1
|
Zhang Y, Huang W, Jiao H, Kang L. PET radiomics in lung cancer: advances and translational challenges. EJNMMI Phys 2024; 11:81. [PMID: 39361110 PMCID: PMC11450131 DOI: 10.1186/s40658-024-00685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Radiomics is an emerging field of medical imaging that aims at improving the accuracy of diagnosis, prognosis, treatment planning and monitoring non-invasively through the automated or semi-automated quantitative analysis of high-dimensional image features. Specifically in the field of nuclear medicine, radiomics utilizes imaging methods such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) to evaluate biomarkers related to metabolism, blood flow, cellular activity and some biological pathways. Lung cancer ranks among the leading causes of cancer-related deaths globally, and radiomics analysis has shown great potential in guiding individualized therapy, assessing treatment response, and predicting clinical outcomes. In this review, we summarize the current state-of-the-art radiomics progress in lung cancer, highlighting the potential benefits and existing limitations of this approach. The radiomics workflow was introduced first including image acquisition, segmentation, feature extraction, and model building. Then the published literatures were described about radiomics-based prediction models for lung cancer diagnosis, differentiation, prognosis and efficacy evaluation. Finally, we discuss current challenges and provide insights into future directions and potential opportunities for integrating radiomics into routine clinical practice.
Collapse
Affiliation(s)
- Yongbai Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Hao Jiao
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China.
| |
Collapse
|
2
|
Jomeiri A, Navin AH, Shamsi M. Longitudinal MRI analysis using a hybrid DenseNet-BiLSTM method for Alzheimer's disease prediction. Behav Brain Res 2024; 463:114900. [PMID: 38341100 DOI: 10.1016/j.bbr.2024.114900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/16/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Alzheimer's disease is a progressive neurological disorder characterized by brain atrophy and cell death, leading to cognitive decline and impaired functioning. Previous research has primarily focused on using cross-sectional data for Alzheimer's disease identification, but analyzing longitudinal sequential MR images is crucial for improved diagnostic accuracy and understanding disease progression. However, existing deep learning models face challenges in learning spatial and temporal features from such data. To address these challenges, this study presents a novel hybrid DenseNet-BiLSTM method for Alzheimer's disease prediction using longitudinal MRI analysis. The proposed framework combines Convolutional DenseNet for spatial information extraction and joined BiLSTM layers for capturing temporal characteristics and relationships between longitudinal images at different time points. This approach overcomes issues like overfitting, vanishing gradients, and incomplete patient data. We evaluated the model on 684 longitudinal MRI images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including normal controls, individuals with mild cognitive impairment, and Alzheimer's disease patients. The results demonstrate high classification accuracy, with 95.28% for AD/CN, 88.19% for NC/MCI, 83.51% for sMCI/pMCI, and 92.14% for MCI/AD. These findings highlight the substantial improvement in Alzheimer's disease diagnosis achieved through the utilization of longitudinal MRI images. The contributions of this study lie in both the deep learning and medical domains. In the deep learning domain, our hybrid framework effectively learns spatial and temporal features from longitudinal data, addressing the challenges associated with multi-dimensional and sequential time series data. In the medical domain, our study emphasizes the importance of analyzing baseline and longitudinal MR images for accurate diagnosis and understanding disease progression.
