biessels GJ, Black SE, Brayne C, Chen C, Cordonnier C, De Leeuw FE, Dichgans M, Doubal F, Duering M, Dufouil C, Duzel E, Fazekas F, Hachinski V, Ikram MA, Linn J, Matthews PM, Mazoyer B, Mok V, Norrving B, O'Brien JT, Pantoni L, Ropele S, Sachdev P, Schmidt R, Seshadri S, Smith EE, Sposato LA, Stephan B, Swartz RH, Tzourio C, van Buchem M, van der Lugt A, van Oostenbrugge R, Vernooij MW, Viswanathan A, Werring D, Wollenweber F, Wardlaw JM, Chabriat H. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. J Cereb Blood Flow Metab 2016; 36:1319-37. [PMID: 27170700 PMCID: PMC4976752 DOI: 10.1177/0271678x16647396] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/20/2016] [Indexed: 12/11/2022]
Abstract
Brain imaging is essential for the diagnosis and characterization of cerebral small vessel disease. Several magnetic resonance imaging markers have therefore emerged, providing new information on the diagnosis, progression, and mechanisms of small vessel disease. Yet, the reproducibility of these small vessel disease markers has received little attention despite being widely used in cross-sectional and longitudinal studies. This review focuses on the main small vessel disease-related markers on magnetic resonance imaging including: white matter hyperintensities, lacunes, dilated perivascular spaces, microbleeds, and brain volume. The aim is to summarize, for each marker, what is currently known about: (1) its reproducibility in studies with a scan-rescan procedure either in single or multicenter settings; (2) the acquisition-related sources of variability; and, (3) the techniques used to minimize this variability. Based on the results, we discuss technical and other challenges that need to be overcome in order for these markers to be reliably used as outcome measures in future clinical trials. We also highlight the key points that need to be considered when designing multicenter magnetic resonance imaging studies of small vessel disease.
Collapse
Affiliation(s)
- François De Guio
- University Paris Diderot, Sorbonne Paris Cité, UMRS 1161 INSERM, Paris, France DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Eric Jouvent
- University Paris Diderot, Sorbonne Paris Cité, UMRS 1161 INSERM, Paris, France DHU NeuroVasc, Sorbonne Paris Cité, Paris, France Department of Neurology, AP-HP, Lariboisière Hospital, Paris, France
| | - Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandra E Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Carol Brayne
- Department of Public Health and Primary Care, Cambridge University, Cambridge, UK
| | - Christopher Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Frank-Eric De Leeuw
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Department of Neurology, Nijmegen, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU), Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Fergus Doubal
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU), Munich, Germany
| | | | - Emrah Duzel
- Department of Cognitive Neurology and Dementia Research, University of Magdeburg, Magdeburg, Germany
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada
| | - M Arfan Ikram
- Department of Radiology and Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jennifer Linn
- Department of Neuroradiology, University Hospital Munich, Munich, Germany
| | - Paul M Matthews
- Department of Medicine, Division of Brain Sciences, Imperial College London, London, UK
| | | | - Vincent Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Bo Norrving
- Department of Clinical Sciences, Neurology, Lund University, Lund, Sweden
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Reinhold Schmidt
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Luciano A Sposato
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada
| | - Blossom Stephan
- Institute of Health and Society, Newcastle University Institute of Ageing, Newcastle University, Newcastle, UK
| | - Richard H Swartz
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | | | - Mark van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aad van der Lugt
- Department of Radiology and Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Meike W Vernooij
- Department of Radiology and Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anand Viswanathan
- Department of Neurology, J. Philip Kistler Stroke Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - David Werring
- Department of Brain Repair and Rehabilitation, Stroke Research Group, UCL, London, UK
| | - Frank Wollenweber
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Joanna M Wardlaw
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), University of Edinburgh, Edinburgh, UK
| | - Hugues Chabriat
- University Paris Diderot, Sorbonne Paris Cité, UMRS 1161 INSERM, Paris, France DHU NeuroVasc, Sorbonne Paris Cité, Paris, France Department of Neurology, AP-HP, Lariboisière Hospital, Paris, France
| |
Collapse
|