1
|
Sipe GO, Petravicz J, Rikhye RV, Garcia R, Mellios N, Sur M. Astrocyte glutamate uptake coordinates experience-dependent, eye-specific refinement in developing visual cortex. Glia 2021; 69:1723-1735. [PMID: 33675674 DOI: 10.1002/glia.23987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
The uptake of glutamate by astrocytes actively shapes synaptic transmission, however its role in the development and plasticity of neuronal circuits remains poorly understood. The astrocytic glutamate transporter, GLT1 is the predominant source of glutamate clearance in the adult mouse cortex. Here, we examined the structural and functional development of the visual cortex in GLT1 heterozygous (HET) mice using two-photon microscopy, immunohistochemistry and slice electrophysiology. We find that though eye-specific thalamic axonal segregation is intact, binocular refinement in the primary visual cortex is disrupted. Eye-specific responses to visual stimuli in GLT1 HET mice show altered binocular matching, with abnormally high responses to ipsilateral compared to contralateral eye stimulation and a greater mismatch between preferred orientation selectivity of ipsilateral and contralateral eye responses. Furthermore, we observe an increase in dendritic spine density in the basal dendrites of layer 2/3 excitatory neurons suggesting aberrant spine pruning. Monocular deprivation induces atypical ocular dominance plasticity in GLT1 HET mice, with an unusual depression of ipsilateral open eye responses; however, this change in ipsilateral responses correlates well with an upregulation of GLT1 protein following monocular deprivation. These results demonstrate that a key function of astrocytic GLT1 function during development is the experience-dependent refinement of ipsilateral eye inputs relative to contralateral eye inputs in visual cortex.
Collapse
Affiliation(s)
- Grayson O Sipe
- Department of Brain and Cognitive Sciences, Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jeremy Petravicz
- Department of Brain and Cognitive Sciences, Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rajeev V Rikhye
- Department of Brain and Cognitive Sciences, Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rodrigo Garcia
- Department of Brain and Cognitive Sciences, Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.,Autophagy Inflammation and Metabolism (AIM) Center, Albuquerque, New Mexico, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Glendining KA, Liu SC, Nguyen M, Dharmaratne N, Nagarajah R, Iglesias MA, Sawatari A, Leamey CA. Downstream mediators of Ten-m3 signalling in the developing visual pathway. BMC Neurosci 2017; 18:78. [PMID: 29207951 PMCID: PMC5718065 DOI: 10.1186/s12868-017-0397-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/28/2017] [Indexed: 11/14/2022] Open
Abstract
Background The formation of visuotopically-aligned projections in the brain is required for the generation of functional binocular circuits. The mechanisms which underlie this process are unknown. Ten-m3 is expressed in a broad high-ventral to low-dorsal gradient across the retina and in topographically-corresponding gradients in primary visual centres. Deletion of Ten-m3 causes profound disruption of binocular visual alignment and function. Surprisingly, one of the most apparent neuroanatomical changes—dramatic mismapping of ipsilateral, but not contralateral, retinal axons along the representation of the nasotemporal retinal axis—does not correlate well with Ten-m3’s expression pattern, raising questions regarding mechanism. The aim of this study was to further our understanding of the molecular interactions which enable the formation of functional binocular visual circuits. Methods Anterograde tracing, gene expression studies and protein pull-down experiments were performed. Statistical significance was tested using a Kolmogorov–Smirnov test, pairwise-fixed random reallocation tests and univariate ANOVAs. Results We show that the ipsilateral retinal axons in Ten-m3 knockout mice are mismapped as a consequence of early axonal guidance defects. The aberrant invasion of the ventral-most region of the dorsal lateral geniculate nucleus by ipsilateral retinal axons in Ten-m3 knockouts suggested changes in the expression of other axonal guidance molecules, particularly members of the EphA–ephrinA family. We identified a consistent down-regulation of EphA7, but none of the other EphA–ephrinA genes tested, as well as an up-regulation of ipsilateral-determinants Zic2 and EphB1 in visual structures. We also found that Zic2 binds specifically to the intracellular domain of Ten-m3 in vitro. Conclusion Our findings suggest that Zic2, EphB1 and EphA7 molecules may work as effectors of Ten-m3 signalling, acting together to enable the wiring of functional binocular visual circuits. Electronic supplementary material The online version of this article (10.1186/s12868-017-0397-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kelly A Glendining