Collapse
Affiliation(s)
- Alireza Jomeiri
- Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
| | - Ahmad Habibizad Navin
- Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Mahboubeh Shamsi
- Department of Engineering, Qom University of Technology, Qom, Iran
| |
Collapse
|
3
|
Gonçalves de Oliveira CE, de Araújo WM, de Jesus Teixeira ABM, Gonçalves GL, Itikawa EN. PCA and logistic regression in 2-[ 18F]FDG PET neuroimaging as an interpretable and diagnostic tool for Alzheimer's disease. Phys Med Biol 2024; 69:025003. [PMID: 37976549 DOI: 10.1088/1361-6560/ad0ddd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
Objective.to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages from PET with 2-[18F]fluoro-2-deoxy-D-glucose (FDG PET) for the diagnosis of Alzheimer's disease (AD).Approach.as training data, 200 FDG PET neuroimages were used, 100 from the group of patients with AD and 100 from the group of cognitively normal subjects (CN), downloaded from the repository of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Regularization methods L1 and L2 were tested and their respective strength varied by the hyperparameter C. Once the best combination of hyperparameters was determined, it was used to train the final classification model, which was then applied to test data, consisting of 192 FDG PET neuroimages, 100 from subjects with no evidence of AD (nAD) and 92 from the AD group, obtained at the Centro de Diagnóstico por Imagem (CDI).Main results.the best combination of hyperparameters was L1 regularization andC≈ 0.316. The final results on test data were accuracy = 88.54%, recall = 90.22%, precision = 86.46% and AUC = 94.75%, indicating that there was a good generalization to neuroimages outside the training set. Adjusting each principal component by its respective weight, an interpretable image was obtained that represents the regions of greater or lesser probability for AD given high voxel intensities. The resulting image matches what is expected by the pathophysiology of AD.Significance.our classification model was trained on publicly available and robust data and tested, with good results, on clinical routine data. Our study shows that it serves as a powerful and interpretable tool capable of assisting in the diagnosis of AD in the possession of FDG PET neuroimages. The relationship between classification model output scores and AD progression can and should be explored in future studies.
Collapse
|
4
|
Shanmugavadivel K, Sathishkumar VE, Cho J, Subramanian M. Advancements in computer-assisted diagnosis of Alzheimer's disease: A comprehensive survey of neuroimaging methods and AI techniques for early detection. Ageing Res Rev 2023; 91:102072. [PMID: 37709055 DOI: 10.1016/j.arr.2023.102072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Alzheimer's Disease (AD) is a brain disorder that causes the brain to shrink and eventually causes brain cells to die. This neurological condition progressively hampers cognitive and memory functions, along with the ability to carry out fundamental tasks over time. From the symptoms it is very difficult to detect during its early stage. It has become necessary to develop a computer assisted diagnostic models for the early AD detection. This survey work, discussed about a review of 110 published AD detection methods and techniques from the year 2011 to till-date. This study lies in its comprehensive exploration of AD detection methods using a range of artificial intelligence (AI) techniques and neuroimaging modalities. By collecting and analysing 50 papers related to AD diagnosis datasets, the study provides a comprehensive understanding of the diversity of input types, subjects, and classes used in AD research. Summarizing 60 papers on methodologies gives researchers a succinct overview of various approaches that contribute to enhancing detection accuracy. From the review, data are acquired and pre-processed form multiple modalities of neuroimaging. This paper mainly focused on review of different datasets used, various feature extraction methods, parameters used in neuro images. To diagnosis the Alzheimer's disease, the existing methods utilized three most common artificial intelligence techniques such as machine learning, deep learning, and transfer learning. We conclude this survey work by providing future perspectives for AD diagnosis at early stage.
Collapse
Affiliation(s)
| | - V E Sathishkumar
- Department of Software Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jaehyuk Cho
- Department of Software Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | | |
Collapse
|
5
|
El-Sappagh S, Alonso-Moral JM, Abuhmed T, Ali F, Bugarín-Diz A. Trustworthy artificial intelligence in Alzheimer’s disease: state of the art, opportunities, and challenges. Artif Intell Rev 2023. [DOI: 10.1007/s10462-023-10415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Dar SA, Imtiaz N. Classification of neuroimaging data in Alzheimer's disease using particle swarm optimization: A systematic review. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-12. [PMID: 36719791 DOI: 10.1080/23279095.2023.2169886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIM Particle swarm optimization (PSO) is an algorithm that involves the optimization of Non-linear and Multidimensional problems to reach the best solutions with minimal parameterization. This metaheuristic model has frequently been used in the Pathological domain. This optimization model has been used in diverse forms while predicting Alzheimer's disease. It is a robust algorithm that works on linear and multi-modal data while predicting Alzheimer's disease. PSO techniques have been in action for quite some time for detecting various diseases and this paper systematically reviews the papers on various kinds of PSO techniques. METHODS To perform the systematic review, PRISMA guidelines were followed and a Boolean search ("particle swarm optimization" OR "PSO") AND Neuroimaging AND (Alzheimer's disease prediction OR classification OR diagnosis) were performed. The query was run in 4-reputed databases: Google Scholar, Scopus, Science Direct, and Wiley publications. RESULTS For the final analysis, 10 papers were incorporated for qualitative and quantitative synthesis. PSO has shown a dominant character while handling the uni-modal as well as the multi-modal data while predicting the conversion from MCI to Alzheimer's. It can be seen from the table that almost all the 10 reviewed papers had MRI-driven data. The accuracy rate was accentuated while adding other modalities or Neurocognitive measures. CONCLUSIONS Through this algorithm, we are providing an opportunity to other researchers to compare this algorithm with other state-of-the-art algorithms, while seeing the classification accuracy, with the aim of early prediction and progression of MCI into Alzheimer's disease.
