1
|
Cai J, Liu Y, Fan H. Review on pathogenesis and treatment of Alzheimer's disease. Dev Dyn 2024. [PMID: 39651698 DOI: 10.1002/dvdy.762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024] Open
Abstract
The rising incidence of Alzheimer's disease (AD) and the associated economic impacts has prompted a global focus in the field. In recent years, there has been a growing understanding of the pathogenic mechanisms of AD, including the aggregation of β-amyloid, hyperphosphorylated tau, and neuroinflammation. These processes collectively lead to neurodegeneration and cognitive decline, which ultimately results in the loss of autonomy in patients. Currently, there are three main types of AD treatments: clinical tools, pharmacological treatment, and material interventions. This review provides a comprehensive analysis of the underlying etiology and pathogenesis of AD, as well as an overview of the current prevalence of AD treatments. We believe this article can help deepen our understanding of the AD mechanism, and facilitate the clinical translation of scientific research or therapies, to address this global problem of AD.
Collapse
Affiliation(s)
- Jinxia Cai
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
2
|
Niu Q, Li D, Zhang J, Piao Z, Xu B, Xi Y, Mohamed Kamal NNSN, Lim V, Li P, Yin Y. The new perspective of Alzheimer's Disease Research: Mechanism and therapeutic strategy of neuronal senescence. Ageing Res Rev 2024; 102:102593. [PMID: 39566741 DOI: 10.1016/j.arr.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD), commonly known as senile dementia, is a neurodegenerative disease with insidious onset and gradually worsening course. The brain is particularly sensitive to senescence, and neuronal senescence is an important risk factor for the occurrence of AD. However, the exact pathogenesis between neuronal senescence and AD has not been fully elucidated so far. Neuronal senescence is characterized by the permanent stagnation of the cell cycle, and the changes in its structure, function, and microenvironment are closely related to the pathogenesis and progression of AD. In recent years, studies such as the Aβ cascade hypothesis and Tau protein phosphorylation have provided new strategies for the therapy of AD, but due to the complexity of the etiology of AD, there are still no effective treatment measures. This article aims to deeply analyze the pathogenesis between AD and neuronal senescence, and sort out various existing therapeutic methods, to provide new ideas and references for the clinical treatment of AD.
Collapse
Affiliation(s)
- Qianqian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Danjie Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Jiayin Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Zhengji Piao
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Bo Xu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Yuting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia; Dementia Multidisciplinary Research Program of IPPT (DMR-IPPT), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Vuanghao Lim
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China.
| | - Yaling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
3
|
Rezaul Islam M, Akash S, Murshedul Islam M, Sarkar N, Kumer A, Chakraborty S, Dhama K, Ahmed Al-Shaeri M, Anwar Y, Wilairatana P, Rauf A, Halawani IF, Alzahrani FM, Khan H. Alkaloids as drug leads in Alzheimer's treatment: Mechanistic and therapeutic insights. Brain Res 2024; 1834:148886. [PMID: 38582413 DOI: 10.1016/j.brainres.2024.148886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Alzheimer's disease (AD) has few effective treatment options and continues to be a major global health concern. AD is a neurodegenerative disease that typically affects elderly people. Alkaloids have potential sources for novel drug discovery due to their diverse chemical structures and pharmacological activities. Alkaloids, natural products with heterocyclic nitrogen-containing structures, are considered potential treatments for AD. This review explores the neuroprotective properties of alkaloids in AD, focusing on their ability to regulate pathways such as amyloid-beta aggregation, oxidative stress, synaptic dysfunction, tau hyperphosphorylation, and neuroinflammation. The FDA has approved alkaloids such as acetylcholinesterase inhibitors like galantamine and rivastigmine. This article explores AD's origins, current market medications, and clinical applications of alkaloids in AD therapy. This review explores the development of alkaloid-based drugs for AD, focusing on pharmacokinetics, blood-brain barrier penetration, and potential adverse effects. Future research should focus on the clinical evaluation of promising alkaloids, developing recently discovered alkaloids, and the ongoing search for novel alkaloids for medical treatment. A pharmaceutical option containing an alkaloid may potentially slow down the progression of AD while enhancing its symptoms. This review highlights the potential of alkaloids as valuable drug leads in treating AD, providing a comprehensive understanding of their mechanisms of action and therapeutic implications.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Mohammed Murshedul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, College of Arts and Sciences IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10, Uttara Model Town, Dhaka 1230, Bangladesh; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sandip Chakraborty
- State Disease Investigation Laboratory, ARDD, Abhoynagar, Agartala, West Tripura, Pin-799005, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI) Izatnagar-243 122, Bareilly, Uttar Pradesh, India
| | - Majed Ahmed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan.
| |
Collapse
|
4
|
Elman JA, Schork NJ, Rangan AV. Exploring the genetic heterogeneity of Alzheimer's disease: Evidence for genetic subtypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.02.23289347. [PMID: 37205553 PMCID: PMC10187457 DOI: 10.1101/2023.05.02.23289347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Alzheimer's disease (AD) exhibits considerable phenotypic heterogeneity, suggesting the potential existence of subtypes. AD is under substantial genetic influence, thus identifying systematic variation in genetic risk may provide insights into disease origins. Objective We investigated genetic heterogeneity in AD risk through a multi-step analysis. Methods We performed principal component analysis (PCA) on AD-associated variants in the UK Biobank (AD cases=2,739, controls=5,478) to assess structured genetic heterogeneity. Subsequently, a biclustering algorithm searched for distinct disease-specific genetic signatures among subsets of cases. Replication tests were conducted using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset (AD cases=500, controls=470). We categorized a separate set of ADNI individuals with mild cognitive impairment (MCI; n=399) into genetic subtypes and examined cognitive, amyloid, and tau trajectories. Results PCA revealed three distinct clusters ("constellations") driven primarily by different correlation patterns in a region of strong LD surrounding the MAPT locus. Constellations contained a mixture of cases and controls, reflecting disease-relevant but not disease-specific structure. We found two disease-specific biclusters among AD cases. Pathway analysis linked bicluster-associated variants to neuron morphogenesis and outgrowth. Disease-relevant and disease-specific structure replicated in ADNI, and bicluster 2 exhibited increased CSF p-tau and cognitive decline over time. Conclusions This study unveils a hierarchical structure of AD genetic risk. Disease-relevant constellations may represent haplotype structure that does not increase risk directly but may alter the relative importance of other genetic risk factors. Biclusters may represent distinct AD genetic subtypes. This structure is replicable and relates to differential pathological accumulation and cognitive decline over time.
Collapse
Affiliation(s)
- Jeremy A. Elman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA
| | - Nicholas J. Schork
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- The Translational Genomics Research Institute, Quantitative Medicine and Systems Biology, Phoenix, AZ, USA
| | - Aaditya V. Rangan
- Department of Mathematics, New York University, New York, New York, USA
| | | |
Collapse
|
5
|
Elman JA, Schork NJ, Rangan AV. Exploring the Genetic Heterogeneity of Alzheimer's Disease: Evidence for Genetic Subtypes. J Alzheimers Dis 2024; 100:1209-1226. [PMID: 38995775 PMCID: PMC11636402 DOI: 10.3233/jad-231252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Background Alzheimer's disease (AD) exhibits considerable phenotypic heterogeneity, suggesting the potential existence of subtypes. AD is under substantial genetic influence, thus identifying systematic variation in genetic risk may provide insights into disease origins. Objective We investigated genetic heterogeneity in AD risk through a multi-step analysis. Methods We performed principal component analysis (PCA) on AD-associated variants in the UK Biobank (AD cases = 2,739, controls = 5,478) to assess structured genetic heterogeneity. Subsequently, a biclustering algorithm searched for distinct disease-specific genetic signatures among subsets of cases. Replication tests were conducted using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset (AD cases = 500, controls = 470). We categorized a separate set of ADNI individuals with mild cognitive impairment (MCI; n = 399) into genetic subtypes and examined cognitive, amyloid, and tau trajectories. Results PCA revealed three distinct clusters ("constellations") driven primarily by different correlation patterns in a region of strong LD surrounding the MAPT locus. Constellations contained a mixture of cases and controls, reflecting disease-relevant but not disease-specific structure. We found two disease-specific biclusters among AD cases. Pathway analysis linked bicluster-associated variants to neuron morphogenesis and outgrowth. Disease-relevant and disease-specific structure replicated in ADNI, and bicluster 2 exhibited increased cerebrospinal fluid p-tau and cognitive decline over time. Conclusions This study unveils a hierarchical structure of AD genetic risk. Disease-relevant constellations may represent haplotype structure that does not increase risk directly but may alter the relative importance of other genetic risk factors. Biclusters may represent distinct AD genetic subtypes. This structure is replicable and relates to differential pathological accumulation and cognitive decline over time.