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sam C Liu
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Marvin Nguyen
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Nuwan Dharmaratne
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Rajini Nagarajah
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Miguel A Iglesias
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Atomu Sawatari
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Catherine A Leamey
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
3
|
Vierci G, Pannunzio B, Bornia N, Rossi FM. H3 and H4 Lysine Acetylation Correlates with Developmental and Experimentally Induced Adult Experience-Dependent Plasticity in the Mouse Visual Cortex. J Exp Neurosci 2016; 10:49-64. [PMID: 27891053 PMCID: PMC5117113 DOI: 10.4137/jen.s39888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/21/2016] [Accepted: 08/27/2016] [Indexed: 12/30/2022] Open
Abstract
Histone posttranslational modifications play a fundamental role in orchestrating gene expression. In this work, we analyzed the acetylation of H3 and H4 histones (AcH3-AcH4) and its modulation by visual experience in the mouse visual cortex (VC) during normal development and in two experimental conditions that restore juvenile-like plasticity levels in adults (fluoxetine treatment and enriched environment). We found that AcH3-AcH4 declines with age and is upregulated by treatments restoring plasticity in the adult. We also found that visual experience modulates AcH3-AcH4 in young and adult plasticity-restored mice but not in untreated ones. Finally, we showed that the transporter vGAT is downregulated in adult plasticity-restored models. In summary, we identified a dynamic regulation of AcH3-AcH4, which is associated with high plasticity levels and enhanced by visual experience. These data, along with recent ones, indicate H3-H4 acetylation as a central hub in the control of experience-dependent plasticity in the VC.
Collapse
Affiliation(s)
- Gabriela Vierci
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Bruno Pannunzio
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Bornia
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Francesco M Rossi
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Bardi M, Kaufman C, Franssen C, Hyer MM, Rzucidlo A, Brown M, Tschirhart M, Lambert KG. Paper or Plastic? Exploring the Effects of Natural Enrichment on Behavioural and Neuroendocrine Responses in Long-Evans Rats. J Neuroendocrinol 2016; 28. [PMID: 26970429 DOI: 10.1111/jne.12383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/10/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023]
Abstract
Enriched environments are beneficial to neurobiological development; specifically, rodents exposed to complex, rather than standard laboratory, environments exhibit evidence of neuroplasticity and enhanced cognitive performance. In the present study, the nature of elements placed in the complex environment was investigated. Accordingly, rats (n = 8 per group) were housed either in a natural environment characterised by stimuli such as dirt and rocks, an artificial environment characterised by plastic toys and synthetic nesting materials, a natural/artificial environment characterised by a combination of artificial and natural stimuli or a laboratory standard environment characterised by no enrichment stimuli. Following exposure to emotional and cognitive behavioural tasks, including a cricket hunting task, a novel object preference task and a forced swim task, brains were processed for glial fibrillary acidic protein (GFAP)-, neuronal nuclei (NeuN)- and brain-derived neurotrophic factor (BDNF) immunoreactivity. Baseline and stress foecal samples were collected to assess corticosterone (CORT) and dehydroepiandrosterone (DHEA). Natural environment animals exhibited shorter diving latencies and increased diving frequencies in the second forced swimming task, along with higher DHEA/CORT ratios, and higher GFAP immunoreactivity in the hippocampus. The type of environmental enrichment did not influence levels of BDNF immunoreactivity in the CA1, CA3 and dentate gyrus of the hippocampus; however, natural environment animals exhibited higher levels of NeuN immunoreactivity in the retrosplenial cortex, an area involved in spatial memory and other cognitive functions. These results suggest that, in addition to enhancing behavioural and endocrinological variables associated with resilience, exposure to natural stimuli might alter plasticity in brain areas associated with cortical processing and learning.
