1
|
Lin B, Singh RK, Seiler MJ, Nasonkin IO. Survival and Functional Integration of Human Embryonic Stem Cell-Derived Retinal Organoids After Shipping and Transplantation into Retinal Degeneration Rats. Stem Cells Dev 2024; 33:201-213. [PMID: 38390839 PMCID: PMC11250834 DOI: 10.1089/scd.2023.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Because derivation of retinal organoids (ROs) and transplantation are frequently split between geographically distant locations, we developed a special shipping device and protocol capable of the organoids' delivery to any location. Human embryonic stem cell (hESC)-derived ROs were differentiated from the hESC line H1 (WA01), shipped overnight to another location, and then transplanted into the subretinal space of blind immunodeficient retinal degeneration (RD) rats. Development of transplants was monitored by spectral-domain optical coherence tomography. Visual function was accessed by optokinetic tests and superior colliculus (SC) electrophysiology. Cryostat sections through transplants were stained with hematoxylin and eosin; or processed for immunohistochemistry to label human donor cells, retinal cell types, and synaptic markers. After transplantation, ROs integrated into the host RD retina, formed functional photoreceptors, and improved vision in rats with advanced RD. The survival and vision improvement are comparable with our previous results of hESC-ROs without a long-distance delivery. Furthermore, for the first time in the stem cell transplantation field, we demonstrated that the response heatmap on the SC showed a similar shape to the location of the transplant in the host retina, which suggested the point-to-point projection of the transplant from the retina to SC. In conclusion, our results showed that using our special device and protocol, the hESC-derived ROs can be shipped over long distance and are capable of survival and visual improvement after transplantation into the RD rats. Our data provide a proof-of-concept for stem cell replacement as a therapy for RD patients.
Collapse
Affiliation(s)
- Bin Lin
- Department of Anatomy and Neurobiology, Physical Medicine and Rehabilitation, Ophthalmology, Sue and Bill Stem Cell Research Center, University of California, Irvine School of Medicine, Irvine, California, USA
| | | | - Magdalene J. Seiler
- Department of Anatomy and Neurobiology, Physical Medicine and Rehabilitation, Ophthalmology, Sue and Bill Stem Cell Research Center, University of California, Irvine School of Medicine, Irvine, California, USA
| | | |
Collapse
|
2
|
Wang M, Fan J, Shao Z. Cellular and Molecular Mechanisms Underlying Synaptic Subcellular Specificity. Brain Sci 2024; 14:155. [PMID: 38391729 PMCID: PMC10886843 DOI: 10.3390/brainsci14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Chemical synapses are essential for neuronal information storage and relay. The synaptic signal received or sent from spatially distinct subcellular compartments often generates different outcomes due to the distance or physical property difference. Therefore, the final output of postsynaptic neurons is determined not only by the type and intensity of synaptic inputs but also by the synaptic subcellular location. How synaptic subcellular specificity is determined has long been the focus of study in the neurodevelopment field. Genetic studies from invertebrates such as Caenorhabditis elegans (C. elegans) have uncovered important molecular and cellular mechanisms required for subcellular specificity. Interestingly, similar molecular mechanisms were found in the mammalian cerebellum, hippocampus, and cerebral cortex. This review summarizes the comprehensive advances in the cellular and molecular mechanisms underlying synaptic subcellular specificity, focusing on studies from C. elegans and rodents.