Collapse
Affiliation(s)
- Jeremy A. Elman
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of
California San Diego, La Jolla, CA, USA
| | - Nicholas J. Schork
- Department of Psychiatry, University of California San
Diego, La Jolla, CA, USA
- The Translational Genomics Research Institute, Quantitative
Medicine and Systems Biology, Phoenix, AZ, USA
| | - Aaditya V. Rangan
- Department of Mathematics, New York University, New York,
New York, USA
| |
Collapse
|
6
|
Liang J, Liu B, Dong X, Wang Y, Cai W, Zhang N, Zhang H. Decoding the role of gut microbiota in Alzheimer's pathogenesis and envisioning future therapeutic avenues. Front Neurosci 2023; 17:1242254. [PMID: 37790586 PMCID: PMC10544353 DOI: 10.3389/fnins.2023.1242254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Alzheimer's disease (AD) emerges as a perturbing neurodegenerative malady, with a profound comprehension of its underlying pathogenic mechanisms continuing to evade our intellectual grasp. Within the intricate tapestry of human health and affliction, the enteric microbial consortium, ensconced within the milieu of the human gastrointestinal tract, assumes a role of cardinal significance. Recent epochs have borne witness to investigations that posit marked divergences in the composition of the gut microbiota between individuals grappling with AD and those favored by robust health. The composite vicissitudes in the configuration of the enteric microbial assembly are posited to choreograph a participatory role in the inception and progression of AD, facilitated by the intricate conduit acknowledged as the gut-brain axis. Notwithstanding, the precise nature of this interlaced relationship remains enshrouded within the recesses of obscurity, poised for an exhaustive revelation. This review embarks upon the endeavor to focalize meticulously upon the mechanistic sway exerted by the enteric microbiota upon AD, plunging profoundly into the execution of interventions that govern the milieu of enteric microorganisms. In doing so, it bestows relevance upon the therapeutic stratagems that form the bedrock of AD's management, all whilst casting a prospective gaze into the horizon of medical advancements.
Collapse
Affiliation(s)
- Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaohong Dong
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Yueyang Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Wenhui Cai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Zhang
- Heilongjiang Jiamusi Central Hospital, Jiamusi, Heilongjiang, China
| |
Collapse
|
7
|
Engert J, Doll J, Vona B, Ehret Kasemo T, Spahn B, Hagen R, Rak K, Voelker J. mRNA Abundance of Neurogenic Factors Correlates with Hearing Capacity in Auditory Brainstem Nuclei of the Rat. Life (Basel) 2023; 13:1858. [PMID: 37763262 PMCID: PMC10532994 DOI: 10.3390/life13091858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Neural stem cells (NSCs) have previously been described up to the adult stage in the rat cochlear nucleus (CN). A decreasing neurogenic potential was observed with critical changes around hearing onset. A better understanding of molecular factors affecting NSCs and neurogenesis is of interest as they represent potential targets to treat the cause of neurologically based hearing disorders. The role of genes affecting NSC development and neurogenesis in CN over time on hearing capacity has remained unclear. This study investigated the mRNA abundance of genes influencing NSCs and neurogenesis in rats' CN over time. The CN of rats on postnatal days 6, 12, and 24 were examined. Real-time quantitative polymerase chain reaction arrays were used to compare mRNA levels of 84 genes relevant to NSCs and neurogenesis. Age- and hearing-specific patterns of changes in mRNA abundance of neurogenically relevant genes were detected in the rat CN. Additionally, crucial neurogenic factors with significant and relevant influence on neurogenesis were identified. The results of this work should contribute to a better understanding of the molecular mechanisms underlying the neurogenesis of the auditory pathway.
Collapse
Affiliation(s)
- Jonas Engert
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Julia Doll
- Institute of Pathology, University of Wuerzburg, Josef-Schneider-Strasse 2, 97080 Wuerzburg, Germany;
| | - Barbara Vona
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany;
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Totta Ehret Kasemo
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Bjoern Spahn
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Rudolf Hagen
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Kristen Rak
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Johannes Voelker
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| |
Collapse
|
8
|
Lenz M, Eichler A, Kruse P, Galanis C, Kleidonas D, Andrieux G, Boerries M, Jedlicka P, Müller U, Deller T, Vlachos A. The Amyloid Precursor Protein Regulates Synaptic Transmission at Medial Perforant Path Synapses. J Neurosci 2023; 43:5290-5304. [PMID: 37369586 PMCID: PMC10359033 DOI: 10.1523/jneurosci.1824-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The perforant path provides the primary cortical excitatory input to the hippocampus. Because of its important role in information processing and coding, entorhinal projections to the dentate gyrus have been studied in considerable detail. Nevertheless, synaptic transmission between individual connected pairs of entorhinal stellate cells and dentate granule cells remains to be characterized. Here, we have used mouse organotypic entorhino-hippocampal tissue cultures of either sex, in which the entorhinal cortex (EC) to dentate granule cell (GC; EC-GC) projection is present, and EC-GC pairs can be studied using whole-cell patch-clamp recordings. By using cultures of wild-type mice, the properties of EC-GC synapses formed by afferents from the lateral and medial entorhinal cortex were compared, and differences in short-term plasticity were identified. As the perforant path is severely affected in Alzheimer's disease, we used tissue cultures of amyloid precursor protein (APP)-deficient mice to examine the role of APP at this synapse. APP deficiency altered excitatory neurotransmission at medial perforant path synapses, which was accompanied by transcriptomic and ultrastructural changes. Moreover, presynaptic but not postsynaptic APP deletion through the local injection of Cre-expressing adeno-associated viruses in conditional APPflox/flox tissue cultures increased the neurotransmission efficacy at perforant path synapses. In summary, these data suggest a physiological role for presynaptic APP at medial perforant path synapses that may be adversely affected under altered APP processing conditions.SIGNIFICANCE STATEMENT The hippocampus receives input from the entorhinal cortex via the perforant path. These projections to hippocampal dentate granule cells are of utmost importance for learning and memory formation. Although there is detailed knowledge about perforant path projections, the functional synaptic properties at the level of individual connected pairs of neurons are not well understood. In this study, we investigated the role of APP in mediating functional properties and transmission rules in individually connected neurons using paired whole-cell patch-clamp recordings and genetic tools in organotypic tissue cultures. Our results show that presynaptic APP expression limits excitatory neurotransmission via the perforant path, which could be compromised in pathologic conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, 30625 Hannover, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Peter Jedlicka
- Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
| | - Ulrike Müller
- Institute of Pharmacy and Molecular Biotechnology, Functional Genomics, Ruprecht-Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Abstract
Neurodegenerative diseases are characterized by the progressive loss of structure or function of neurons. In this Spotlight, we explore the idea that genetic forms of neurodegenerative disorders might be rooted in neural development. Focusing on Alzheimer's, Parkinson's and Huntington's disease, we first provide a brief overview of the pathology for these diseases. Although neurodegenerative diseases are generally thought of as late-onset diseases, we discuss recent evidence promoting the notion that they might be considered neurodevelopmental disorders. With this view in mind, we consider the suitability of animal models for studying these diseases, highlighting human-specific features of human brain development. We conclude by proposing that one such feature, human-specific regulation of neurogenic time, might be key to understanding the etiology and pathophysiology of human neurodegenerative disease.
