1
|
Ford B, Monk R, Litchfield D, Qureshi A. Agent-Object Relationships in Level-2 Visual Perspective Taking: An Eye-Tracking Study. J Cogn 2024; 7:72. [PMID: 39398222 PMCID: PMC11468513 DOI: 10.5334/joc.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/21/2024] [Indexed: 10/15/2024] Open
Abstract
Visual perspective taking (VPT) generates a shared frame of reference for understanding how the world appears to others. Whilst greater cognitive and neurophysiological demands are associated with increasing angular distance between the self and other is well documented, accompanying attentional characteristics are not currently understood. Furthermore, although age and group status have been shown to impact task performance, other important cues, such as the relationship between agents and objects, have not been manipulated. Therefore, 35 university students participated in an eye-tracking experiment where they completed a VPT task with agents positioned at a low or high angular disparity (45° or 135° respectively). The congruence between the age of the agent (child vs adult) and the object they are attending to (e.g., teddy-bear vs kettle) was also manipulated. Participants were required to respond to the direction of the object from the agent's position. The findings reveal more fixations and increased dwell-times on agents compared to objects, but this was moderated by the age of the task agent. Results also showed more attentional transitions between agents and objects at higher angular disparities. These results converge with behavioural and neurophysiological descriptions of task performance in previous studies. Furthermore, the congruency of the relationship between agents and objects also impacted attention shifting and response times, highlighting the importance of understanding how social cues and contexts can modulate VPT processes in everyday contexts and social interaction.
Collapse
Affiliation(s)
- Ben Ford
- University of Gloucestershire, UK
- Edge Hill University, UK
| | | | | | | |
Collapse
|
2
|
MacNeil RR, Enns JT. The "What" and "How" of Pantomime Actions. Vision (Basel) 2024; 8:58. [PMID: 39449391 PMCID: PMC11503306 DOI: 10.3390/vision8040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Pantomimes are human actions that simulate ideas, objects, and events, commonly used in conversation, performance art, and gesture-based interfaces for computing and controlling robots. Yet, their underlying neurocognitive mechanisms are not well understood. In this review, we examine pantomimes through two parallel lines of research: (1) the two visual systems (TVS) framework for visually guided action, and (2) the neuropsychological literature on limb apraxia. Historically, the TVS framework has considered pantomime actions as expressions of conscious perceptual processing in the ventral stream, but an emerging view is that they are jointly influenced by ventral and dorsal stream processing. Within the apraxia literature, pantomimes were historically viewed as learned motor schemas, but there is growing recognition that they include creative and improvised actions. Both literatures now recognize that pantomimes are often created spontaneously, sometimes drawing on memory and always requiring online cognitive control. By highlighting this convergence of ideas, we aim to encourage greater collaboration across these two research areas, in an effort to better understand these uniquely human behaviors.
Collapse
Affiliation(s)
- Raymond R. MacNeil
- Department of Psychology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | | |
Collapse
|
3
|
Moazzen H, Gharibzadeh S, Bakouie F. Exploring perceptual grouping by proximity principle in multistable dot lattices: Dissociation between vision-for-perception and vision-for-action. Atten Percept Psychophys 2024; 86:2053-2077. [PMID: 39090511 DOI: 10.3758/s13414-024-02928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
Perceptual grouping, a fundamental mechanism in our visual system, significantly influences our interpretation of and interaction with the surrounding world. This study explores the impact of the proximity principle from the perspective of the Two Visual Systems (TVS) model. The TVS model argues that the visual system comprises two distinct streams: the ventral stream, which forms the neural basis for "vision-for-perception," and the dorsal stream, which underlies "vision-for-action." We designed a perceptual grouping task using dot lattices as well as a line-orientation discrimination task. Data were collected using vocal and mouse methods for the vision-for-perception mode, and joystick and pen-paper methods for the vision-for-action mode. Each method, except for vocal, included separate blocks for right and left hands. The proximity data were fitted using exponential and power models. Linear mixed-effects models were used for the statistical analyses. The results revealed similar line-orientation discrimination accuracy across all conditions. The exponential model emerged as the best fit, demonstrating adherence to the Pure Distance Law in both perceptual modes. Sensitivity to the proximity principle was higher in the vision-for-action mode compared to the vision-for-perception. In terms of orientation biases, a strong preference for vertical orientation was observed in the vision-for-perception mode, whereas a noticeable preference toward either of the oblique orientations was detected in the vision-for-action mode. Analysis of free-drawn lines demonstrated an affordance bias in the vision-for-action mode. This suggests a remarkable tendency to perceive organizations within specific orientations that offer more affordances due to the interaction between the body postures and tools.