Collapse
Affiliation(s)
- Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Jiale Fan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| |
Collapse
|
3
|
Singh RK, Winkler PA, Binette F, Petersen-Jones SM, Nasonkin IO. Comparison of Developmental Dynamics in Human Fetal Retina and Human Pluripotent Stem Cell-Derived Retinal Tissue. Stem Cells Dev 2021; 30:399-417. [PMID: 33677999 DOI: 10.1089/scd.2020.0085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Progressive vision loss, caused by retinal degenerative (RD) diseases such as age-related macular degeneration, retinitis pigmentosa, and Leber congenital amaurosis, severely impacts quality of life and affects millions of people. Finding efficient treatment for blinding diseases is among the greatest unmet clinical needs. The evagination of optic vesicles from developing pluripotent stem cell-derived neuroepithelium and self-organization, lamination, and differentiation of retinal tissue in a dish generated considerable optimism for developing innovative approaches for treating RD diseases, which previously were not feasible. Retinal organoids may be a limitless source of multipotential retinal progenitors, photoreceptors (PRs), and the whole retinal tissue, which are productive approaches for developing RD disease therapies. In this study we compared the distribution and expression level of molecular markers (genetic and epigenetic) in human fetal retina (age 8-16 weeks) and human embryonic stem cell (hESC)-derived retinal tissue (organoids) by immunohistochemistry, RNA-seq, flow cytometry, and mass-spectrometry (to measure methylated and hydroxymethylated cytosine level), with a focus on PRs to evaluate the clinical application of hESC-retinal tissue for vision restoration. Our results revealed high correlation in gene expression profiles and histological profiles between human fetal retina (age 8-13 weeks) and hESC-derived retinal tissue (10-12 weeks). The transcriptome signature of hESC-derived retinal tissue from retinal organoids maintained for 24 weeks in culture resembled the transcriptome of human fetal retina of more advanced developmental stages. The histological profiles of 24 week-old hESC-derived retinal tissue displayed mature PR immunophenotypes and presence of developing inner and outer segments. Collectively, our work highlights the similarity of hESC-derived retinal tissue at early stages of development (10 weeks), and human fetal retina (age 8-13 weeks) and it supports the development of regenerative medicine therapies aimed at using tissue from hESC-derived retinal organoids (hESC-retinal implants) for mitigating vision loss.
Collapse
Affiliation(s)
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
4
|
Singh RK, Occelli LM, Binette F, Petersen-Jones SM, Nasonkin IO. Transplantation of Human Embryonic Stem Cell-Derived Retinal Tissue in the Subretinal Space of the Cat Eye. Stem Cells Dev 2019; 28:1151-1166. [PMID: 31210100 PMCID: PMC6708274 DOI: 10.1089/scd.2019.0090] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To develop biological approaches to restore vision, we developed a method of transplanting stem cell-derived retinal tissue into the subretinal space of a large-eye animal model (cat). Human embryonic stem cells (hESC) were differentiated to retinal organoids in a dish. hESC-derived retinal tissue was introduced into the subretinal space of wild-type cats following a pars plana vitrectomy. The cats were systemically immunosuppressed with either prednisolone or prednisolone plus cyclosporine A. The eyes were examined by fundoscopy and spectral-domain optical coherence tomography imaging for adverse effects due to the presence of the subretinal grafts. Immunohistochemistry was done with antibodies to retinal and human markers to delineate graft survival, differentiation, and integration into cat retina. We successfully delivered hESC-derived retinal tissue into the subretinal space of the cat eye. We observed strong infiltration of immune cells in the graft and surrounding tissue in the cats treated with prednisolone. In contrast, we showed better survival and low immune response to the graft in cats treated with prednisolone plus cyclosporine A. Immunohistochemistry with antibodies (STEM121, CALB2, DCX, and SMI-312) revealed large number of graft-derived fibers connecting the graft and the host. We also show presence of human-specific synaptophysin puncta in the cat retina. This work demonstrates feasibility of engrafting hESC-derived retinal tissue into the subretinal space of large-eye animal models. Transplanting retinal tissue in degenerating cat retina will enable rapid development of preclinical in vivo work focused on vision restoration.
Collapse
Affiliation(s)
- Ratnesh K Singh
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| | - Laurence M Occelli
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lasing, Michigan
| | - Francois Binette
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lasing, Michigan
| | - Igor O Nasonkin
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| |
Collapse
|
5
|
Venkatasubramanian L, Guo Z, Xu S, Tan L, Xiao Q, Nagarkar-Jaiswal S, Mann RS. Stereotyped terminal axon branching of leg motor neurons mediated by IgSF proteins DIP-α and Dpr10. eLife 2019; 8:e42692. [PMID: 30714901 PMCID: PMC6391070 DOI: 10.7554/elife.42692] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
For animals to perform coordinated movements requires the precise organization of neural circuits controlling motor function. Motor neurons (MNs), key components of these circuits, project their axons from the central nervous system and form precise terminal branching patterns at specific muscles. Focusing on the Drosophila leg neuromuscular system, we show that the stereotyped terminal branching of a subset of MNs is mediated by interacting transmembrane Ig superfamily proteins DIP-α and Dpr10, present in MNs and target muscles, respectively. The DIP-α/Dpr10 interaction is needed only after MN axons reach the vicinity of their muscle targets. Live imaging suggests that precise terminal branching patterns are gradually established by DIP-α/Dpr10-dependent interactions between fine axon filopodia and developing muscles. Further, different leg MNs depend on the DIP-α and Dpr10 interaction to varying degrees that correlate with the morphological complexity of the MNs and their muscle targets.