Collapse
Affiliation(s)
- Khadijeh Shabani
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Bassem A. Hassan
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
10
|
Bashir DJ, Manzoor S, Sarfaraj M, Afzal SM, Bashir M, Nidhi, Rastogi S, Arora I, Samim M. Magnoflorine-Loaded Chitosan Collagen Nanocapsules Ameliorate Cognitive Deficit in Scopolamine-Induced Alzheimer's Disease-like Conditions in a Rat Model by Downregulating IL-1β, IL-6, TNF-α, and Oxidative Stress and Upregulating Brain-Derived Neurotrophic Factor and DCX Expressions. ACS OMEGA 2023; 8:2227-2236. [PMID: 36687096 PMCID: PMC9850486 DOI: 10.1021/acsomega.2c06467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/12/2022] [Indexed: 08/19/2023]
Abstract
Dementia or the loss of cognitive functioning is one of the major health issues in elderly people. Alzheimer's disease (AD) is one of the common forms of dementia. Treatment chiefly involves the use of acetylcholinesterase (AChE) inhibitors in AD. However, oxidative stress has also been found to be involved in the proliferation of the disease. Magnoflorine is one of the active compounds of Coptidis Rhizoma and has high anti-oxidative properties. Active principle-loaded nanoparticles have shown increased efficiency for neurodegenerative diseases due to their ability to cross the blood-brain barrier more easily. An in vitro study involving magnoflorine-loaded chitosan collagen nanocapsules (MF-CCNc) has shown them to possess inhibitory effects against oxidative stress and to some extent on AChE as well. In the current study, both nootropic and anti-amnesic effects of magnoflorine and MF-CCNc on scopolamine-induced amnesia in rats were evaluated. The treatment was done intraperitoneally (i.p.) once daily for 17 consecutive days with MF-CCNc (0.25, 0.5, and 1 mg), magnoflorine (1 mg), and donepezil (1 mg). To induce amnesia, hence, cognitive deficit rats were induced with scopolamine (1 mg/kg) daily for the last 9 days. Novel object recognition (NOR) and elevated plus maze (EPM) behavioral analysis were done to assess memory functioning. Hippocampal tissues were extracted to study the effect on biochemicals (AChE, MDA, SOD, and CAT), pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), and immunohistochemistry (brain-derived neurotrophic factor (BDNF) and DCX). MF-CCNc showed memory-enhancing effects in nootropic as well as chronic scopolamine-treated rats in NOR and an increase in inflexion ratio in EPM. MF-CCNc reduced the levels of AChE and MDA while increasing SOD and CAT levels in the hippocampus. MF-CCNc further lowered the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. These nanocapsules further increased the expression of BDNF and DCX that are necessary for adult neurogenesis. From the research findings, it can be concluded that MF-CCNc has high anti-amnesic properties and could be a promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Dar Junaid Bashir
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saliha Manzoor
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Sarfaraj
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shekh Mohammad Afzal
- Department
of Medical Elementology & Toxicology, School of Chemical and Life
Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Masarat Bashir
- COTS,
Mirgund, Shalimar, SKUAST Kashmir, Srinagar, Jammu and Kashmir 193121, India
| | - Nidhi
- Centre
for Translational and Clinical Research, Jamia Hamdard, New Delhi 110062, India
| | - Shweta Rastogi
- Hansraj
College, Delhi University, New Delhi, Delhi 110007, India
| | - Indu Arora
- Shaheed
Rajguru College of Applied Sciences for Women, Vasundhara Enclave, New
Delhi, Delhi 110096, India
| | - Mohammed Samim
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
11
|
PS1 Affects the Pathology of Alzheimer's Disease by Regulating BACE1 Distribution in the ER and BACE1 Maturation in the Golgi Apparatus. Int J Mol Sci 2022; 23:ijms232416151. [PMID: 36555791 PMCID: PMC9782474 DOI: 10.3390/ijms232416151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Neuritic plaques are one of the major pathological hallmarks of Alzheimer's disease. They are formed by the aggregation of extracellular amyloid-β protein (Aβ), which is derived from the sequential cleavage of amyloid-β precursor protein (APP) by β- and γ-secretase. BACE1 is the main β-secretase in the pathogenic process of Alzheimer's disease, which is believed to be a rate-limiting step of Aβ production. Presenilin 1 (PS1) is the active center of the γ-secretase that participates in the APP hydrolysis process. Mutations in the PS1 gene (PSEN1) are the most common cause of early onset familial Alzheimer's disease (FAD). The PSEN1 mutations can alter the activity of γ-secretase on the cleavage of APP. Previous studies have shown that PSEN1 mutations increase the expression and activity of BACE1 and that BACE1 expression and activity are elevated in the brains of PSEN1 mutant knock-in mice, compared with wild-type mice, as well as in the cerebral cortex of FAD patients carrying PSEN1 mutations, compared with sporadic AD patients and controls. Here, we used a Psen1 knockout cell line and a PS1 inhibitor to show that PS1 affects the expression of BACE1 in vitro. Furthermore, we used sucrose gradient fractionation combined with western blotting to analyze the distribution of BACE1, combined with a time-lapse technique to show that PS1 upregulates the distribution and trafficking of BACE1 in the endoplasmic reticulum, Golgi, and endosomes. More importantly, we found that the PSEN1 mutant S170F increases the distribution of BACE1 in the endoplasmic reticulum and changes the ratio of mature BACE1 in the trans-Golgi network. The effect of PSEN1 mutations on BACE1 may contribute to determining the phenotype of early onset FAD.
Collapse
|
12
|
Boulanger A, Dura JM. Neuron-glia crosstalk in neuronal remodeling and degeneration: Neuronal signals inducing glial cell phagocytic transformation in Drosophila. Bioessays 2022; 44:e2100254. [PMID: 35315125 DOI: 10.1002/bies.202100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
Neuronal remodeling is a conserved mechanism that eliminates unwanted neurites and can include the loss of cell bodies. In these processes, a key role for glial cells in events from synaptic pruning to neuron elimination has been clearly identified in the last decades. Signals sent from dying neurons or neurites to be removed are received by appropriate glial cells. After receiving these signals, glial cells infiltrate degenerating sites and then, engulf and clear neuronal debris through phagocytic mechanisms. There are few identified or proposed signals and receptors involved in neuron-glia crosstalk, which induces the transformation of glial cells to phagocytes during neuronal remodeling in Drosophila. Many of these signaling pathways are conserved in mammals. Here, we particularly emphasize the role of Orion, a recently identified neuronal CX3 C chemokine-like secreted protein, which induces astrocyte infiltration and engulfment during mushroom body neuronal remodeling. Although, chemokine signaling was not described previously in insects we propose that chemokine-like involvement in neuron/glial cell interaction is an evolutionarily ancient mechanism.
Collapse
Affiliation(s)
- Ana Boulanger
- IGH, Université de Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
13
|
Ju Y, Tam KY. Pathological mechanisms and therapeutic strategies for Alzheimer's disease. Neural Regen Res 2022; 17:543-549. [PMID: 34380884 PMCID: PMC8504384 DOI: 10.4103/1673-5374.320970] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/29/2021] [Accepted: 03/30/2021] [Indexed: 11/04/2022] Open
Abstract
Alzheimer's disease is a rather complex neurodegenerative disease, which is attributed to a combination of multiple factors. Among the many pathological pathways, synaptic dysfunctions, such as synapses loss and deficits in synaptic plasticity, were thought to be strongly associated with cognitive decline. The deficiencies in various sorts of neurotransmissions are responsible for the multifarious neurodegenerative symptoms in Alzheimer's disease, for example, the cholinergic and glutamatergic deficits for cognitive decline, the excitatory and inhibitory neurotransmission dyshomeostasis for synaptic plasticity deficits and epileptiform symptoms, and the monoamine neurotransmission for neuropsychiatric symptoms. Amyloid cascade hypothesis is the most popular pathological theory to explain Alzheimer's disease pathogenesis and attracts considerable attention. Multiple lines of genetic and pathological evidence support the predominant role of amyloid beta in Alzheimer's disease pathology. Neurofibrillary tangles assembled by microtubule-associated protein tau are other important histopathological characteristics in Alzheimer's disease brains. Cascade of tau toxicity was proved to lead to neuron damage, neuroinflammation and oxidative stress in brain. Ageing is the main risk factor of neurodegenerative diseases, and is associated with inflammation, oxidative stress, reduced metabolism, endocrine insufficiencies and organ failures. These aging related risk factors were also proved to be some of the risk factors contributing to Alzheimer's disease. In Alzheimer's disease drug development, many good therapeutic strategies have been investigated in clinical evaluations. However, complex mechanism of Alzheimer's disease and the interplay among different pathological factors call for the come out of all-powerful therapies with multiple curing functions. This review seeks to summarize some of the representative treatments targeting different pathological pathways currently under clinical evaluations. Multi-target therapies as an emerging strategy for Alzheimer's disease treatment will be highlighted.