Collapse
Affiliation(s)
- Suhail Ahmad Dar
- Department of Psychology, Aligarh Muslim University, Aligarh, India
| | - Nasheed Imtiaz
- Department of Psychology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
7
|
El-Sappagh S, Saleh H, Ali F, Amer E, Abuhmed T. Two-stage deep learning model for Alzheimer’s disease detection and prediction of the mild cognitive impairment time. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07263-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
de Arriba-Pérez F, García-Méndez S, González-Castaño FJ, Costa-Montenegro E. Automatic detection of cognitive impairment in elderly people using an entertainment chatbot with Natural Language Processing capabilities. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2022; 14:1-16. [PMID: 35529905 PMCID: PMC9053565 DOI: 10.1007/s12652-022-03849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Previous researchers have proposed intelligent systems for therapeutic monitoring of cognitive impairments. However, most existing practical approaches for this purpose are based on manual tests. This raises issues such as excessive caretaking effort and the white-coat effect. To avoid these issues, we present an intelligent conversational system for entertaining elderly people with news of their interest that monitors cognitive impairment transparently. Automatic chatbot dialogue stages allow assessing content description skills and detecting cognitive impairment with Machine Learning algorithms. We create these dialogue flows automatically from updated news items using Natural Language Generation techniques. The system also infers the gold standard of the answers to the questions, so it can assess cognitive capabilities automatically by comparing these answers with the user responses. It employs a similarity metric with values in [0, 1], in increasing level of similarity. To evaluate the performance and usability of our approach, we have conducted field tests with a test group of 30 elderly people in the earliest stages of dementia, under the supervision of gerontologists. In the experiments, we have analysed the effect of stress and concentration in these users. Those without cognitive impairment performed up to five times better. In particular, the similarity metric varied between 0.03, for stressed and unfocused participants, and 0.36, for relaxed and focused users. Finally, we developed a Machine Learning algorithm based on textual analysis features for automatic cognitive impairment detection, which attained accuracy, F-measure and recall levels above 80%. We have thus validated the automatic approach to detect cognitive impairment in elderly people based on entertainment content. The results suggest that the solution has strong potential for long-term user-friendly therapeutic monitoring of elderly people.
Collapse
Affiliation(s)
- Francisco de Arriba-Pérez
- Information Technologies Group, atlanTTic, School of Telecommunications Engineering, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Silvia García-Méndez
- Information Technologies Group, atlanTTic, School of Telecommunications Engineering, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Francisco J. González-Castaño
- Information Technologies Group, atlanTTic, School of Telecommunications Engineering, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Enrique Costa-Montenegro
- Information Technologies Group, atlanTTic, School of Telecommunications Engineering, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
9
|
Predictive classification of Alzheimer’s disease using brain imaging and genetic data. Sci Rep 2022; 12:2405. [PMID: 35165327 PMCID: PMC8844076 DOI: 10.1038/s41598-022-06444-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
For now, Alzheimer’s disease (AD) is incurable. But if it can be diagnosed early, the correct treatment can be used to delay the disease. Most of the existing research methods use single or multi-modal imaging features for prediction, relatively few studies combine brain imaging with genetic features for disease diagnosis. In order to accurately identify AD, healthy control (HC) and the two stages of mild cognitive impairment (MCI: early MCI, late MCI) combined with brain imaging and genetic characteristics, we proposed an integrated Fisher score and multi-modal multi-task feature selection research method. We learned first genetic features with Fisher score to perform dimensionality reduction in order to solve the problem of the large difference between the feature scales of genetic and brain imaging. Then we learned the potential related features of brain imaging and genetic data, and multiplied the selected features with the learned weight coefficients. Through the feature selection program, five imaging and five genetic features were selected to achieve an average classification accuracy of 98% for HC and AD, 82% for HC and EMCI, 86% for HC and LMCI, 80% for EMCI and LMCI, 88% for EMCI and AD, and 72% for LMCI and AD. Compared with only using imaging features, the classification accuracy has been improved to a certain extent, and a set of interrelated features of brain imaging phenotypes and genetic factors were selected.