Collapse
Affiliation(s)
- M Bardi
- Randolph-Macon College, Ashland, VA, USA
| | - C Kaufman
- Randolph-Macon College, Ashland, VA, USA
| | | | - M M Hyer
- Randolph-Macon College, Ashland, VA, USA
| | - A Rzucidlo
- Randolph-Macon College, Ashland, VA, USA
| | - M Brown
- Randolph-Macon College, Ashland, VA, USA
| | | | | |
Collapse
|
5
|
The teneurins: new players in the generation of visual topography. Semin Cell Dev Biol 2014; 35:173-9. [PMID: 25152333 DOI: 10.1016/j.semcdb.2014.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/08/2014] [Accepted: 08/15/2014] [Indexed: 01/03/2023]
Abstract
A functionally critical feature of the nervous system is the precision of its connectivity. An emerging molecular mediator of this process is the teneurin/ten-m/odz family of transmembrane proteins. A number of recent studies have provided compelling evidence that teneurins have homophilic adhesive properties which, together with their corresponding expression patterns in interconnected groups of neurons, enables them to promote appropriate patterns of connectivity. Particularly important roles have been demonstrated in the visual, olfactory and motor systems. This review attempts to relate new insights into the complex biology of these molecules to their roles in the establishment of functional neural circuits.
Collapse
|
6
|
Abstract
Functional binocular vision requires that inputs arising from the two retinae are integrated and precisely organized within central visual areas. Previous studies have demonstrated an important role for one member of the Ten-m/Odz/teneurin family, Ten-m3, in the mapping of ipsilateral retinal projections. Here, we have identified a distinct role for another closely related family member, Ten-m2, in the formation of the ipsilateral projection in the mouse visual system. Ten-m2 expression was observed in the retina, dorsal lateral geniculate nucleus (dLGN), superior colliculus (SC), and primary visual cortex (V1) of the developing mouse. Anterograde and retrograde tracing experiments in Ten-m2 knock-out (KO) mice revealed a specific decrease in ipsilateral retinal ganglion cells projecting to dLGN and SC. This reduction was most prominent in regions corresponding to ventral retina. No change in the topography of ipsilateral or contralateral projections was observed. While expression of a critical ipsilateral fate determinant, Zic2, appeared unaltered, a notable reduction in one of its downstream targets, EphB1, was observed in ventral retina, suggesting that Ten-m2 may interact with this molecular pathway. Immunohistochemistry for c-fos, a neural activity marker, revealed that the area of V1 driven by ipsilateral inputs was reduced in KOs, while the ratio of ipsilateral-to-contralateral responses contributing to binocular activation during visually evoked potential recordings was also diminished. Finally, a novel two-alternative swim task revealed specific deficits associated with dorsal visual field. These data demonstrate a requirement for Ten-m2 in the establishment of ipsilateral projections, and thus the generation of binocular circuits, critical for mammalian visual function.