Collapse
Affiliation(s)
- Yaojun Ju
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau Special Adiministrative Region, China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau Special Adiministrative Region, China
| |
Collapse
|
14
|
Zhou Z, Bai J, Zhong S, Zhang R, Kang K, Zhang X, Xu Y, Zhao C, Zhao M. Downregulation of PIK3CB Involved in Alzheimer's Disease via Apoptosis, Axon Guidance, and FoxO Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1260161. [PMID: 35096262 PMCID: PMC8794666 DOI: 10.1155/2022/1260161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/08/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the molecular function of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB) underlying Alzheimer's disease (AD). METHODS RNA sequencing data were used to filtrate differentially expressed genes (DEGs) in AD/nondementia control and PIK3CB-low/high groups. An unbiased coexpression network was established to evaluate module-trait relationships by using weight gene correlation network analysis (WGCNA). Global regulatory network was constructed to predict the protein-protein interaction. Further cross-talking pathways of PIK3CB were identified by functional enrichment analysis. RESULTS The mean expression of PIK3CB in AD patients was significantly lower than those in nondementia controls. We identified 2,385 DEGs from 16,790 background genes in AD/control and PIK3CB-low/high groups. Five coexpression modules were established using WGCNA, which participated in apoptosis, axon guidance, long-term potentiation (LTP), regulation of actin cytoskeleton, synaptic vesicle cycle, FoxO, mitogen-activated protein kinase (MAPK), and vascular endothelial growth factor (VEGF) signaling pathways. DEGs with strong relation to AD and low PIK3CB expression were extracted to construct a global regulatory network, in which cross-talking pathways of PIK3CB were identified, such as apoptosis, axon guidance, and FoxO signaling pathway. The occurrence of AD could be accurately predicted by low PIK3CB based on the area under the curve of 71.7%. CONCLUSIONS These findings highlight downregulated PIK3CB as a potential causative factor of AD, possibly mediated via apoptosis, axon guidance, and FoxO signaling pathway.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Jun Bai
- Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, 130033 Jilin, China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Rongwei Zhang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Kexin Kang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Ying Xu
- Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, 130033 Jilin, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, USA
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001 Liaoning, China
| | - Mei Zhao
- Department of Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, 110004 Liaoning, China
| |
Collapse
|
15
|
Eysert F, Coulon A, Boscher E, Vreulx AC, Flaig A, Mendes T, Hughes S, Grenier-Boley B, Hanoulle X, Demiautte F, Bauer C, Marttinen M, Takalo M, Amouyel P, Desai S, Pike I, Hiltunen M, Chécler F, Farinelli M, Delay C, Malmanche N, Hébert SS, Dumont J, Kilinc D, Lambert JC, Chapuis J. Alzheimer's genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner. Mol Psychiatry 2021; 26:5592-5607. [PMID: 33144711 PMCID: PMC8758496 DOI: 10.1038/s41380-020-00926-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Although APP metabolism is being intensively investigated, a large fraction of its modulators is yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer's disease (AD), as a potential key modulator of axon guidance, a neuronal process that depends on the regulation of APP metabolism. We found that FERMT2 directly interacts with APP to modulate its metabolism, and that FERMT2 underexpression impacts axonal growth, synaptic connectivity, and long-term potentiation in an APP-dependent manner. Last, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3'UTR of FERMT2, induced a downregulation of FERMT2 expression through binding of miR-4504 among others. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 underexpression in neurons and insight into how this may influence AD pathogenesis.
Collapse
Affiliation(s)
- Fanny Eysert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Audrey Coulon
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Emmanuelle Boscher
- Centre de Recherche du CHU de Québec-Université Laval, CHUL, Axe Neurosciences, Québec City, QC, Canada
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Université Laval, Québec City, QC, Canada
| | - Anaїs-Camille Vreulx
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Amandine Flaig
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Tiago Mendes
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Sandrine Hughes
- E-Phy-Science, Bioparc de Sophia Antipolis, 2400 route des Colles, Biot, 06410, France
| | - Benjamin Grenier-Boley
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Xavier Hanoulle
- Université de Lille, CNRS, UMR8576-Labex DISTALZ, Villeneuve d'Ascq, 59655, France
| | - Florie Demiautte
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Charlotte Bauer
- Université Côte d'Azur, Inserm, CNRS, IPMC, DistAlz Laboratory of Excellence, Valbonne, France
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Philippe Amouyel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Shruti Desai
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Ian Pike
- Proteome Sciences plc, Hamilton House, London, WC1H 9BB, UK
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Frédéric Chécler
- Université Côte d'Azur, Inserm, CNRS, IPMC, DistAlz Laboratory of Excellence, Valbonne, France
| | - Mélissa Farinelli
- E-Phy-Science, Bioparc de Sophia Antipolis, 2400 route des Colles, Biot, 06410, France
| | - Charlotte Delay
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Nicolas Malmanche
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Sébastien S Hébert
- Centre de Recherche du CHU de Québec-Université Laval, CHUL, Axe Neurosciences, Québec City, QC, Canada
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Université Laval, Québec City, QC, Canada
| | - Julie Dumont
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Devrim Kilinc
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France
| | - Julien Chapuis
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, 59019, France.
| |
Collapse
|
16
|
Liu T, Zhang T, Nicolas M, Boussicault L, Rice H, Soldano A, Claeys A, Petrova I, Fradkin L, De Strooper B, Potier MC, Hassan BA. The amyloid precursor protein is a conserved Wnt receptor. eLife 2021; 10:69199. [PMID: 34515635 PMCID: PMC8437438 DOI: 10.7554/elife.69199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
The Amyloid Precursor Protein (APP) and its homologues are transmembrane proteins required for various aspects of neuronal development and activity, whose molecular function is unknown. Specifically, it is unclear whether APP acts as a receptor, and if so what its ligand(s) may be. We show that APP binds the Wnt ligands Wnt3a and Wnt5a and that this binding regulates APP protein levels. Wnt3a binding promotes full-length APP (flAPP) recycling and stability. In contrast, Wnt5a promotes APP targeting to lysosomal compartments and reduces flAPP levels. A conserved Cysteine-Rich Domain (CRD) in the extracellular portion of APP is required for Wnt binding, and deletion of the CRD abrogates the effects of Wnts on flAPP levels and trafficking. Finally, loss of APP results in increased axonal and reduced dendritic growth of mouse embryonic primary cortical neurons. This phenotype can be cell-autonomously rescued by full length, but not CRD-deleted, APP and regulated by Wnt ligands in a CRD-dependent manner.
Collapse
Affiliation(s)
- Tengyuan Liu
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Doctoral School of Biomedical Sciences, Leuven, Belgium
| | - Tingting Zhang
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Doctoral School of Biomedical Sciences, Leuven, Belgium
| | - Maya Nicolas
- Doctoral School of Biomedical Sciences, Leuven, Belgium.,Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Lydie Boussicault
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Heather Rice
- Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Alessia Soldano
- Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Annelies Claeys
- Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Iveta Petrova
- Laboratory of Developmental Neurobiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Lee Fradkin
- Laboratory of Developmental Neurobiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Bart De Strooper
- Center for Brain and Disease, Leuven, Belgium.,UK Dementia Research institute at University College London, London, United Kingdom
| | - Marie-Claude Potier
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bassem A Hassan
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
17
|
The Protective A673T Mutation of Amyloid Precursor Protein (APP) in Alzheimer's Disease. Mol Neurobiol 2021; 58:4038-4050. [PMID: 33914267 DOI: 10.1007/s12035-021-02385-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by extracellular amyloid beta peptides and neurofibrillary tangles consisted of intracellular hyperphosphorylated Tau in the hippocampus and cerebral cortex. Most of the mutations in key genes that code for amyloid precursor protein can lead to significant accumulation of these peptides in the brain and cause Alzheimer's disease. Moreover, some point mutations in amyloid precursor protein can cause familial Alzheimer's disease, such as Swedish mutation (KM670/671NL) and A673V mutation. However, recent studies have found that the A673T mutation in amyloid precursor protein gene can protect against Alzheimer's disease, even if it is located next to the Swedish mutation (KM670/671NL) and at the same site as A673V mutation, which are pathogenic. It makes us curious about the protective A673T mutation. Here, we summarize the most recent insights of A673T mutation, focus on their roles in protective mechanisms against Alzheimer's disease, and discuss their involvement in future treatment.