Collapse
|
10
|
Machine learning techniques for diagnosis of alzheimer disease, mild cognitive disorder, and other types of dementia. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Savaş S. Detecting the Stages of Alzheimer’s Disease with Pre-trained Deep Learning Architectures. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06131-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Abuhmed T, El-Sappagh S, Alonso JM. Robust hybrid deep learning models for Alzheimer’s progression detection. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2020.106688] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Feng J, Zhang SW, Chen L, Xia J. Alzheimer’s disease classification using features extracted from nonsubsampled contourlet subband-based individual networks. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Yoo J, Cheon M, Park YJ, Hyun SH, Zo JI, Um SW, Won HH, Lee KH, Kim BT, Choi JY. Machine learning-based diagnostic method of pre-therapeutic 18F-FDG PET/CT for evaluating mediastinal lymph nodes in non-small cell lung cancer. Eur Radiol 2020; 31:4184-4194. [PMID: 33241521 DOI: 10.1007/s00330-020-07523-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/08/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We aimed to find the best machine learning (ML) model using 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for evaluating metastatic mediastinal lymph nodes (MedLNs) in non-small cell lung cancer, and compare the diagnostic results with those of nuclear medicine physicians. METHODS A total of 1329 MedLNs were reviewed. Boosted decision tree, logistic regression, support vector machine, neural network, and decision forest models were compared. The diagnostic performance of the best ML model was compared with that of physicians. The ML method was divided into ML with quantitative variables only (MLq) and adding clinical information (MLc). We performed an analysis based on the 18F-FDG-avidity of the MedLNs. RESULTS The boosted decision tree model obtained higher sensitivity and negative predictive values but lower specificity and positive predictive values than the physicians. There was no significant difference between the accuracy of the physicians and MLq (79.8% vs. 76.8%, p = 0.067). The accuracy of MLc was significantly higher than that of the physicians (81.0% vs. 76.8%, p = 0.009). In MedLNs with low 18F-FDG-avidity, ML had significantly higher accuracy than the physicians (70.0% vs. 63.3%, p = 0.018). CONCLUSION Although there was no significant difference in accuracy between the MLq and physicians, the diagnostic performance of MLc was better than that of MLq or of the physicians. The ML method appeared to be useful for evaluating low metabolic MedLNs. Therefore, adding clinical information to the quantitative variables from 18F-FDG PET/CT can improve the diagnostic results of ML. KEY POINTS • Machine learning using two-class boosted decision tree model revealed the highest value of area under curve, and it showed higher sensitivity and negative predictive values but lower specificity and positive predictive values than nuclear medicine physicians. • The diagnostic results from machine learning method after adding clinical information to the quantitative variables improved accuracy significantly than nuclear medicine physicians. • Machine learning could improve the diagnostic significance of metastatic mediastinal lymph nodes, especially in mediastinal lymph nodes with low 18F-FDG-avidity.
Collapse
Affiliation(s)
- Jang Yoo
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul, South Korea.,Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Miju Cheon
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul, South Korea
| | - Yong Jin Park
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seung Hyup Hyun
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jae Ill Zo
- Department of Thoracic Surgery and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung-Tae Kim
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
15
|
Feng X, Hao X, Shi R, Xia Z, Huang L, Yu Q, Zhou F. Detection and Comparative Analysis of Methylomic Biomarkers of Rheumatoid Arthritis. Front Genet 2020; 11:238. [PMID: 32292416 PMCID: PMC7119472 DOI: 10.3389/fgene.2020.00238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/28/2020] [Indexed: 01/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disorder influenced by both genetic and environmental factors. To investigate possible contributions of DNA methylation to the etiology of RA with minimum confounding genetic heterogeneity, we investigated genome-wide DNA methylation in disease-discordant monozygotic twin pairs. This study hypothesized that methylomic biomarkers might facilitate accurate RA detection. A comprehensive series of biomarker detection algorithms were utilized to find the best methylomic biomarkers for detecting RA patients using the methylomic data of the peripheral blood samples. The best model achieved 100.00% in accuracy (Acc) with 81 methylomic biomarkers and a 10-fold cross-validation (10FCV) strategy. Some of the methylomic biomarkers were experimentally confirmed to be associated with the onset or development of RA. It is also interesting to observe that many of the detected biomarkers were from chromosome Y, supporting the knowledge that RA has a significant gender discrepancy.
