1
|
Doe CQ, Thor S. 40 years of homeodomain transcription factors in the Drosophila nervous system. Development 2024; 151:dev202910. [PMID: 38819456 PMCID: PMC11190446 DOI: 10.1242/dev.202910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Drosophila nervous system development progresses through a series of well-characterized steps in which homeodomain transcription factors (HDTFs) play key roles during most, if not all, phases. Strikingly, although some HDTFs have only one role, many others are involved in multiple steps of the developmental process. Most Drosophila HDTFs engaged in nervous system development are conserved in vertebrates and often play similar roles during vertebrate development. In this Spotlight, we focus on the role of HDTFs during embryogenesis, where they were first characterized.
Collapse
Affiliation(s)
- Chris Q. Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Stefan Thor
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Ni C, Ye Q, Mi X, Jiao D, Zhang S, Cheng R, Fang Z, Fang M, Ye X. Resveratrol inhibits ferroptosis via activating NRF2/GPX4 pathway in mice with spinal cord injury. Microsc Res Tech 2023; 86:1378-1390. [PMID: 37129001 DOI: 10.1002/jemt.24335] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/03/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Ferroptosis is a newly defined form of cell death involved in neurologic disease. Resveratrol is a non-flavonoid polyphenolic compound with anti-inflammatory and antioxidant properties, but its potential therapeutic mechanism in spinal cord injury (SCI) remains unknown. Therefore, this study evaluates the mechanism by which resveratrol promotes neurological and motor function recovery in mice with SCI. The motor function of mice was evaluated using the Basso Mouse Scale score and footprint test. The effect of resveratrol on the neuronal cell state was observed using NeuN, fluoro-Jade C, and Nissl staining. The expression of iron content in injured segments was observed using Perls blue and Diaminobenzidine staining. The effect of resveratrol on the levels of malondialdehyde, glutathione, Fe2+ , and glutathione peroxidase 4 enzyme activity was also investigated. The mitochondrial ultrastructures of injured segment cells were observed using transmission electron microscope, while the protein levels of ferroptosis-related targets were detected using Western blot. Our findings show that resveratrol improves motor function after SCI and has certain neuroprotective effects; in ferroptosis-related studies, resveratrol inhibited the expression of ferroptosis-related proteins and ions. Resveratrol improved changes in mitochondrial morphology. Mechanistically, the Nrf2 inhibitor ML385 reversed the inhibitory effect of resveratrol on ferroptosis-related genes, indicating that resveratrol inhibits ferroptosis through the Nrf2/GPX4 pathway. Our findings elucidate that resveratrol promotes functional recovery, inhibits ferroptosis post-SCI, and provides an experimental basis for subsequent clinical translational research. Our study shows that resveratrol inhibits the production of lipid peroxide and the accumulation of iron by activating Nrf2/GPX4 signaling pathway, thereby inhibiting neuronal ferroptosis. At the same time, it can promote the recovery of motor function of mice.
Collapse
Affiliation(s)
- Chengtao Ni
- Graduate School, Bengbu Medical College, Bengbu, Anhui, China
| | - Qing Ye
- Rehabilitation Medicine Center, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang, Hangzhou, China
| | - Xiaodan Mi
- Rehabilitation Medicine Center, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang, Hangzhou, China
- Hangzhou Medical College, School of Basic Medicine and Forensic Medicine, Hangzhou, China
| | - Dian Jiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | | | - Ruidong Cheng
- Rehabilitation Medicine Center, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang, Hangzhou, China
| | - Zhanglu Fang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Ye
- Graduate School, Bengbu Medical College, Bengbu, Anhui, China
- Rehabilitation Medicine Center, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang, Hangzhou, China
| |
Collapse
|
3
|
Li Y, Xu B, Jin M, Zhang H, Ren N, Hu J, He J. Homophilic interaction of cell adhesion molecule 3 coordinates retina neuroepithelial cell proliferation. J Cell Biol 2023; 222:e202204098. [PMID: 37022761 PMCID: PMC10082328 DOI: 10.1083/jcb.202204098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/07/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Correct cell number generation is central to tissue development. However, in vivo roles of coordinated proliferation of individual neural progenitors in regulating cell numbers of developing neural tissues and the underlying molecular mechanism remain mostly elusive. Here, we showed that wild-type (WT) donor retinal progenitor cells (RPCs) generated significantly expanded clones in host retinae with G1-lengthening by p15 (cdkn2a/b) overexpression (p15+) in zebrafish. Further analysis showed that cell adhesion molecule 3 (cadm3) was reduced in p15+ host retinae, and overexpression of either full-length or ectodomains of Cadm3 in p15+ host retinae markedly suppressed the clonal expansion of WT donor RPCs. Notably, WT donor RPCs in retinae with cadm3 disruption recapitulated expanded clones that were found in p15+ retinae. More strikingly, overexpression of Cadm3 without extracellular ig1 domain in RPCs resulted in expanded clones and increased retinal total cell number. Thus, homophilic interaction of Cadm3 provides an intercellular mechanism underlying coordinated cell proliferation to ensure cell number homeostasis of the developing neuroepithelia.