Collapse
|
18
|
Tran TT, Pan F, Tran L, Roland C, Sagui C. The F19W mutation reduces the binding affinity of the transmembrane Aβ 11-40 trimer to the membrane bilayer. RSC Adv 2021; 11:2664-2676. [PMID: 35424222 PMCID: PMC8693879 DOI: 10.1039/d0ra08837d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease is linked to the aggregation of the amyloid-β protein (Aβ) of 40 or 42 amino acids. Lipid membranes are known to modulate the rate and mechanisms of the Aβ aggregation. Point mutations in Aβ can alter these rates and mechanisms. In particular, experiments show that F19 mutations influence the aggregation rate, but maintain the fibril structures. Here, we used molecular dynamics simulations to examine the effect of the F19W mutation in the 3Aβ11-40 trimer immersed in DPPC lipid bilayers submerged in aqueous solution. Substituting Phe by its closest (non-polar) aromatic amino acid Trp has a dramatic reduction in binding affinity to the phospholipid membrane (measured with respect to the solvated protein) compared to the wild type: the binding free energy of the protein-DPPC lipid bilayer increases by 40-50 kcal mol-1 over the wild-type. This is accompanied by conformational changes and loss of salt bridges, as well as a more complex free energy surface, all indicative of a more flexible and less stable mutated trimer. These results suggest that the impact of mutations can be assessed, at least partially, by evaluating the interaction of the mutated peptides with the lipid membranes.
Collapse
Affiliation(s)
- Thanh Thuy Tran
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Feng Pan
- Department of Statistics, Florida State University Tallahassee Florida USA
| | - Linh Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh City 700000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang City 550000 Vietnam
| | - Christopher Roland
- Department of Physics, North Carolina State University Raleigh North Carolina USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
19
|
Ju Y, Tam KY. 9R, the cholinesterase and amyloid beta aggregation dual inhibitor, as a multifunctional agent to improve cognitive deficit and neuropathology in the triple-transgenic Alzheimer's disease mouse model. Neuropharmacology 2020; 181:108354. [DOI: 10.1016/j.neuropharm.2020.108354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
|
20
|
Matrix Metalloproteinase 14 Mediates APP Proteolysis and Lysosomal Alterations Induced by Oxidative Stress in Human Neuronal Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5917187. [PMID: 33282112 PMCID: PMC7685830 DOI: 10.1155/2020/5917187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022]
Abstract
The alteration of amyloid precursor protein (APP) proteolysis is a hallmark of Alzheimer's disease (AD). Recent studies have described noncanonical pathways of APP processing that seem partly executed by lysosomal enzymes. Our laboratory's in vitro human SK-N-MC model has shown that oxidative stress (OS) alters the lysosomal degradation pathway and the processing/metabolism of APP. The present study identifies the lysosomal protein matrix metalloproteinase 14 (MMP14) as a protease involved in the APP noncanonical processing. Previous expression analyses of the above cells showed MMP14 to be overexpressed under OS. In the present work, its role in changes in OS-induced APP proteolysis and lysosomal load was examined. The results show that MMP14 mediates the accumulation of an ≈85 kDa N-terminal APP fragment and increases the lysosome load induced by OS. These results were validated in neurons and neural progenitor cells generated from the induced pluripotent stem cells of patients with sporadic AD, reinforcing the idea that MMP14 may offer a therapeutic target in this disease.
Collapse
|
21
|
Ju Y, Chakravarty H, Tam KY. An Isoquinolinium Dual Inhibitor of Cholinesterases and Amyloid β Aggregation Mitigates Neuropathological Changes in a Triple-Transgenic Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2020; 11:3346-3357. [PMID: 33001625 DOI: 10.1021/acschemneuro.0c00464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder affecting millions of people worldwide. The underlying pathologic mechanisms of AD are unclear. Over the decades, the development of single target agent did not lead to any successful treatment for AD. A multitarget agent that could tackle more than one AD phenotype may be helpful as a treatment strategy. Cholinesterases (ChEs) including acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), are currently the drug targets with approved treatments. Moreover, amyloid beta (Aβ) deposition is a hallmark of AD that receives considerable attention. Herein, 9Q, a previously reported dual target inhibitor dealing with cholinergic dysfunction and amyloid deposition for AD treatment, has undergone thorough investigations. In vitro studies revealed that 9Q exhibited over 80% inhibition of ChE activity at 100 μM and more than 30% inhibition of Aβ aggregation at 1 mM concentration. Moreover 9Q was able to penetrate the blood-brain barrier (BBB) and enhance the cerebral acetylcholine level in triple transgenic AD (3xTg-AD) mice. Following one month treatment with 9Q, the amyloid burden and the cognitive deficits in 3xTg-AD mice were significantly ameliorated. It was observed that 9Q treatment mitigated synapse dysfunction, decreased amyloidogenic APP processing, and reduced the tau pathology in 3xTg-AD mice. Taken together, our results suggested that dual inhibition of cholinesterases and Aβ aggregation could be a promising approach in AD treatment.
Collapse
Affiliation(s)
- Yaojun Ju
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| | - Harapriya Chakravarty
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China
| |
Collapse
|
22
|
Coelho DS, Schwartz S, Merino MM, Hauert B, Topfel B, Tieche C, Rhiner C, Moreno E. Culling Less Fit Neurons Protects against Amyloid-β-Induced Brain Damage and Cognitive and Motor Decline. Cell Rep 2019; 25:3661-3673.e3. [PMID: 30590040 PMCID: PMC6315112 DOI: 10.1016/j.celrep.2018.11.098] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/05/2018] [Accepted: 11/28/2018] [Indexed: 01/25/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, impairing cognitive and motor functions. One of the pathological hallmarks of AD is neuronal loss, which is not reflected in mouse models of AD. Therefore, the role of neuronal death is still uncertain. Here, we used a Drosophila AD model expressing a secreted form of human amyloid-β42 peptide and showed that it recapitulates key aspects of AD pathology, including neuronal death and impaired long-term memory. We found that neuronal apoptosis is mediated by cell fitness-driven neuronal culling, which selectively eliminates impaired neurons from brain circuits. We demonstrated that removal of less fit neurons delays β-amyloid-induced brain damage and protects against cognitive and motor decline, suggesting that contrary to common knowledge, neuronal death may have a beneficial effect in AD. Peptides linked to neurodegenerative diseases reduce neuronal fitness in Drosophila β-amyloid-induced neuronal death is mediated by fitness regulators flower and azot Suppression of fitness-based neuronal culling aggravates cognitive and motor decline Neuronal death related to fitness-based selection has a beneficial net effect
Collapse
Affiliation(s)
- Dina S Coelho
- Cell Fitness Lab, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Silvia Schwartz
- Stem Cells and Regeneration Lab, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal
| | - Marisa M Merino
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Department of Biochemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Barbara Hauert
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Barbara Topfel
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Colin Tieche
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Christa Rhiner
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Stem Cells and Regeneration Lab, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Eduardo Moreno
- Cell Fitness Lab, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; Institute for Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland.
| |
Collapse
|
23
|
Llorente P, Kristen H, Sastre I, Toledano-Zaragoza A, Aldudo J, Recuero M, Bullido MJ. A Free Radical-Generating System Regulates Amyloid Oligomers: Involvement of Cathepsin B. J Alzheimers Dis 2019; 66:1397-1408. [PMID: 30400084 DOI: 10.3233/jad-170159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amyloid-β (Aβ), a major component of senile plaques, is generated via the proteolysis of amyloid-β protein precursor (AβPP). This cleavage also produces AβPP fragment-derived oligomers which can be highly neurotoxic. AβPP metabolism/processing is affected by many factors, one of which is oxidative stress (OS). Associated with aging, OS is an important risk factor for Alzheimer's disease. In addition, the protein degradation systems, especially those involving cathepsins, are impaired in aging brains. Moreover, cathepsin B (CTSB) is a cysteine protease with potentially specific roles in AβPP proteolysis (β-secretase activity) and Aβ clearance (Aβ degradative activity). The present work examines the effect of OS and the involvement of CTSB in amyloid oligomer formation. The xanthine/xanthine oxidase (X-XOD) free radical generating system induced the partial inhibition of CTSB activity, which was accompanied by an increase in large amyloid oligomers. These were located throughout the cytosol and in endo-lysosomal vesicles. Cells treated with the CTSB inhibitor CA-074Me also showed increased amyloid oligomer levels, whereas those subjected to OS in the presence of the inhibitor showed no such increase. However, CTSB inhibition clearly modulated the AβPP metabolism/processing induced by X-XOD, as revealed by the increase in intracellular AβPP and secreted α-secretase-cleaved soluble AβPP. The present results suggest that CTSB participates in the changes of amyloid oligomer induced by mild OS.