Collapse
Affiliation(s)
- Xin Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China.,Jilin Institute of Chemical Technology, Jilin, China.,BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Xubing Hao
- BioKnow Health Informatics Lab, College of Software, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Ruoyao Shi
- BioKnow Health Informatics Lab, College of Life Sciences, Jilin University, Changchun, China
| | - Zhiqiang Xia
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Lan Huang
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Fengfeng Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
16
|
Tanveer M, Richhariya B, Khan RU, Rashid AH, Khanna P, Prasad M, Lin CT. Machine Learning Techniques for the Diagnosis of Alzheimer’s Disease. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING, COMMUNICATIONS, AND APPLICATIONS 2020; 16:1-35. [DOI: 10.1145/3344998] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/01/2019] [Indexed: 08/30/2023]
Abstract
Alzheimer’s disease is an incurable neurodegenerative disease primarily affecting the elderly population. Efficient automated techniques are needed for early diagnosis of Alzheimer’s. Many novel approaches are proposed by researchers for classification of Alzheimer’s disease. However, to develop more efficient learning techniques, better understanding of the work done on Alzheimer’s is needed. Here, we provide a review on 165 papers from 2005 to 2019, using various feature extraction and machine learning techniques. The machine learning techniques are surveyed under three main categories: support vector machine (SVM), artificial neural network (ANN), and deep learning (DL) and ensemble methods. We present a detailed review on these three approaches for Alzheimer’s with possible future directions.
Collapse
Affiliation(s)
- M. Tanveer
- Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, India
| | - B. Richhariya
- Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, India
| | - R. U. Khan
- Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, India
| | - A. H. Rashid
- Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore 8 School of Computer Science and Engineering, National Institute of Science and Technology, Berhampur, Odisha, India
| | - P. Khanna
- PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
| | - M. Prasad
- Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, Sydney, Australia
| | - C. T. Lin
- Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
17
|
Automatic Segmentation of Pathological Glomerular Basement Membrane in Transmission Electron Microscopy Images with Random Forest Stacks. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:1684218. [PMID: 31019546 PMCID: PMC6452552 DOI: 10.1155/2019/1684218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/02/2019] [Accepted: 02/24/2019] [Indexed: 11/21/2022]
Abstract
Pathological classification through transmission electron microscopy (TEM) is essential for the diagnosis of certain nephropathy, and the changes of thickness in glomerular basement membrane (GBM) and presence of immune complex deposits in GBM are often used as diagnostic criteria. The automatic segmentation of the GBM on TEM images by computerized technology can provide clinicians with clear information about glomerular ultrastructural lesions. The GBM region on the TEM image is not only complicated and changeable in shape but also has a low contrast and wide distribution of grayscale. Consequently, extracting image features and obtaining excellent segmentation results are difficult. To address this problem, we introduce a random forest- (RF-) based machine learning method, namely, RF stacks (RFS), to realize automatic segmentation. Specifically, this work proposes a two-level integrated RFS that is more complicated than a one-level integrated RF to improve accuracy and generalization performance. The integrated strategies include training integration and testing integration. Training integration can derive a full-view RFS1 by simultaneously sampling several images of different grayscale ranges in the train phase. Testing integration can derive a zoom-view RFS2 by separately sampling the images of different grayscale ranges and integrating the results in the test phase. Experimental results illustrate that the proposed RFS can be used to automatically segment different morphologies and gray-level basement membranes. Future study on GBM thickness measurement and deposit identification will be based on this work.
Collapse
|
18
|
Feng X, Hao X, Xin R, Gao X, Liu M, Li F, Wang Y, Shi R, Zhao S, Zhou F. Detecting Methylomic Biomarkers of Pediatric Autism in the Peripheral Blood Leukocytes. Interdiscip Sci 2019; 11:237-246. [DOI: 10.1007/s12539-019-00328-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
|