Collapse
|
7
|
Roy S, Nag TC, Upadhyay AD, Mathur R, Jain S. Repetitive auditory stimulation at a critical prenatal period modulates the postnatal functional development of the auditory as well as visual system in chicks (Gallus domesticus). Dev Neurobiol 2013; 73:688-701. [PMID: 23696545 DOI: 10.1002/dneu.22091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/26/2013] [Accepted: 05/13/2013] [Indexed: 11/11/2022]
Abstract
The extrinsic sensory stimulation plays a crucial role in the formation and integration of sensory modalities during development. Postnatal behavior is thereby influenced by the type and timing of presentation of prenatal sensory stimuli. In this study, fertilized eggs of white Leghorn chickens during incubation were exposed to either species-specific calls or no sound. To find the prenatal critical period when auditory stimulation can modulate visual system development, the former group was divided into three subgroups: in subgroup A (SGA), the stimulus was provided during embryonic day (E)10 to E16, in SGB E17- hatching, and in SGC E10-hatching. The auditory and visual perceptual learning was recorded at posthatch day (PH) 1-3, whereas synaptic plasticity (evident from synaptophysin and PSD-95 expression), was observed at E19, E20, and PH 1-3. An increased number of responders were observed in both auditory and visual preference tests at PH 1 following stimulation. Although a decrease in latency of entry and an increase in total time spent were observed in all stimulated groups, it was most significant in SGC in auditory preference and in SGB and SGC in visual preference test. The auditory cortex of SGC and visual Wulst of SGB and SGC revealed higher expression of synaptic proteins, compared to control and SGA. A significant inter-hemispheric and gender-based difference in expression was also found in all groups. These results indicate facilitation of postnatal behaviour and synaptogenesis in both auditory and visual systems following prenatal repetitive auditory stimulation, only when given during prenatal critical period of development.
Collapse
Affiliation(s)
- Saborni Roy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
8
|
Diverse strategies engaged in establishing stereotypic wiring patterns among neurons sharing a common input at the visual system's first synapse. J Neurosci 2012; 32:10306-17. [PMID: 22836264 DOI: 10.1523/jneurosci.1581-12.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensory circuits use common strategies, such as convergence and divergence, typically at different synapses, to pool or distribute inputs. Inputs from different presynaptic cell types converge onto a common postsynaptic cell, acting together to shape neuronal output (Klausberger and Somogyi, 2008). Also, individual presynaptic cells contact several postsynaptic cell types, generating divergence of signals. Attaining such complex wiring patterns relies on the orchestration of many events across development, including axonal and dendritic growth and synapse formation and elimination (reviewed by Waites et al., 2005; Sanes and Yamagata, 2009). Recent work has focused on how distinct presynaptic cell types form stereotypic connections with an individual postsynaptic cell (Morgan et al., 2011; Williams et al., 2011), but how a single presynaptic cell type diverges to form distinct wiring patterns with multiple postsynaptic cell types during development remains unexplored. Here we take advantage of the compactness of the visual system's first synapse to observe development of such a circuit in mouse retina. By imaging three types of postsynaptic bipolar cells and their common photoreceptor targets across development, we found that distinct bipolar cell types engage in disparate dendritic growth behaviors, exhibit targeted or exploratory approaches to contact photoreceptors, and adhere differently to the synaptotropic model of establishing synaptic territories. Furthermore each type establishes its final connectivity patterns with the same afferents on separate time scales. We propose that such differences in strategy and timeline could facilitate the division of common inputs among multiple postsynaptic cell types to create parallel circuits with diverse function.