Collapse
Affiliation(s)
- Patricia Llorente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Henrike Kristen
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Isabel Sastre
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigacion Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain
| | - Ana Toledano-Zaragoza
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Aldudo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigacion Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain
| | - María Recuero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigacion Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain
| | - María J Bullido
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigacion Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain
| |
Collapse
|
24
|
Hippocampus-specific regulation of long non-coding RNA and mRNA expression in germ-free mice. Funct Integr Genomics 2019; 20:355-365. [PMID: 31677064 DOI: 10.1007/s10142-019-00716-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
Gut microbiota can affect multiple brain functions and cause behavioral alterations through the microbiota-gut-brain axis. In our previous study, we found that the absence of gut microbiota can influence the expression of microRNAs and mRNAs in the hippocampal region of the germ-free (GF) mice. Long non-coding RNAs (lncRNAs) are increasingly being recognized as an important functional transcriptional regulator in the brain. In the present study, we aim to identify possible biological pathways and functional networks for lncRNA-associated transcript of the gut microbiota in relation to the brain function. The profiles of lncRNA and mRNA from specific pathogen-free (SPF), colonized GF (CGF), and GF mice were generated using the Agilent Mouse LncRNA Array v2.0. Differentially expressed (DE) lncRNAs and mRNAs were identified, and lncRNA target genes were also predicted. Ingenuity pathway analysis (IPA) was performed to analyze related signaling pathways and biological functions associated with these dysregulated mRNAs and target genes. Validation with quantitative real-time PCR was performed on several key genes. Compared with SPF mice a total of 2230 DE lncRNAs were found in GF mice. Among these, 1355 were upregulated and 875 were downregulated. After comparing the target genes of DE lncRNAs with mRNA datasets, 669 overlapping genes were identified. IPA core analyses revealed that most of these genes were highly associated with cardiac hypertrophy, nuclear factors of activated T cells (NFAT) gonadotropin-releasing hormone (GnRH), calcium, and cAMP-response element-binding protein (CREB) signaling pathways. Additionally, mRNA expression levels of APP, CASP9, IGFBP2, PTGDS, and TGFBR2 genes that are involved in central nervous system functions were significantly changed in the GF mouse hippocampus. Through this study, for the first time, we describe the effect of gut microbiota on the hippocampal lncRNA regulation. This will help in enhancing the overall knowledge about microbiota-gut-brain axis.
Collapse
|
25
|
Dourlen P, Kilinc D, Malmanche N, Chapuis J, Lambert JC. The new genetic landscape of Alzheimer's disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol 2019; 138:221-236. [PMID: 30982098 PMCID: PMC6660578 DOI: 10.1007/s00401-019-02004-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022]
Abstract
A strong genetic predisposition (60–80% of attributable risk) is present in Alzheimer’s disease (AD). In view of this major genetic component, identification of the genetic risk factors has been a major objective in the AD field with the ultimate aim to better understand the pathological processes. In this review, we present how the genetic risk factors are involved in APP metabolism, β-amyloid peptide production, degradation, aggregation and toxicity, innate immunity, and Tau toxicity. In addition, on the basis of the new genetic landscape, resulting from the recent high-throughput genomic approaches and emerging neurobiological information, we propose an over-arching model in which the focal adhesion pathway and the related cell signalling are key elements in AD pathogenesis. The core of the focal adhesion pathway links the physiological functions of amyloid precursor protein and Tau with the pathophysiological processes they are involved in. This model includes several entry points, fitting with the different origins for the disease, and supports the notion that dysregulation of synaptic plasticity is a central node in AD. Notably, our interpretation of the latest data from genome wide association studies complements other hypotheses already developed in the AD field, i.e., amyloid cascade, cellular phase or propagation hypotheses. Genetically driven synaptic failure hypothesis will need to be further tested experimentally within the general AD framework.
Collapse
Affiliation(s)
- Pierre Dourlen
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Devrim Kilinc
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Nicolas Malmanche
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Julien Chapuis
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Jean-Charles Lambert
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France.
| |
Collapse
|
26
|
Sharma R, Kuca K, Nepovimova E, Kabra A, Rao MM, Prajapati PK. Traditional Ayurvedic and herbal remedies for Alzheimer's disease: from bench to bedside. Expert Rev Neurother 2019; 19:359-374. [PMID: 30884983 DOI: 10.1080/14737175.2019.1596803] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive, neurodegenerative disorder prevalent worldwide among elderly populations. Owing to limited efficacy, side effects, and poor patient compliance for current rationally designed therapies, options are being searched from alternate therapies such as Indian (Ayurvedic), Chinese, or other traditional systems. Areas covered: Following a comprehensive literature search, the authors provide a review encompassing: (1) pathophysiological changes involved in AD, (2) Ayurvedic holistic approach and herbal medicines to manage dementia and AD, and (3) traditional plants and their phytoconstituents effective in AD with description of possible mechanism of action. Expert opinion: Traditional remedies could be adjunct therapeutic options to allay wide-ranging pathological cascades of AD. Ayurveda offers a holistic approach of treatment along with a list of nootropic herbs and formulations that are the rich sources of antioxidants, anti-amyloidogenic, neuroprotective, adaptogenic, anti-inflammatory, and immunomodulatory compounds that are found to modulate neuroendocrine-immune activities, enhance memory, intellect, rejuvenate brain functions, and improve quality of life. A strong knowledge base of traditional systems coupled with contemporary science may provide new functional leads for age-associated neurodegenerative disorders at preventive, promotive, and curative levels, and evolution of new drug therapies and development processes, though further research is needed.
Collapse
Affiliation(s)
- Rohit Sharma
- a Central Ayurveda Research Institute for Drug Development , CCRAS, Ministry of AYUSH, Government of India , Bidhannagar , Kolkata , India
| | - Kamil Kuca
- b Department of Chemistry, Faculty of Science , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Eugenie Nepovimova
- b Department of Chemistry, Faculty of Science , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Atul Kabra
- c Department of Pharmacology , Kota College of Pharmacy , Kota , Rajasthan , India
| | - M M Rao
- d Central Ayurveda Research Institute for Drug Development , Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India , Bidhannagar , Kolkata , India
| | - P K Prajapati
- e Rasashastra & Bhaishajya Kalpana , All India Institute of Ayurveda , New Delhi , India
| |
Collapse
|
27
|
Tosi G, Pederzoli F, Belletti D, Vandelli MA, Forni F, Duskey JT, Ruozi B. Nanomedicine in Alzheimer's disease: Amyloid beta targeting strategy. PROGRESS IN BRAIN RESEARCH 2019; 245:57-88. [PMID: 30961872 DOI: 10.1016/bs.pbr.2019.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment of Alzheimer's disease (AD) is up to today one of the most unsuccessful examples of biomedical science. Despite the high number of literature evidences detailing the multifactorial and complex etiopathology of AD, no cure is yet present on the market and the available treatments are only symptomatic. The reasons could be ascribed on two main factors: (i) lack of ability of the majority of drugs to cross the blood-brain barrier (BBB), thus excluding the brain for any successful therapy; (ii) lack of selectivity and specificity of drugs, decreasing the efficacy of even potent anti-AD drugs. The exploitation of specifically engineered nanomedicines planned to cross the BBB and to target the most "hot" site of action (i.e., β-amyloid) is one of the most interesting innovations in drug delivery and could reasonably represent an promising choice for possible treatments and even early-diagnosis of AD. In this chapter, we therefore outline the most talented approaches in AD treatment with a specific focus on the main advantages/drawbacks and future possible translation to clinic application.
