1
|
Garo J, Nicolini T, Sotiropoulos JM, Raimundo JM. Tuning the Electronic Properties of Bridged Dithienyl-, Difuryl-, Dipyrrolyl-Vinylene as Precursors of Small-Bandgap Conjugated Polymer. Chemistry 2024; 30:e202402461. [PMID: 39136579 DOI: 10.1002/chem.202402461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 09/25/2024]
Abstract
Optoelectronic properties of linear π-conjugated polymers/oligomers are of great importance for the fabrication of organic photonic and electronic devices. To this end, the π-conjugated polymers/oligomers need to meet both optoelectronic and key structural properties in order to fulfill their implementation as active components. In particular, they need to possess low bandgap and high thermal, conformational, and photochemical stabilities. So far, several strategies have been developed to attain such requirements including the covalent and non-covalent rigidification concepts of the π-conjugated systems. On the basis of these findings, we describe herein the theoretical studies of novel series of covalently bridged derivatives demonstrating the benefits of the strategy. Comparison of these derivatives with compounds previously described in the literature highlights enhanced optoelectronic properties and behaviors that would be beneficial for the construction and development of new linear π-conjugated polymers.
Collapse
Affiliation(s)
- Jordan Garo
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 5254, Pau, France
| | | | | | | |
Collapse
|
2
|
Ahmed S, Irshad I, Nazir S, Naz S, Asghar MA, Alshehri SM, Bullo S, Sanyang ML. Designing of banana shaped chromophores via molecular engineering of terminal groups to probe photovoltaic behavior of organic solar cell materials. Sci Rep 2023; 13:15064. [PMID: 37699905 PMCID: PMC10497593 DOI: 10.1038/s41598-023-39496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/26/2023] [Indexed: 09/14/2023] Open
Abstract
To meet the rising requirement of photovoltaic compounds for modernized hi-tech purpose, we designed six new molecules (DTPD1-DTPD6) from banana shaped small fullerene free chromophore (DTPR) by structural tailoring at terminal acceptors. Frontier molecular orbitals (FMOs), density of states (DOS), open circuit voltage (Voc), transition density matrix (TDM) analysis, optical properties, reorganization energy value of hole and electron were determined utilizing density function theory (DFT) and time-dependent density function theory (TD-DFT) approaches, to analyze photovoltaic properties of said compounds. Band gap contraction (∆E = 2.717-2.167 eV) accompanied by larger bathochromic shift (λmax = 585.490-709.693 nm) was observed in derivatives contrary to DTPR. The FMOs, DOS and TDMs investigations explored that central acceptor moiety played significant role for charge transformation. The minimum binding energy values for DTPD1-DTPD6 demonstrated the higher exciton dissociation rate with greater charge transferal rate than DTPR, which was further endorsed by TDM and DOS analyses. A comparable Voc (1.49-2.535 V) with respect to the HOMOPBDBT-LUMOacceptor for entitled compounds was investigated. In a nutshell, all the tailored chromophores can be considered as highly efficient compounds for promising OSCs with a good Voc response.
Collapse
Affiliation(s)
- Saeed Ahmed
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milan, Italy
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Iram Irshad
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Saima Nazir
- Nawaz Sharif Medical College, University of Gujrat, Gujrat, Pakistan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Salma Naz
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Adnan Asghar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saifullah Bullo
- Department of Human and Rehabilitation Sciences, Begum Nusrat Bhutto Women University, Sukkur Sindh, Pakistan
| | - Muhammed Lamin Sanyang
- Directorate of Research and Consultancy, University of The Gambia, Kanifing Campus, MDI Road, P.O Box 3530, Serekunda, The Gambia.
| |
Collapse
|
3
|
Jin R, Zhang X, Xin J, Xiao W. Molecular design of D-π-A-π-D small molecule donor materials with narrow energy gap for organic solar cells applications. J Mol Model 2023; 29:273. [PMID: 37542668 DOI: 10.1007/s00894-023-05680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
CONTEXT Developing novel materials present a great challenge to improve the photovoltaic performance of organic solar cells (OSCs). In this paper, we designed a series of the donor-π bridge-acceptor-π bridge-donor (D-π-A-π-D) structure molecules. These molecules consist of diketopyrrolopyrrole (DPP) moiety as core, 9-hexyl-carbazole moiety as terminal groups, and different planar electron-rich aromatic groups as π-bridges. The density functional theory (DFT) and time-dependent DFT (TD-DFT) computations showed that the frontier molecular orbital (FMO) energy levels, energy gaps, electron-driving forces (ΔEL-L), open-circuit voltage (Voc), fill factor (FF), reorganization energy (λ), exciton binding energy (Eb), and absorption spectra of the designed molecules can be effectively adjusted by the introduction of different π-bridges. The designed molecules have narrow energy gap and strong absorption spectra, which are beneficial for improving the photoelectric conversion efficiency of organic solar cells. In addition, the designed molecules possess large ΔEL-L, large Voc, and FF values and low Eb when the typical fullerene derivatives are used as acceptors. The FMO energy levels of the designed molecules can provide match well with the typical fullerene acceptors PC61BM, bisPC61BM, and PC71BM. Our results suggest that the designed molecules are expected to be promising donor materials for OSCs. METHODS All DFT and TD-DFT calculations were carried out using the Gaussian 09 code. The computational technique chosen was the hybrid functional B3LYP and the 6-31G(d,p) basis set. The benzene and chloroform solvent effects have been considered using the polarized continuum model (PCM) at the TD-DFT level. The simulated absorption spectra of designed molecules were plotted by using the GaussSum 1.0 program.
Collapse
Affiliation(s)
- Ruifa Jin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China.
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China.
| | - Xinhao Zhang
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China
| | - Jingfan Xin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China
| | - Wenmin Xiao
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China
| |
Collapse
|