Collapse
Affiliation(s)
- Hamze Moazzen
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shahriar Gharibzadeh
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Bakouie
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
4
|
Whitwell RL, Hasan HA, MacNeil RR, Enns JT. Coming to grips with reality: Real grasps, but not pantomimed grasps, resist a simultaneous tilt illusion. Neuropsychologia 2023; 191:108726. [PMID: 37931746 DOI: 10.1016/j.neuropsychologia.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Investigations of grasping real, 3D objects subjected to illusory effects from a pictorial background often choose in-flight grasp aperture as the primary variable to test the hypothesis that the visuomotor system resists the illusion. Here we test an equally important feature of grasps that has received less attention: in-flight grasp orientation. The current study tested a variant of the simultaneous tilt illusion using a mirror-apparatus to manipulate the availability of haptic feedback. Participants performed grasps with haptic feedback (real grasps) and without it (pantomime grasps), reaching for the reflection of a real, 3D bar atop a background grating that induced a 1.1° bias in the perceived orientation of the bar in a separate sample of participants. Analysis of the hand's in-flight grasp orientation at early, late, and end stages of the reach showed that at no point were the real grasps biased by the illusion. In contrast, pantomimed grasps were affected by the illusion at the late and end stages of the reach. At each stage, the effect on the real grasps was significantly weaker than the effect of the illusion as measured by the mean point of subjective equality (PSE) in a two-alternative forced-choice task. In contrast, the effect on the pantomime grasps was statistically indistinguishable from the mean PSE at all three stages of the reach. These findings reinforce the idea that in-flight grasp orientation, like grasp aperture to pictorial illusions of target size, is refractory to pictorial backgrounds that bias perceived orientation.
Collapse
Affiliation(s)
- R L Whitwell
- Department of Physiology & Pharmacology, The University of Western University, Canada; Department of Psychology, The University of Western University, Canada.
| | - H A Hasan
- Department of Psychology, The University of British Columbia, Canada
| | - R R MacNeil
- Department of Psychology, The University of British Columbia, Canada
| | - J T Enns
- Department of Psychology, The University of British Columbia, Canada
| |
Collapse
|
5
|
Kryklywy JH, Forys BJ, Vieira JB, Quinlan DJ, Mitchell DGV. Dissociating representations of affect and motion in visual cortices. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1322-1345. [PMID: 37526901 PMCID: PMC10545642 DOI: 10.3758/s13415-023-01115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 08/02/2023]
Abstract
While a delicious dessert being presented to us may elicit strong feelings of happiness and excitement, the same treat falling slowly away can lead to sadness and disappointment. Our emotional response to the item depends on its visual motion direction. Despite this importance, it remains unclear whether (and how) cortical areas devoted to decoding motion direction represents or integrates emotion with perceived motion direction. Motion-selective visual area V5/MT+ sits, both functionally and anatomically, at the nexus of dorsal and ventral visual streams. These pathways, however, differ in how they are modulated by emotional cues. The current study was designed to disentangle how emotion and motion perception interact, as well as use emotion-dependent modulation of visual cortices to understand the relation of V5/MT+ to canonical processing streams. During functional magnetic resonance imaging (fMRI), approaching, receding, or static motion after-effects (MAEs) were induced on stationary positive, negative, and neutral stimuli. An independent localizer scan was conducted to identify the visual-motion area V5/MT+. Through univariate and multivariate analyses, we demonstrated that emotion representations in V5/MT+ share a more similar response profile to that observed in ventral visual than dorsal, visual structures. Specifically, V5/MT+ and ventral structures were sensitive to the emotional content of visual stimuli, whereas dorsal visual structures were not. Overall, this work highlights the critical role of V5/MT+ in the representation and processing of visually acquired emotional content. It further suggests a role for this region in utilizing affectively salient visual information to augment motion perception of biologically relevant stimuli.
Collapse
Affiliation(s)
- James H Kryklywy
- Department of Psychology, Lakehead University, Thunder Bay, Canada.