Collapse
Affiliation(s)
- Giovanni Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Pederzoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Istituto di Ricerca Pediatrico "Città della Speranza", Padova, Italy
| | - Daniela Belletti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Fondazione Umberto Veronesi, Milano, Italy
| | - Flavio Forni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason Thomas Duskey
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
28
|
Li NM, Liu KF, Qiu YJ, Zhang HH, Nakanishi H, Qing H. Mutations of beta-amyloid precursor protein alter the consequence of Alzheimer's disease pathogenesis. Neural Regen Res 2019; 14:658-665. [PMID: 30632506 PMCID: PMC6352587 DOI: 10.4103/1673-5374.247469] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease is pathologically defined by accumulation of extracellular amyloid-β (Aβ). Approximately 25 mutations in β-amyloid precursor protein (APP) are pathogenic and cause autosomal dominant Alzheimer’s disease. To date, the mechanism underlying the effect of APP mutation on Aβ generation is unclear. Therefore, investigating the mechanism of APP mutation on Alzheimer’s disease may help understanding of disease pathogenesis. Thus, APP mutations (A673T, A673V, E682K, E693G, and E693Q) were transiently co-transfected into human embryonic kidney cells. Western blot assay was used to detect expression levels of APP, beta-secretase 1, and presenilin 1 in cells. Enzyme-linked immunosorbent assay was performed to determine Aβ1–40 and Aβ1–42 levels. Liquid chromatography-tandem mass chromatography was used to examine VVIAT, FLF, ITL, VIV, IAT, VIT, TVI, and VVIA peptide levels. Immunofluorescence staining was performed to measure APP and early endosome antigen 1 immunoreactivity. Our results show that the protective A673T mutation decreases Aβ42/Aβ40 rate by downregulating IAT and upregulating VVIA levels. Pathogenic A673V, E682K, and E693Q mutations promote Aβ42/Aβ40 rate by increasing levels of CTF99, Aβ42, Aβ40, and IAT, and decreasing VVIA levels. Pathogenic E693G mutation shows no significant change in Aβ42/Aβ40 ratio because of inhibition of γ-secretase activity. APP mutations can change location from the cell surface to early endosomes. Our findings confirm that certain APP mutations accelerate Aβ generation by affecting the long Aβ cleavage pathway and increasing Aβ42/40 rate, thereby resulting in Alzheimer’s disease.
Collapse
Affiliation(s)
- Nuo-Min Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ke-Fu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yun-Jie Qiu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Huan-Huan Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
29
|
Coronel R, Palmer C, Bernabeu-Zornoza A, Monteagudo M, Rosca A, Zambrano A, Liste I. Physiological effects of amyloid precursor protein and its derivatives on neural stem cell biology and signaling pathways involved. Neural Regen Res 2019; 14:1661-1671. [PMID: 31169172 PMCID: PMC6585543 DOI: 10.4103/1673-5374.257511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The pathological implication of amyloid precursor protein (APP) in Alzheimer's disease has been widely documented due to its involvement in the generation of amyloid-β peptide. However, the physiological functions of APP are still poorly understood. APP is considered a multimodal protein due to its role in a wide variety of processes, both in the embryo and in the adult brain. Specifically, APP seems to play a key role in the proliferation, differentiation and maturation of neural stem cells. In addition, APP can be processed through two canonical processing pathways, generating different functionally active fragments: soluble APP-α, soluble APP-β, amyloid-β peptide and the APP intracellular C-terminal domain. These fragments also appear to modulate various functions in neural stem cells, including the processes of proliferation, neurogenesis, gliogenesis or cell death. However, the molecular mechanisms involved in these effects are still unclear. In this review, we summarize the physiological functions of APP and its main proteolytic derivatives in neural stem cells, as well as the possible signaling pathways that could be implicated in these effects. The knowledge of these functions and signaling pathways involved in the onset or during the development of Alzheimer's disease is essential to advance the understanding of the pathogenesis of Alzheimer's disease, and in the search for potential therapeutic targets.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Charlotte Palmer
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - María Monteagudo
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Alberto Zambrano
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
30
|
Bahaeddin Z, Yans A, Khodagholi F, Sahranavard S. Dietary supplementation with Allium hirtifolium and/or Astragalus hamosus improved memory and reduced neuro-inflammation in the rat model of Alzheimer’s disease. Appl Physiol Nutr Metab 2018; 43:558-564. [DOI: 10.1139/apnm-2017-0585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Allium hirtifolium Boiss and Astragalus hamosus L. are mentioned in Iranian traditional medicine documentation as therapy for a kind of dementia with the features and symptoms similar to those of Alzheimer’s disease (AD). In the present study, the effects of these herbs on neuro-inflammation and memory have been evaluated as new therapies in amyloid beta (Aβ)-induced memory impairment model. Separate groups of rats were fed with A. hirtifolium or A. hamosus extract (both 100 mg/(kg·day)−1) started 1 week before stereotaxic surgery to 24 h before behavioral testing (totally, for 16 successive days). The effects of oral administration of mentioned extracts on the memory and neuro-inflammation were assessed in the Aβ-injected rats. The results of this study showed that oral administration of both A. hirtifolium and A. hamosus improved the memory, examined by using Y-maze test and shuttle box apparatus. Also, Western blotting analysis of cyclooxygenase-2, interleukin-1β, and tumor necrosis factor-α showed that these herbs have ameliorating effects against the neuro-inflammation caused by Aβ. These findings suggest that the use of A. hirtifolium and A. hamosus as herbal therapy may be suitable for decreasing AD-related symptoms and treatment of other neurodegenerative disorders.
Collapse
Affiliation(s)
- Zahra Bahaeddin
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Asal Yans
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamim Sahranavard
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Sun M, Zhang H. Par3 and aPKC regulate BACE1 endosome-to-TGN trafficking through PACS1. Neurobiol Aging 2017; 60:129-140. [PMID: 28946017 PMCID: PMC5653456 DOI: 10.1016/j.neurobiolaging.2017.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/11/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
The cleavage of amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) is the rate-limiting step in beta amyloid generation during Alzheimer's disease (AD) pathogenesis. In AD brains, BACE1 is abnormally accumulated in endocytic compartments, where the acidic pH is optimal for its activity. However, mechanisms regulating the endosome-to-trans-Golgi network (TGN) retrieval of BACE1 remain unclear. Here, we show that partitioning defective 3 (Par3) facilitates BACE1 retrograde trafficking from endosomes to the TGN. Par3 functions through aPKC-mediated phosphorylation of BACE1 on Ser498, which in turn promotes the interaction between BACE1 and phosphofurin acidic cluster sorting protein 1 and facilitates the retrograde trafficking of BACE1 to the TGN. In human AD brains, there is a significant decrease in Ser498 phosphorylation of BACE1 suggesting that defective phosphorylation-dependent retrograde transport of BACE1 is important in AD pathogenesis. Together, our studies provide mechanistic insight into a novel role for Par3 and aPKC in regulating the retrograde endosome-to-TGN trafficking of BACE1 and shed light on the mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Miao Sun
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
32
|
Barrett MA, Trapp M, Lohstroh W, Seydel T, Ollivier J, Ballauff M, Dencher NA, Hauß T. Alzheimer's peptide amyloid-β, fragment 22-40, perturbs lipid dynamics. SOFT MATTER 2016; 12:1444-51. [PMID: 26646730 DOI: 10.1039/c5sm02026c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The peptide amyloid-β (Aβ) interacts with membranes of cells in the human brain and is associated with Alzheimer's disease (AD). The intercalation of Aβ in membranes alters membrane properties, including the structure and lipid dynamics. Any change in the membrane lipid dynamics will affect essential membrane processes, such as energy conversion, signal transduction and amyloid precursor protein (APP) processing, and may result in the observed neurotoxicity associated with the disease. The influence of this peptide on membrane dynamics was studied with quasi-elastic neutron scattering, a technique which allows a wide range of observation times from picoseconds to nanoseconds, over nanometer length scales. The effect of the membrane integral neurotoxic peptide amyloid-β, residues 22-40, on the in- and out-of-plane lipid dynamics was observed in an oriented DMPC/DMPS bilayer at 15 °C, in its gel phase, and at 30 °C, near the phase transition temperature of the lipids. Near the phase-transition temperature, a 1.5 mol% of peptide causes up to a twofold decrease in the lipid diffusion coefficients. In the gel-phase, this effect is reversed, with amyloid-β(22-40) increasing the lipid diffusion coefficients. The observed changes in lipid diffusion are relevant to protein-protein interactions, which are strongly influenced by the diffusion of membrane components. The effect of the amyloid-β peptide fragment on the diffusion of membrane lipids will provide insight into the membrane's role in AD.