Collapse
Affiliation(s)
- Yanan Li
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baijie Xu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Jin
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ningxin Ren
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jinhui Hu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Prasad AR, Lago-Baldaia I, Bostock MP, Housseini Z, Fernandes VM. Differentiation signals from glia are fine-tuned to set neuronal numbers during development. eLife 2022; 11:78092. [PMID: 36094172 PMCID: PMC9507125 DOI: 10.7554/elife.78092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neural circuit formation and function require that diverse neurons are specified in appropriate numbers. Known strategies for controlling neuronal numbers involve regulating either cell proliferation or survival. We used the Drosophila visual system to probe how neuronal numbers are set. Photoreceptors from the eye-disc induce their target field, the lamina, such that for every unit eye there is a corresponding lamina unit (column). Although each column initially contains ~6 post-mitotic lamina precursors, only 5 differentiate into neurons, called L1-L5; the 'extra' precursor, which is invariantly positioned above the L5 neuron in each column, undergoes apoptosis. Here, we showed that a glial population called the outer chiasm giant glia (xgO), which resides below the lamina, secretes multiple ligands to induce L5 differentiation in response to EGF from photoreceptors. By forcing neuronal differentiation in the lamina, we uncovered that though fated to die, the 'extra' precursor is specified as an L5. Therefore, two precursors are specified as L5s but only one differentiates during normal development. We found that the row of precursors nearest to xgO differentiate into L5s and, in turn, antagonise differentiation signalling to prevent the 'extra' precursors from differentiating, resulting in their death. Thus, an intricate interplay of glial signals and feedback from differentiating neurons defines an invariant and stereotyped pattern of neuronal differentiation and programmed cell death to ensure that lamina columns each contain exactly one L5 neuron.
Collapse
Affiliation(s)
- Anadika R Prasad
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Matthew P Bostock
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Zaynab Housseini
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Clarembaux‐Badell L, Baladrón‐de‐Juan P, Gabilondo H, Rubio‐Ferrera I, Millán I, Estella C, Valverde‐Ortega FS, Cobeta IM, Thor S, Benito‐Sipos J. Dachshund acts with Abdominal-B to trigger programmed cell death in the Drosophila central nervous system at the frontiers of Abd-B expression. Dev Neurobiol 2022; 82:495-504. [PMID: 35796156 PMCID: PMC9544350 DOI: 10.1002/dneu.22894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022]
Abstract
A striking feature of the nervous system pertains to the appearance of different neural cell subtypes at different axial levels. Studies in the Drosophila central nervous system reveal that one mechanism underlying such segmental differences pertains to the segment-specific removal of cells by programmed cell death (PCD). One group of genes involved in segment-specific PCD is the Hox homeotic genes. However, while segment-specific PCD is highly precise, Hox gene expression is evident in gradients, raising the issue of how the Hox gene function is precisely gated to trigger PCD in specific segments at the outer limits of Hox expression. The Drosophila Va neurons are initially generated in all nerve cord segments but removed by PCD in posterior segments. Va PCD is triggered by the posteriorly expressed Hox gene Abdominal-B (Abd-B). However, Va PCD is highly reproducible despite exceedingly weak Abd-B expression in the anterior frontiers of its expression. Here, we found that the transcriptional cofactor Dachshund supports Abd-B-mediated PCD in its anterior domain. In vivo bimolecular fluorescence complementation analysis lends support to the idea that the Dachshund/Abd-B interplay may involve physical interactions. These findings provide an example of how combinatorial codes of transcription factors ensure precision in Hox-mediated PCD in specific segments at the outer limits of Hox expression.