Collapse
|
9
|
Ten-m3 is required for the development of topography in the ipsilateral retinocollicular pathway. PLoS One 2012; 7:e43083. [PMID: 23028443 PMCID: PMC3446960 DOI: 10.1371/journal.pone.0043083] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/16/2012] [Indexed: 11/20/2022] Open
Abstract
Background The alignment of ipsilaterally and contralaterally projecting retinal axons that view the same part of visual space is fundamental to binocular vision. While much progress has been made regarding the mechanisms which regulate contralateral topography, very little is known of the mechanisms which regulate the mapping of ipsilateral axons such that they align with their contralateral counterparts. Results Using the advantageous model provided by the mouse retinocollicular pathway, we have performed anterograde tracing experiments which demonstrate that ipsilateral retinal axons begin to form terminal zones (TZs) in the superior colliculus (SC), within the first few postnatal days. These appear mature by postnatal day 11. Importantly, TZs formed by ipsilaterally-projecting retinal axons are spatially offset from those of contralaterally-projecting axons arising from the same retinotopic location from the outset. This pattern is consistent with that required for adult visuotopy. We further demonstrate that a member of the Ten-m/Odz/Teneurin family of homophilic transmembrane glycoproteins, Ten-m3, is an essential regulator of ipsilateral retinocollicular topography. Ten-m3 mRNA is expressed in a high-medial to low-lateral gradient in the developing SC. This corresponds topographically with its high-ventral to low-dorsal retinal gradient. In Ten-m3 knockout mice, contralateral ventrotemporal axons appropriately target rostromedial SC, whereas ipsilateral axons exhibit dramatic targeting errors along both the mediolateral and rostrocaudal axes of the SC, with a caudal shift of the primary TZ, as well as the formation of secondary, caudolaterally displaced TZs. In addition to these dramatic ipsilateral-specific mapping errors, both contralateral and ipsilateral retinocollicular TZs exhibit more subtle changes in morphology. Conclusions We conclude that important aspects of adult visuotopy are established via the differential sensitivity of ipsilateral and contralateral axons to intrinsic guidance cues. Further, we show that Ten-m3 plays a critical role in this process and is particularly important for the mapping of the ipsilateral retinocollicular pathway.
Collapse
|
10
|
Furman M, Crair MC. Synapse maturation is enhanced in the binocular region of the retinocollicular map prior to eye opening. J Neurophysiol 2012; 107:3200-16. [PMID: 22402661 PMCID: PMC3774562 DOI: 10.1152/jn.00943.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/07/2012] [Indexed: 02/08/2023] Open
Abstract
In the developing visual system of mammals, retinal axons from the two eyes compete for postsynaptic partners. After eye opening, this process is regulated in part by homeostatically constrained competition for synaptic connectivity with target neurons. However, prior to eye opening, the functional and synaptic basis of binocular map development is unclear. To examine the role of binocular interactions during early stages of visual map development, we performed in vitro patch-clamp recordings from the superior colliculus (SC) of neonatal mice. Using newly designed slice preparations, we compared retinocollicular synapse development in the medial SC, which receives binocular input, and the lateral SC, which is predominantly monocular. Surprisingly, we found that at P6-7, when eye-specific segregation has just emerged, retinocollicular synapses were stronger and more mature and dendritic arbors were more elaborate in the medial than the lateral SC. Furthermore, monocular enucleation of the ipsilateral eye at P0 selectively reduced synaptic strength and dendritic branching in the medial SC and abolished the differences normally observed between the two slices at P6-7. This specifically implicates binocular interactions in the development of retinocollicular connectivity prior to eye opening. Our findings contrast with the predictions of a constrained-connectivity model of binocular map development and suggest instead that binocular competition prior to eye opening enhances retinocollicular synaptic strength and the morphological development of retino-recipient neurons.
Collapse
Affiliation(s)
- Moran Furman
- Dept. of Neurobiology, Yale Univ. School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
11
|
Merlin S, Horng S, Marotte LR, Sur M, Sawatari A, Leamey CA. Deletion of Ten-m3 induces the formation of eye dominance domains in mouse visual cortex. ACTA ACUST UNITED AC 2012; 23:763-74. [PMID: 22499796 DOI: 10.1093/cercor/bhs030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The visual system is characterized by precise retinotopic mapping of each eye, together with exquisitely matched binocular projections. In many species, the inputs that represent the eyes are segregated into ocular dominance columns in primary visual cortex (V1), whereas in rodents, this does not occur. Ten-m3, a member of the Ten-m/Odz/Teneurin family, regulates axonal guidance in the retinogeniculate pathway. Significantly, ipsilateral projections are expanded in the dorsal lateral geniculate nucleus and are not aligned with contralateral projections in Ten-m3 knockout (KO) mice. Here, we demonstrate the impact of altered retinogeniculate mapping on the organization and function of V1. Transneuronal tracing and c-fos immunohistochemistry demonstrate that the subcortical expansion of ipsilateral input is conveyed to V1 in Ten-m3 KOs: Ipsilateral inputs are widely distributed across V1 and are interdigitated with contralateral inputs into eye dominance domains. Segregation is confirmed by optical imaging of intrinsic signals. Single-unit recording shows ipsilateral, and contralateral inputs are mismatched at the level of single V1 neurons, and binocular stimulation leads to functional suppression of these cells. These findings indicate that the medial expansion of the binocular zone together with an interocular mismatch is sufficient to induce novel structural features, such as eye dominance domains in rodent visual cortex.