| | - Brandon J Forys
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Joana B Vieira
- Department of Psychology, University of Exeter, Exeter, UK
| | - Derek J Quinlan
- Department of Psychology, Huron University College, London, Canada
- Graduate Brain and Mind Institute, Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Derek G V Mitchell
- Graduate Brain and Mind Institute, Brain and Mind Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
- Department of Psychology, University of Western Ontario, London, Canada
- Department of Psychiatry, University of Western Ontario, London, Canada
| |
Collapse
|
6
|
Whitwell RL, Garach MA, Goodale MA, Sperandio I. Looking at the Ebbinghaus illusion: differences in neurocomputational requirements, not gaze-mediated attention, explain a classic perception-action dissociation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210459. [PMID: 36511402 PMCID: PMC9745866 DOI: 10.1098/rstb.2021.0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
Perceiving and grasping an object present an animal with different sets of computational problems. The solution in primates entails the specialization of separate neural networks for visual processing with different object representations. This explains why the Ebbinghaus illusion minimally affects the grasping hand's in-flight aperture, which normally scales with target size, even though the size of the target disc remains misperceived. An attractive alternative account, however, posits that grasps are refractory to the illusion because participants fixate on the target and fail to attend to the surrounding context. To test this account, we tracked both limb and gaze while participants made forced-choice judgments of relative disc size in the Ebbinghaus illusion or did so in combination with grasping or manually estimating the size of one of the discs. We replicated the classic dissociation: grasp aperture was refractory to the measured illusory effect on perceived size, while judgments and manual estimates of disc size were not. Importantly, the number of display-wide saccades per second and the percentage of total fixation time or fixations directed at the selected disc failed to explain the dissociation. Our findings support the contention that object perception and goal-directed action rely on distinct visual representations. This article is part of a discussion meeting issue 'New approaches to 3D vision'.
Collapse
Affiliation(s)
- Robert L. Whitwell
- Department of Psychology, University of Western Ontario, London, Ontario, Canada N6A 5C2
| | - Mehul A. Garach
- Division of Orthopaedics, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1W8
| | - Melvyn A. Goodale
- Department of Psychology, University of Western Ontario, London, Ontario, Canada N6A 5C2
| | - Irene Sperandio
- Department of Psychology and Cognitive Science, University of Trento, Rovereto (TN) 38068, Italy
| |
Collapse
|
7
|
Martolini C, Amadeo MB, Campus C, Cappagli G, Gori M. Effects of audio-motor training on spatial representations in long-term late blindness. Neuropsychologia 2022; 176:108391. [DOI: 10.1016/j.neuropsychologia.2022.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/16/2022] [Accepted: 10/01/2022] [Indexed: 11/15/2022]
|
8
|
Aging: working memory capacity and spatial strategies in a virtual orientation task. GeroScience 2022; 45:159-175. [PMID: 35690689 PMCID: PMC9886750 DOI: 10.1007/s11357-022-00599-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/27/2022] [Indexed: 02/03/2023] Open
Abstract
Brain networks involved in working and spatial memory are closely intertwined, outlining a potential relation between these processes, which are also affected in non-pathological aging. Working memory is a pre-requisite for other complex cognitive processes. The main aim of this study is to explore how working memory capacity (WMC) can influence the asymmetrical decline in spatial orientation strategies in an older segment of population compared to young participants. Forty-eight older adults and twelve young students took part in the study. Working memory and spatial memory were assessed using the Change Localization Task and The Boxes Room Task, respectively. In The Boxes Room Task, two different configurations assessed the use of egocentric and allocentric reference frames. Results showed that older adults with better WMC outperformed those with lower WMC in several tasks. Independently of WMC capacity, older participants performed better in the allocentric condition of The Boxes Room. In addition, young participants outscored low WMC older participants, but did not differ from high WMC older adults. Overly, these findings support the important relationship between working memory capacity and spatial orientations abilities. Thus, basic cognitive mechanisms engaged in information processing could inform about other brain processes more complex in nature, like spatial orientation skills.
Collapse
|
9
|
Wühr P, Richter M. Relative, not absolute, stimulus size is responsible for a correspondence effect between physical stimulus size and left/right responses. Atten Percept Psychophys 2022; 84:1342-1358. [PMID: 35460026 PMCID: PMC9032296 DOI: 10.3758/s13414-022-02490-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2022] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated a novel compatibility (or correspondence) effect between physical stimulus size and horizontally aligned responses: Left-hand responses are shorter and more accurate to a small stimulus, compared to a large stimulus, whereas the opposite is true for right-hand responses. The present study investigated whether relative or absolute size is responsible for the effect. If relative size was important, a particular stimulus would elicit faster left-hand responses if the other stimuli in the set were larger, but the same stimulus would elicit a faster right-hand response if the other stimuli in the set were smaller. In terms of two-visual-systems theory, our study explores whether "vision for perception" (i.e., the ventral system) or "vision for action" (i.e., the dorsal system) dominates the processing of stimulus size in our task. In two experiments, participants performed a discrimination task in which they responded to stimulus color (Experiment 1) or to stimulus shape (Experiment 2) with their left/right hand. Stimulus size varied as an irrelevant stimulus feature, thus leading to corresponding (small-left; large-right) and non-corresponding (small-right; large-left) conditions. Moreover, a set of smaller stimuli and a set of larger stimuli, with both sets sharing an intermediately sized stimulus, were used in different conditions. The consistently significant two-way interaction between stimulus size and response location demonstrated the presence of the correspondence effect. The three-way interaction between stimulus size, response location, and stimulus set, however, was never significant. The results suggest that participants are inadvertently classifying stimuli according to relative size in a context-specific manner.