Collapse
Affiliation(s)
- Luis Clarembaux‐Badell
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Pablo Baladrón‐de‐Juan
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Hugo Gabilondo
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Irene Rubio‐Ferrera
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Irene Millán
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo OchoaConsejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)Nicolás Cabrera 1MadridSpain
| | - Félix S. Valverde‐Ortega
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Ignacio Monedero Cobeta
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
- Departamento de Fisiología, Facultad de MedicinaUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Stefan Thor
- School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
| | - Jonathan Benito‐Sipos
- Departamento de Biología, Facultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| |
Collapse
|
6
|
Bakshi A, Joshi R. Role of glial niche in regulating neural stem cell proliferation in Drosophila central nervous system. J Neurosci Res 2020; 98:2373-2375. [PMID: 32812272 DOI: 10.1002/jnr.24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Asif Bakshi
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rohit Joshi
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| |
Collapse
|
7
|
The Five Faces of Notch Signalling During Drosophila melanogaster Embryonic CNS Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:39-58. [PMID: 32060870 DOI: 10.1007/978-3-030-34436-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During central nervous system (CNS) development, a complex series of events play out, starting with the establishment of neural progenitor cells, followed by their asymmetric division and formation of lineages and the differentiation of neurons and glia. Studies in the Drosophila melanogaster embryonic CNS have revealed that the Notch signal transduction pathway plays at least five different and distinct roles during these events. Herein, we review these many faces of Notch signalling and discuss the mechanisms that ensure context-dependent and compartment-dependent signalling. We conclude by discussing some outstanding issues regarding Notch signalling in this system, which likely have bearing on Notch signalling in many species.
Collapse
|
8
|
Brockway NL, Cook ZT, O'Gallagher MJ, Tobias ZJC, Gedi M, Carey KM, Unni VK, Pan YA, Metz MR, Weissman TA. Multicolor lineage tracing using in vivo time-lapse imaging reveals coordinated death of clonally related cells in the developing vertebrate brain. Dev Biol 2019; 453:130-140. [PMID: 31102591 PMCID: PMC10426338 DOI: 10.1016/j.ydbio.2019.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/12/2019] [Accepted: 05/12/2019] [Indexed: 01/08/2023]
Abstract
The global mechanisms that regulate and potentially coordinate cell proliferation & death in developing neural regions are not well understood. In particular, it is not clear how or whether clonal relationships between neural progenitor cells and their progeny influence the growing brain. We have developed an approach using Brainbow in the developing zebrafish to visualize and follow multiple clones of related cells in vivo over time. This allows for clear visualization of many dividing clones of cells, deep in proliferating brain regions. As expected, in addition to undergoing interkinetic nuclear migration and cell division, cells also periodically undergo apoptosis. Interestingly, cell death occurs in a non-random manner: clonally related cells are more likely to die in a progressive fashion than cells from different clones. Multiple members of an individual clone die while neighboring clones appear healthy and continue to divide. Our results suggest that clonal relationships can influence cellular fitness and survival in the developing nervous system, perhaps through a competitive mechanism whereby clones of cells are competing with other clones. Clonal cell competition may help regulate neuronal proliferation in the vertebrate brain.
Collapse
Affiliation(s)
- Nicole L Brockway
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA
| | - Zoe T Cook
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA
| | | | | | - Mako Gedi
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA
| | - Kristine M Carey
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA
| | - Vivek K Unni
- Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Y Albert Pan
- Developmental and Translational Neurobiology Center, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, 24016, USA
| | - Margaret R Metz
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA
| | - Tamily A Weissman
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA.