Collapse
Affiliation(s)
- Sam Merlin
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Torii M, Hackett TA, Rakic P, Levitt P, Polley DB. EphA signaling impacts development of topographic connectivity in auditory corticofugal systems. ACTA ACUST UNITED AC 2012; 23:775-85. [PMID: 22490549 DOI: 10.1093/cercor/bhs066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Auditory stimulus representations are dynamically maintained by ascending and descending projections linking the auditory cortex (Actx), medial geniculate body (MGB), and inferior colliculus. Although the extent and topographic specificity of descending auditory corticofugal projections can equal or surpass that of ascending corticopetal projections, little is known about the molecular mechanisms that guide their development. Here, we used in utero gene electroporation to examine the role of EphA receptor signaling in the development of corticothalamic (CT) and corticocollicular connections. Early in postnatal development, CT axons were restricted to a deep dorsal zone (DDZ) within the MGB that expressed low levels of the ephrin-A ligand. By hearing onset, CT axons had innervated surrounding regions of MGB in control-electroporated mice but remained fixed within the DDZ in mice overexpressing EphA7. In vivo neurophysiological recordings demonstrated a corresponding reduction in spontaneous firing rate, but no changes in sound-evoked responsiveness within MGB regions deprived of CT innervation. Structural and functional CT disruption occurred without gross alterations in thalamocortical connectivity. These data demonstrate a potential role for EphA/ephrin-A signaling in the initial guidance of corticofugal axons and suggest that "genetic rewiring" may represent a useful functional tool to alter cortical feedback without silencing Actx.
Collapse
Affiliation(s)
- Masaaki Torii
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | | | | | |
Collapse
|
13
|
Bleckert A, Wong ROL. Identifying roles for neurotransmission in circuit assembly: insights gained from multiple model systems and experimental approaches. Bioessays 2011; 33:61-72. [PMID: 21110347 DOI: 10.1002/bies.201000095] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the adult nervous system, chemical neurotransmission between neurons is essential for information processing. However, neurotransmission is also important for patterning circuits during development, but its precise roles have yet to be identified, and some remain highly debated. Here, we highlight viewpoints that have come to be widely accepted or still challenged. We discuss how distinct techniques and model systems employed to probe the developmental role of neurotransmission may reconcile disparate ideas. We underscore how the effects of perturbing neurotransmission during development vary with model systems, the stage of development when transmission is altered, the nature of the perturbation, and how connectivity is assessed. Based on findings in circuits with connectivity arranged in layers, we raise the possibility that there exist constraints in neuronal network design that limit the role of neurotransmission. We propose that activity-dependent mechanisms are effective in refining connectivity patterns only when inputs from different cells are close enough, spatially, to influence each other's outcome.
Collapse
Affiliation(s)
- Adam Bleckert
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
14
|
Bourne JA. Unravelling the development of the visual cortex: implications for plasticity and repair. J Anat 2010; 217:449-68. [PMID: 20722872 DOI: 10.1111/j.1469-7580.2010.01275.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain.