Collapse
Affiliation(s)
- Matthew A Barrett
- Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bahaeddin Z, Yans A, Khodagholi F, Hajimehdipoor H, Sahranavard S. Hazelnut and neuroprotection: Improved memory and hindered anxiety in response to intra-hippocampal Aβ injection. Nutr Neurosci 2016; 20:317-326. [PMID: 26808646 DOI: 10.1080/1028415x.2015.1126954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Corylus avellana L. (hazelnut) is known to be a delicious and nutritious food. This study was carried out to evaluate the use of hazelnut as a therapy for memory impairment because in Iranian traditional medicine, it is recommended for those suffering from a particular type of dementia, with symptoms of Alzheimer's disease. METHODS In this study, rats were fed with hazelnut kernel [(without skin) 800 mg/kg/day] during 1 week before stereotaxic surgery to 24 hours before behavioral testing (in general, for 16 consecutive days) and the effect of hazelnut eating on memory, anxiety, neuroinflammation and apoptosis was assessed in the amyloid beta-injected rat. RESULTS The results of this study showed that feeding with hazelnut improved memory, (which was examined by using Y-maze test and shuttle box apparatus), and reduced anxiety-related behavior, that was evaluated using elevated plus maze. Also, western blotting analysis of cyclooxygenase-2, interleukin-1β, tumor necrosis factor-α, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, and caspase-3 showed that hazelnut has an ameliorating effect on the neuroinflammation and apoptosis caused by Aβ. DISCUSSION These findings suggest that hazelnut, as a dietary supplement, improves healthy aging and could be a beneficial diet for the treatment of AD.
Collapse
Affiliation(s)
- Zahra Bahaeddin
- a Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy , School of Traditional Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Asal Yans
- b Neuroscience Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fariba Khodagholi
- b Neuroscience Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,c NeuroBiology Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Homa Hajimehdipoor
- a Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy , School of Traditional Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Shamim Sahranavard
- a Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy , School of Traditional Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
34
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative illness associated with dementia and is most prevalent among the elderly population. Current medications can only treat symptoms. Alkaloids are structurally diverse and have been an important source of therapeutics for various brain disorders. Two US Food and Drug Administration (FDA)-approved acetylcholinesterase inhibitors for AD, galantamine and rivastigmine, are in fact alkaloids. In addition, clinical trials of four other extensively studied alkaloids-huperzine A, caffeine, nicotine, and indomethacin-have been conducted but do not convincingly demonstrate their clinical efficacy for AD. Interestingly, rhynchophylline, a known neuroprotective alkaloid, was recently discovered by in silico screening as an inhibitor of EphA4, a novel target for AD. Here, we review the pathophysiological mechanisms underlying AD, current treatment strategies, and therapeutic potential of several selected plant alkaloids in AD, highlighting their various drug targets and the key supportive preclinical and clinical studies. Future research should include more rigorous clinical studies of the most promising alkaloids, the further development of recently discovered candidate alkaloids, and the continual search for new alkaloids for relevant drug targets. It remains promising that an alkaloid drug candidate could significantly affect the progression of AD in addition to providing symptomatic relief.
Collapse
Affiliation(s)
- Yu Pong Ng
- Division of Life Science, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Terry Cho Tsun Or
- Division of Life Science, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
35
|
Stahl R, Schilling S, Soba P, Rupp C, Hartmann T, Wagner K, Merdes G, Eggert S, Kins S. Shedding of APP limits its synaptogenic activity and cell adhesion properties. Front Cell Neurosci 2014; 8:410. [PMID: 25520622 PMCID: PMC4253958 DOI: 10.3389/fncel.2014.00410] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/11/2014] [Indexed: 01/05/2023] Open
Abstract
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease (AD) and has essential synapse promoting functions. Synaptogenic activity as well as cell adhesion properties of APP presumably depend on trans-cellular dimerization via its extracellular domain. Since neuronal APP is extensively processed by secretases, it raises the question if APP shedding affects its cell adhesion and synaptogenic properties. We show that inhibition of APP shedding using cleavage deficient forms of APP or a dominant negative α-secretase strongly enhanced its cell adhesion and synaptogenic activity suggesting that synapse promoting function of APP is tightly regulated by α-secretase mediated processing, similar to other trans-cellular synaptic adhesion molecules.
Collapse
Affiliation(s)
- Ronny Stahl
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich Munich, Germany
| | - Sandra Schilling
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Peter Soba
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Center for Molecular Neurobiology (ZMNH), University of Hamburg Hamburg, Germany
| | - Carsten Rupp
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Tobias Hartmann
- Deutsches Institut für DemenzPrävention, Experimental Neurology, Saarland University Homburg/Saar, Germany
| | - Katja Wagner
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Gunter Merdes
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Department of Biosystems Science and Engineering, ETH Zürich Basel, Switzerland
| | - Simone Eggert
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Stefan Kins
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany ; Deutsches Institut für DemenzPrävention, Experimental Neurology, Saarland University Homburg/Saar, Germany
| |
Collapse
|
36
|
Gstir R, Schafferer S, Scheideler M, Misslinger M, Griehl M, Daschil N, Humpel C, Obermair GJ, Schmuckermair C, Striessnig J, Flucher BE, Hüttenhofer A. Generation of a neuro-specific microarray reveals novel differentially expressed noncoding RNAs in mouse models for neurodegenerative diseases. RNA (NEW YORK, N.Y.) 2014; 20:1929-43. [PMID: 25344396 PMCID: PMC4238357 DOI: 10.1261/rna.047225.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/27/2014] [Indexed: 05/24/2023]
Abstract
We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs.
Collapse
Affiliation(s)
- Ronald Gstir
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Simon Schafferer
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Marcel Scheideler
- RNA Biology Group, Institute for Genomics and Bioinformatics, Graz University of Technology, 8010 Graz, Austria
| | - Matthias Misslinger
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias Griehl
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Daschil
- Department of Psychiatry and Psychotherapy, University Clinic of General and Social Psychiatry, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Christian Humpel
- Department of Psychiatry and Psychotherapy, University Clinic of General and Social Psychiatry, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Gerald J Obermair
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Claudia Schmuckermair
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Joerg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
37
|
Li JM, Liu C, Hu X, Cai Y, Ma C, Luo XG, Yan XX. Inverse correlation between Alzheimer's disease and cancer: implication for a strong impact of regenerative propensity on neurodegeneration? BMC Neurol 2014; 14:211. [PMID: 25394409 PMCID: PMC4232711 DOI: 10.1186/s12883-014-0211-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/24/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recent studies have revealed an inverse epidemiological correlation between Alzheimer's disease (AD) and cancer - patients with AD show a reduced risk of cancer, while cancer survivors are less likely to develop AD. These late discoveries in human subjects call for explorative studies to unlock the underlying biological mechanism, but also may shed new light on conceptual interrogation of the principal pathogenic players in AD etiology. DISCUSSION Here we hypothesize that this negative correlation reflects a rebalance of biosynthetic propensity between body systems under the two disease statuses. In normal condition the body cellular systems are maintained homeostatically under a balanced cell degenerative vs. surviving/regenerative propensities, determined by biosynthetic resources for anabolic processing. AD pathogenesis involves neurodegeneration but also aberrant regenerative, or reactive anabolic, burden, while cancer development is driving by uncontrolled proliferation inherent with excessive anabolic activity. The aberrant neural regenerative propensity in AD pathogenesis and the uncontrolled cellular proliferative propensity in cancer pathogeneses can manifest as competitive processes, which could result in the inverse epidemiological correlation seen among the elderly. SUMMARY The reduced prevalence of AD in cancer survivors may implicate a strong impact of aberrant neural regenerative burden in neurodegeneration. Further explorative studies into the inverse correlation between AD and cancer should include examinations of the proliferative propensity of tumor cells in AD models, and the development of AD-like neuropathology in cancer models as well as following anti-proliferative drug treatment.
Collapse
Affiliation(s)
- Jian-Ming Li
- />Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013 Hunan China
- />Neuroscience Research Center, Changsha Medical University, Changsha, 410219 Hunan China
| | - Chao Liu
- />Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013 Hunan China
- />Department of Neurology, The First Hospital of Changsha, Changsha, 410005 Hunan China
| | - Xia Hu
- />Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013 Hunan China
| | - Yan Cai
- />Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013 Hunan China
| | - Chao Ma
- />Department of Human Anatomy, Histology & Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, 100730 China
| | - Xue-Gang Luo
- />Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013 Hunan China
| | - Xiao-Xin Yan
- />Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, 410013 Hunan China
| |
Collapse
|