| |
Collapse
|
9
|
Wang Y, Wu H, Fontanet P, Codeluppi S, Akkuratova N, Petitpré C, Xue-Franzén Y, Niederreither K, Sharma A, Da Silva F, Comai G, Agirman G, Palumberi D, Linnarsson S, Adameyko I, Moqrich A, Schedl A, La Manno G, Hadjab S, Lallemend F. A cell fitness selection model for neuronal survival during development. Nat Commun 2019; 10:4137. [PMID: 31515492 PMCID: PMC6742664 DOI: 10.1038/s41467-019-12119-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/16/2019] [Indexed: 01/14/2023] Open
Abstract
Developmental cell death plays an important role in the construction of functional neural circuits. In vertebrates, the canonical view proposes a selection of the surviving neurons through stochastic competition for target-derived neurotrophic signals, implying an equal potential for neurons to compete. Here we show an alternative cell fitness selection of neurons that is defined by a specific neuronal heterogeneity code. Proprioceptive sensory neurons that will undergo cell death and those that will survive exhibit different molecular signatures that are regulated by retinoic acid and transcription factors, and are independent of the target and neurotrophins. These molecular features are genetically encoded, representing two distinct subgroups of neurons with contrasted functional maturation states and survival outcome. Thus, in this model, a heterogeneous code of intrinsic cell fitness in neighboring neurons provides differential competitive advantage resulting in the selection of cells with higher capacity to survive and functionally integrate into neural networks.
Collapse
Affiliation(s)
- Yiqiao Wang
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Haohao Wu
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Paula Fontanet
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Simone Codeluppi
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Natalia Akkuratova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Charles Petitpré
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | | | - Karen Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, Inserm U964, Université de Strasbourg, Illkirch, France
| | - Anil Sharma
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Fabio Da Silva
- Université Côte d'Azur, Inserm, CNRS, iBV, 06108, Nice, France
| | - Glenda Comai
- Stem Cells & Development - Institut Pasteur - CNRS UMR3738, 75015, Paris, France
| | - Gulistan Agirman
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Domenico Palumberi
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sten Linnarsson
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
- Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille (IBDM), UMR 7288, 13288, Marseille, France
| | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, iBV, 06108, Nice, France
| | - Gioele La Manno
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - François Lallemend
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Ren Q, Awasaki T, Wang YC, Huang YF, Lee T. Lineage-guided Notch-dependent gliogenesis by Drosophila multi-potent progenitors. Development 2018; 145:dev.160127. [PMID: 29764857 DOI: 10.1242/dev.160127] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
Abstract
Macroglial cells in the central nervous system exhibit regional specialization and carry out region-specific functions. Diverse glial cells arise from specific progenitors in specific spatiotemporal patterns. This raises an interesting possibility that glial precursors with distinct developmental fates exist that govern region-specific gliogenesis. Here, we have mapped the glial progeny produced by the Drosophila type II neuroblasts, which, like vertebrate radial glia cells, yield both neurons and glia via intermediate neural progenitors (INPs). Distinct type II neuroblasts produce different characteristic sets of glia. A single INP can make both astrocyte-like and ensheathing glia, which co-occupy a relatively restrictive subdomain. Blocking apoptosis uncovers further lineage distinctions in the specification, proliferation and survival of glial precursors. Both the switch from neurogenesis to gliogenesis and the subsequent glial expansion depend on Notch signaling. Taken together, lineage origins preconfigure the development of individual glial precursors with involvement of serial Notch actions in promoting gliogenesis.
Collapse
Affiliation(s)
- Qingzhong Ren
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Takeshi Awasaki
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Yu-Chun Wang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Yu-Fen Huang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
11
|
Dong J, Wang Y, Wang Y, Wei W, Min H, Song B, Xi Q, Teng W, Chen J. Iodine deficiency increases apoptosis and decreases synaptotagmin-1 and PSD-95 in rat hippocampus. Nutr Neurosci 2013; 16:135-41. [DOI: 10.1179/1476830512y.0000000040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Veverytsa L, Allan DW. Subtype-specific neuronal remodeling during Drosophila metamorphosis. Fly (Austin) 2013; 7:78-86. [PMID: 23579264 DOI: 10.4161/fly.23969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During metamorphosis in holometabolous insects, the nervous system undergoes dramatic remodeling as it transitions from its larval to its adult form. Many neurons are generated through post-embryonic neurogenesis to have adult-specific roles, but perhaps more striking is the dramatic remodeling that occurs to transition neurons from functioning in the larval to the adult nervous system. These neurons exhibit a remarkable degree of plasticity during this transition; many subsets undergo programmed cell death, others remodel their axonal and dendritic arbors extensively, whereas others undergo trans-differentiation to alter their terminal differentiation gene expression profiles. Yet other neurons appear to be developmentally frozen in an immature state throughout larval life, to be awakened at metamorphosis by a process we term temporally-tuned differentiation. These multiple forms of remodeling arise from subtype-specific responses to a single metamorphic trigger, ecdysone. Here, we discuss recent progress in Drosophila melanogaster that is shedding light on how subtype-specific programs of neuronal remodeling are generated during metamorphosis.