Collapse
Affiliation(s)
- James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
15
|
Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 2010; 30:361-71. [PMID: 20053917 DOI: 10.1523/jneurosci.2233-09.2010] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Experience-dependent plasticity in the cortex is often higher during short critical periods in postnatal development. The mechanisms limiting adult cortical plasticity are still unclear. Maturation of intracortical GABAergic inhibition is suggested to be crucial for the closure of the critical period for ocular dominance (OD) plasticity in the visual cortex. We find that reduction of GABAergic transmission in the adult rat visual cortex partially reactivates OD plasticity in response to monocular deprivation (MD). This is accompanied by an enhancement of activity-dependent potentiation of synaptic efficacy but not of activity-dependent depression. We also found a decrease in the expression of chondroitin sulfate proteoglycans in the visual cortex of MD animals with reduced inhibition, after the reactivation of OD plasticity. Thus, intracortical inhibition is a crucial limiting factor for the induction of experience-dependent plasticity in the adult visual cortex.
Collapse
|
16
|
Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L. Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ 2009; 17:1092-103. [PMID: 20019745 DOI: 10.1038/cdd.2009.193] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Environmental enrichment (EE) is known to profoundly affect the central nervous system (CNS) at the functional, anatomical and molecular level, both during the critical period and during adulthood. Recent studies focusing on the visual system have shown that these effects are associated with the recruitment of previously unsuspected neural plasticity processes. At early stages of brain development, EE triggers a marked acceleration in the maturation of the visual system, with maternal behaviour acting as a fundamental mediator of the enriched experience in both the foetus and the newborn. In adult brain, EE enhances plasticity in the cerebral cortex, allowing the recovery of visual functions in amblyopic animals. The molecular substrate of the effects of EE on brain plasticity is multi-factorial, with reduced intracerebral inhibition, enhanced neurotrophin expression and epigenetic changes at the level of chromatin structure. These findings shed new light on the potential of EE as a non-invasive strategy to ameliorate deficits in the development of the CNS and to treat neurological disorders.
Collapse
Affiliation(s)
- L Baroncelli
- Laboratory of Neurobiology, Scuola Normale Superiore, Pisa I-56100, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Simonetti T, Lee H, Bourke M, Leamey CA, Sawatari A. Enrichment from birth accelerates the functional and cellular development of a motor control area in the mouse. PLoS One 2009; 4:e6780. [PMID: 19756157 PMCID: PMC2742178 DOI: 10.1371/journal.pone.0006780] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/20/2009] [Indexed: 11/19/2022] Open
Abstract
Background There is strong evidence that sensory experience in early life has a profound influence on the development of sensory circuits. Very little is known, however, about the role of experience in the early development of striatal networks which regulate both motor and cognitive function. To address this, we have investigated the influence of early environmental enrichment on motor development. Methodology/Principal Findings Mice were raised in standard or enriched housing from birth. For animals assessed as adults, half of the mice had their rearing condition reversed at weaning to enable the examination of the effects of pre- versus post-weaning enrichment. We found that exclusively pre-weaning enrichment significantly improved performance on the Morris water maze compared to non-enriched mice. The effects of early enrichment on the emergence of motor programs were assessed by performing behavioural tests at postnatal day 10. Enriched mice traversed a significantly larger region of the test arena in an open-field test and had improved swimming ability compared to non-enriched cohorts. A potential cellular correlate of these changes was investigated using Wisteria-floribunda agglutinin (WFA) staining to mark chondroitin-sulfate proteoglycans (CSPGs). We found that the previously reported transition of CSPG staining from striosome-associated clouds to matrix-associated perineuronal nets (PNNs) is accelerated in enriched mice. Conclusions/Significance This is the first demonstration that the early emergence of exploratory as well as coordinated movement is sensitive to experience. These behavioural changes are correlated with an acceleration of the emergence of striatal PNNs suggesting that they may consolidate the neural circuits underlying these behaviours. Finally, we confirm that pre-weaning experience can lead to life long changes in the learning ability of mice.
Collapse
Affiliation(s)
- Teresa Simonetti
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
| | - Hyunchul Lee
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
| | - Michael Bourke
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
| | - Catherine A. Leamey
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
| | - Atomu Sawatari
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|