Collapse
Affiliation(s)
- Lalanti Venkatasubramanian
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
- Department of NeuroscienceMortimer B. Zuckerman Mind Brain Behavior InstituteNew YorkUnited States
| | - Zhenhao Guo
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Shuwa Xu
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Liming Tan
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Qi Xiao
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesUnited States
| | - Sonal Nagarkar-Jaiswal
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Richard S Mann
- Department of NeuroscienceMortimer B. Zuckerman Mind Brain Behavior InstituteNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| |
Collapse
|
6
|
Styfhals R, Seuntjens E, Simakov O, Sanges R, Fiorito G. In silico Identification and Expression of Protocadherin Gene Family in Octopus vulgaris. Front Physiol 2019; 9:1905. [PMID: 30692932 PMCID: PMC6339937 DOI: 10.3389/fphys.2018.01905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/18/2018] [Indexed: 11/24/2022] Open
Abstract
Connecting millions of neurons to create a functional neural circuit is a daunting challenge. Vertebrates developed a molecular system at the cell membrane to allow neurons to recognize each other by distinguishing self from non-self through homophilic protocadherin interactions. In mammals, the protocadherin gene family counts about 50 different genes. By hetero-multimerization, protocadherins are capable of generating an impressive number of molecular interfaces. Surprisingly, in the California two-spot octopus, Octopus bimaculoides, an invertebrate belonging to the Phylum Mollusca, over 160 protocadherins (PCDHs) have been identified. Here we briefly discuss the role of PCDHs in neural wiring and conduct a comparative study of the protocadherin gene family in two closely related octopus species, Octopus vulgaris and O. bimaculoides. A first glance at the expression patterns of protocadherins in O. vulgaris is also provided. Finally, we comment on PCDH evolution in the light of invertebrate nervous system plasticity.
Collapse
Affiliation(s)
- Ruth Styfhals
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.,Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Remo Sanges
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.,Computational Genomics Laboratory, Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
7
|
Varshney A, Benedetti K, Watters K, Shankar R, Tatarakis D, Coto Villa D, Magallanes K, Agenor V, Wung W, Farah F, Ali N, Le N, Pyle J, Farooqi A, Kieu Z, Bremer M, VanHoven M. The receptor protein tyrosine phosphatase CLR-1 is required for synaptic partner recognition. PLoS Genet 2018; 14:e1007312. [PMID: 29742100 PMCID: PMC5942785 DOI: 10.1371/journal.pgen.1007312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/19/2018] [Indexed: 11/19/2022] Open
Abstract
During neural circuit formation, most axons are guided to complex environments, coming into contact with multiple potential synaptic partners. However, it is critical that they recognize specific neurons with which to form synapses. Here, we utilize the split GFP-based marker Neuroligin-1 GFP Reconstitution Across Synaptic Partners (NLG-1 GRASP) to visualize specific synapses in live animals, and a circuit-specific behavioral assay to probe circuit function. We demonstrate that the receptor protein tyrosine phosphatase (RPTP) clr-1 is necessary for synaptic partner recognition (SPR) between the PHB sensory neurons and the AVA interneurons in C. elegans. Mutations in clr-1/RPTP result in reduced NLG-1 GRASP fluorescence and impaired behavioral output of the PHB circuit. Temperature-shift experiments demonstrate that clr-1/RPTP acts early in development, consistent with a role in SPR. Expression and cell-specific rescue experiments indicate that clr-1/RPTP functions in postsynaptic AVA neurons, and overexpression of clr-1/RPTP in AVA neurons is sufficient to direct additional PHB-AVA synaptogenesis. Genetic analysis reveals that clr-1/RPTP acts in the same pathway as the unc-6/Netrin ligand and the unc-40/DCC receptor, which act in AVA and PHB neurons, respectively. This study defines a new mechanism by which SPR is governed, and demonstrates that these three conserved families of molecules, with roles in neurological disorders and cancer, can act together to regulate communication between cells.