Collapse
Affiliation(s)
- Lyubov Veverytsa
- Department of Cellular and Physiological Sciences, Life Sciences Centre, Health Sciences Mall, University of British Columbia, Vancouver, BC Canada
| | | |
Collapse
|
13
|
Kuert PA, Bello BC, Reichert H. The labial gene is required to terminate proliferation of identified neuroblasts in postembryonic development of the Drosophila brain. Biol Open 2012; 1:1006-15. [PMID: 23213378 PMCID: PMC3507175 DOI: 10.1242/bio.20121966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/20/2012] [Indexed: 01/03/2023] Open
Abstract
The developing brain of Drosophila has become a useful model for studying the molecular genetic mechanisms that give rise to the complex neuronal arrays that characterize higher brains in other animals including mammals. Brain development in Drosophila begins during embryogenesis and continues during a subsequent postembryonic phase. During embryogenesis, the Hox gene labial is expressed in the developing tritocerebrum, and labial loss-of-function has been shown to be associated with a loss of regional neuronal identity and severe patterning defects in this part of the brain. However, nothing is known about the expression and function of labial, or any other Hox gene, during the postembryonic phase of brain development, when the majority of the neurons in the adult brain are generated. Here we report the first analysis of Hox gene action during postembryonic brain development in Drosophila. We show that labial is expressed initially in six larval brain neuroblasts, of which only four give rise to the labial expressing neuroblast lineages present in the late larval brain. Although MARCM-based clonal mutation of labial in these four neuroblast lineages does not result in an obvious phenotype, a striking and unexpected effect of clonal labial loss-of-function does occur during postembryonic brain development, namely the formation of two ectopic neuroblast lineages that are not present in wildtype brains. The same two ectopic neuroblast lineages are also observed following cell death blockage and, significantly, in this case the resulting ectopic lineages are Labial-positive. These findings imply that labial is required in two specific neuroblast lineages of the wildtype brain for the appropriate termination of proliferation through programmed cell death. Our analysis of labial function reveals a novel cell autonomous role of this Hox gene in shaping the lineage architecture of the brain during postembryonic development.
Collapse
Affiliation(s)
- Philipp A Kuert
- Biozentrum, University of Basel , CH 4056 Basel , Switzerland
| | | | | |
Collapse
|
14
|
Wang Y, Zhong J, Xu H, Wei W, Dong J, Yu F, Wang Y, Gong J, Shan Z, Teng W, Chen J. Perinatal iodine deficiency and hypothyroidism increase cell apoptosis and alter doublecortin and reelin protein expressions in rat cerebellum. Arch Med Res 2012; 43:255-64. [PMID: 22595232 DOI: 10.1016/j.arcmed.2012.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/20/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Adequate thyroid hormone is critical for cerebellar development. Developmental hypothyroidism induced by iodine deficiency during the perinatal period results in permanent impairments of cerebellar development with an unclear mechanism. In the present study we investigated effects of perinatal iodine deficiency and hypothyroidism on cerebellar cell apoptosis, doublecortin (Dcx) and reelin. Apoptosis is an essential part of neural development. Dcx and reelin are two important molecules involved in neuronal migration, structure, and development in cerebellum. METHODS Two developmental rat models were created by administering dam rats with either iodine-deficient diet or propylthiouracil (PTU, 5 ppm or 15 ppm)-added drinking water from gestational day (GD) 6 until postnatal day (PND) 28. TUNEL assay and protein levels of Dcx and reelin in cerebella were assessed on PND14, 21 and 28. RESULTS Apoptotic cells were increased in the iodine-deficient and PTU-treated rats. Dcx protein levels in the cerebella of iodine-deficient and PTU-treated rats were significantly downregulated on PND14. Interestingly, iodine deficiency and PTU treatment upregulated the levels of Dcx protein on PND21 and 28. Reelin expressions in iodine-deficient and PTU-treated rats were significantly decreased on PND14 and 21. On PND28, reelin expressions of three treated groups were still lower than control group, although without significant difference. CONCLUSIONS These findings may implicate alterations in cell apoptosis and levels of Dcx and reelin in the impairments of cerebellar development induced by developmental iodine deficiency and hypothyroidism.