Collapse
Affiliation(s)
- Aruna Varshney
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Kelli Benedetti
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Katherine Watters
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Raakhee Shankar
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - David Tatarakis
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Doris Coto Villa
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Khristina Magallanes
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Venia Agenor
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - William Wung
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Fatima Farah
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Nebat Ali
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Nghi Le
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Jacqueline Pyle
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Amber Farooqi
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Zanett Kieu
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Martina Bremer
- Department of Mathematics and Statistics, San Jose State University, San Jose, CA, United States of America
| | - Miri VanHoven
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Park SM, Park HR, Lee JH. MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions. Mol Cells 2017; 40:151-161. [PMID: 28196412 PMCID: PMC5339506 DOI: 10.14348/molcells.2017.2307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 01/10/2023] Open
Abstract
Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled, a Drosophila homolog of human mitogen-activated protein kinase 3 (MAPK3) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gαq, and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93. In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2, Gαq, and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.
Collapse
Affiliation(s)
- Sang Mee Park
- Department of Oral Pathology and BK21Plus Project, School of Dentistry, Pusan National University, Yangsan 50612,
Korea
| | - Hae Ryoun Park
- Department of Oral Pathology and BK21Plus Project, School of Dentistry, Pusan National University, Yangsan 50612,
Korea
- Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612,
Korea
| | - Ji Hye Lee
- Department of Oral Pathology and BK21Plus Project, School of Dentistry, Pusan National University, Yangsan 50612,
Korea
- Institute of Translational Dental Sciences, Pusan National University, Yangsan 50612,
Korea
| |
Collapse
|
9
|
The Purkinje cell as a model of synaptogenesis and synaptic specificity. Brain Res Bull 2016; 129:12-17. [PMID: 27721030 DOI: 10.1016/j.brainresbull.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 01/03/2023]
Abstract
Since the groundbreaking work of Ramon y Cajal, the cerebellar Purkinje cell has always represented an ideal model for studying the organization, development and function of synaptic circuits. Purkinje cells receive distinct types of glutamatergic and GABAergic synapses, each characterized by exquisite sub-cellular and molecular specificity. The formation and refinement of these connections results from a temporally-regulated sequence of events that involves molecular interactions between distinct sets of secreted and surface proteins, as well as activity-dependent competition between converging inputs. Insights into the mechanisms controlling synaptic specificity in Purkinje cells may help understand synapse development also in other brain regions and disclose circuit abnormalities that underlie neurodevelopmental disorders.
Collapse
|
10
|
Zheng Y, Zhang YM, Ni X. Urocortin 2 But Not Urocortin 3 Promotes the Synaptic Formation in Hipppocampal Neurons via Induction of NGF Production by Astrocytes. Endocrinology 2016; 157:1200-10. [PMID: 26713785 DOI: 10.1210/en.2015-1812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CRH family peptides play differential role during various physiological and pathophysiological responses, such as stress. Urocortins (UCNs) have been implicated to play complementary or contrasting actions for the effects of CRH during stress. It has been shown that activation of CRH receptor type 1 (CRHR1) results in decreased synapse formation in hippocampus. We therefore explored the effect of UCN2 and UCN3, the exclusive CRHR2 agonists, on synaptic formation in hippocampus. In hippocampal slices cultures, UCN2 but not UCN3 treatment increased the levels of presynaptic protein synapsinI and postsynaptic protein postsynaptic density 95 (PSD95), which was reversed by CRHR2 antagonist astressin 2B. In isolated hippocampal neurons, however, UCN2 decreased the numbers of synapsinI- and PSD95-labeled terminals/clusters via CRHR2. Treatment of hippocampal neurons with the media of UCN2-treated astrocytes led to an increase in synapsinI- and PSD95-labeled terminals. In neuron-astrocyte cocultures, UCN2 also enhanced the numbers and level of synapsinI- and PSD95-labeled terminals. These effects did not occur if glial cells were transfected with CRHR2 small interfering RNA. UCN2 but not UCN3 treatment induced nerve growth factor (NGF) production in astrocytes via CRHR2. The effects of the media of UCN2-treated glial cells on synapse formation in hippocampal neurons were prevented by administration of NGF receptor antagonists. Our data indicate that UCN2 promotes synapse formation in hippocampus via induction of NGF secretion from astrocytes. CRHR2 in glial cells mediates the stimulatory effects of CRH. Glia-neuron communication is critical for neuronal circuits remodeling and synaptic plasticity in response to neurohormones or neuromodulators.
Collapse
Affiliation(s)
- You Zheng
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Yan-Min Zhang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
11
|
Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo. Nat Commun 2016; 7:10590. [PMID: 26838932 PMCID: PMC4742908 DOI: 10.1038/ncomms10590] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage. Neurons in the zebrafish retina regenerate. Here, Yoshimatsu and colleagues show that retinal horizontal cells maintain their synaptic preferences for a limited period before circuit remodeling is triggered after photoreceptor loss.
Collapse
|
12
|
de Wit J, Ghosh A. Specification of synaptic connectivity by cell surface interactions. Nat Rev Neurosci 2015; 17:22-35. [PMID: 26656254 DOI: 10.1038/nrn.2015.3] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular diversification of cell surface molecules has long been postulated to impart specific surface identities on neuronal cell types. The existence of unique cell surface identities would allow neurons to distinguish one another and connect with their appropriate target cells. Although progress has been made in identifying cell type-specific surface molecule repertoires and in characterizing their extracellular interactions, determining how this molecular diversity contributes to the precise wiring of neural circuitry has proven challenging. Here, we review the role of the cadherin, neurexin, immunoglobulin and leucine-rich repeat protein superfamilies in the specification of connectivity. The emerging evidence suggests that the concerted actions of these proteins may critically contribute to the assembly of neural circuits.
Collapse
Affiliation(s)
- Joris de Wit
- VIB Center for the Biology of Disease and Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anirvan Ghosh
- Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffman-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
13
|
Ganguly A, Tang Y, Wang L, Ladt K, Loi J, Dargent B, Leterrier C, Roy S. A dynamic formin-dependent deep F-actin network in axons. J Cell Biol 2015. [PMID: 26216902 PMCID: PMC4523607 DOI: 10.1083/jcb.201506110] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal "actin hotspots" along axons-spaced ∼3-4 µm apart-where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons-a phenomenon we call "actin trails." Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal "actin rings" described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin-but not Arp2/3-dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable "actin rings" providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles.
Collapse
Affiliation(s)
- Archan Ganguly
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| | - Yong Tang
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| | - Lina Wang
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| | - Kelsey Ladt
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093 Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093
| | - Jonathan Loi
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| | - Bénédicte Dargent
- Aix Marseille Université, Centre National de la Recherche Scientifique, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M) UMR7286, 13344 Marseille, France
| | - Christophe Leterrier
- Aix Marseille Université, Centre National de la Recherche Scientifique, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M) UMR7286, 13344 Marseille, France
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093 Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
14
|
In vitro studies of neuronal networks and synaptic plasticity in invertebrates and in mammals using multielectrode arrays. Neural Plast 2015; 2015:196195. [PMID: 25866681 PMCID: PMC4381683 DOI: 10.1155/2015/196195] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022] Open
Abstract
Brain functions are strictly dependent on neural connections formed during development and modified during life. The cellular and molecular mechanisms underlying synaptogenesis and plastic changes involved in learning and memory have been analyzed in detail in simple animals such as invertebrates and in circuits of mammalian brains mainly by intracellular recordings of neuronal activity. In the last decades, the evolution of techniques such as microelectrode arrays (MEAs) that allow simultaneous, long-lasting, noninvasive, extracellular recordings from a large number of neurons has proven very useful to study long-term processes in neuronal networks in vivo and in vitro. In this work, we start off by briefly reviewing the microelectrode array technology and the optimization of the coupling between neurons and microtransducers to detect subthreshold synaptic signals. Then, we report MEA studies of circuit formation and activity in invertebrate models such as Lymnaea, Aplysia, and Helix. In the following sections, we analyze plasticity and connectivity in cultures of mammalian dissociated neurons, focusing on spontaneous activity and electrical stimulation. We conclude by discussing plasticity in closed-loop experiments.
Collapse
|