Collapse
Affiliation(s)
- Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Karlsson D, Baumgardt M, Thor S. Segment-specific neuronal subtype specification by the integration of anteroposterior and temporal cues. PLoS Biol 2010; 8:e1000368. [PMID: 20485487 PMCID: PMC2867937 DOI: 10.1371/journal.pbio.1000368] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 04/01/2010] [Indexed: 11/18/2022] Open
Abstract
To address the question of how neuronal diversity is achieved throughout the CNS, this study provides evidence of modulation of neural progenitor cell “output” along the body axis by integration of local anteroposterior and temporal cues. The generation of distinct neuronal subtypes at different axial levels relies upon both anteroposterior and temporal cues. However, the integration between these cues is poorly understood. In the Drosophila central nervous system, the segmentally repeated neuroblast 5–6 generates a unique group of neurons, the Apterous (Ap) cluster, only in thoracic segments. Recent studies have identified elaborate genetic pathways acting to control the generation of these neurons. These insights, combined with novel markers, provide a unique opportunity for addressing how anteroposterior and temporal cues are integrated to generate segment-specific neuronal subtypes. We find that Pbx/Meis, Hox, and temporal genes act in three different ways. Posteriorly, Pbx/Meis and posterior Hox genes block lineage progression within an early temporal window, by triggering cell cycle exit. Because Ap neurons are generated late in the thoracic 5–6 lineage, this prevents generation of Ap cluster cells in the abdomen. Thoracically, Pbx/Meis and anterior Hox genes integrate with late temporal genes to specify Ap clusters, via activation of a specific feed-forward loop. In brain segments, “Ap cluster cells” are present but lack both proper Hox and temporal coding. Only by simultaneously altering Hox and temporal gene activity in all segments can Ap clusters be generated throughout the neuroaxis. This study provides the first detailed analysis, to our knowledge, of an identified neuroblast lineage along the entire neuroaxis, and confirms the concept that lineal homologs of truncal neuroblasts exist throughout the developing brain. We furthermore provide the first insight into how Hox/Pbx/Meis anteroposterior and temporal cues are integrated within a defined lineage, to specify unique neuronal identities only in thoracic segments. This study reveals a surprisingly restricted, yet multifaceted, function of both anteroposterior and temporal cues with respect to lineage control and cell fate specification. An animal's nervous system contains a wide variety of neuronal subtypes generated from neural progenitor (“stem”) cells, which generate different types of neurons at different axial positions and time points. Hence, the generation and specification of unique neuronal subtypes is dependent upon the integration of both spatial and temporal cues within distinct stem cells. The nature of this integration is poorly understood. We have addressed this issue in the Drosophila neuroblast 5–6 lineage. This stem cell is generated in all 18 segments of the central nervous system, stretching from the brain down to the abdomen of the fly, but a larger lineage containing a well-defined set of cells—the Apterous (Ap) cluster—is generated only in thoracic segments. We show that segment-specific generation of the Ap cluster neurons is achieved by the integration of the anteroposterior and temporal cues in several different ways. Generation of the Ap neurons in abdominal segments is prevented by anteroposterior cues stopping the cell cycle in the stem cell at an early stage. In brain segments, late-born neurons are generated, but are differently specified due to the presence of different anteroposterior and temporal cues. Finally, in thoracic segments, the temporal and spatial cues integrate on a highly limited set of target genes to specify the Ap cluster neurons.
Collapse
Affiliation(s)
- Daniel Karlsson
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Magnus Baumgardt
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
- * E-mail:
| |
Collapse
|