Collapse
Affiliation(s)
- Peter Wühr
- Institut für Psychologie, Technische Universität Dortmund/TU Dortmund University, Emil-Figge-Straße 50, 44227, Dortmund, Germany.
| | - Melanie Richter
- Institut für Psychologie, Technische Universität Dortmund/TU Dortmund University, Emil-Figge-Straße 50, 44227, Dortmund, Germany
| |
Collapse
|
10
|
Kozuch B. Conscious vision guides motor action—rarely. PHILOSOPHICAL PSYCHOLOGY 2022. [DOI: 10.1080/09515089.2022.2044461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Benjamin Kozuch
- Philosophy Department, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
11
|
Shoshina I, Zelenskaya I, Karpinskaia V, Shilov Y, Tomilovskaya E. Sensitivity of Visual System in 5-Day "Dry" Immersion With High-Frequency Electromyostimulation. Front Neural Circuits 2021; 15:702792. [PMID: 35002633 PMCID: PMC8740068 DOI: 10.3389/fncir.2021.702792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of this work was to study the sensitivity of the visual system in 5-day "dry" immersion with a course of high-frequency electromyostimulation (HFEMS) and without it. "Dry" immersion (DI) is one of the most effective models of microgravity. DI reproduces three basic effects of weightlessness: physical inactivity, support withdrawal and elimination of the vertical vascular gradient. The "dry" immersion included in the use of special waterproof and highly elastic fabric on of immersion in a liquid similar in density to the tissues of the human body. The sensitivity of the visual system was assessed by measuring contrast sensitivity and magnitude of the Müller-Lyer illusion. The visual contrast sensitivity was measured in the spatial frequency range from 0.4 to 10.0 cycles/degree. The strength of visual illusion was assessed by means of motor response using "tracking." Measurements were carried out before the start of immersion, on the 1st, 3rd, 5th days of DI, and after its completion. Under conditions of "dry" immersion without HFEMS, upon the transition from gravity to microgravity conditions (BG and DI1) we observed significant differences in contrast sensitivity in the low spatial frequency range, whereas in the experiment with HFEMS-in the medium spatial frequency range. In the experiment without HFEMS, the Müller-Lyer illusion in microgravity conditions was absent, while in the experiment using HFEMS it was significantly above zero at all stages. Thus, we obtained only limited evidence in favor of the hypothesis of a possible compensating effect of HFEMS on changes in visual sensitivity upon the transition from gravity to microgravity conditions and vice versa. The study is a pilot and requires further research on the effect of HFEMS on visual sensitivity.
Collapse
Affiliation(s)
- Irina Shoshina
- Laboratory of Physiology of Vision, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Inna Zelenskaya
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Yuri Shilov
- Department of Psychology, Samara University, Samara, Russia
| | - Elena Tomilovskaya
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Martolini C, Cappagli G, Saligari E, Gori M, Signorini S. Allocentric spatial perception through vision and touch in sighted and blind children. J Exp Child Psychol 2021; 210:105195. [PMID: 34098165 DOI: 10.1016/j.jecp.2021.105195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Vision and touch play a critical role in spatial development, facilitating the acquisition of allocentric and egocentric frames of reference, respectively. Previous works have shown that children's ability to adopt an allocentric frame of reference might be impaired by the absence of visual experience during growth. In the current work, we investigated whether visual deprivation also impairs the ability to shift from egocentric to allocentric frames of reference in a switching-perspective task performed in the visual and haptic domains. Children with and without visual impairments from 6 to 13 years of age were asked to visually (only sighted children) or haptically (blindfolded sighted children and blind children) explore and reproduce a spatial configuration of coins by assuming either an egocentric perspective or an allocentric perspective. Results indicated that temporary visual deprivation impaired the ability of blindfolded sighted children to switch from egocentric to allocentric perspective more in the haptic domain than in the visual domain. Moreover, results on visually impaired children indicated that blindness did not impair allocentric spatial coding in the haptic domain but rather affected the ability to rely on haptic egocentric cues in the switching-perspective task. Finally, our findings suggested that the total absence of vision might impair the development of an egocentric perspective in case of body midline-crossing targets.
Collapse
Affiliation(s)
- Chiara Martolini
- Unit for Visually Impaired People, Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genoa, Italy.
| | - Giulia Cappagli
- Unit for Visually Impaired People, Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genoa, Italy.
| | - Elena Saligari
- Center of Child NeuroOphthalmology, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genoa, Italy.
| | - Sabrina Signorini
- Center of Child NeuroOphthalmology, IRCCS Mondino Foundation, 27100 Pavia, Italy.
| |
Collapse
|
13
|
Senanayake SA, Carther-Krone T, Marotta JJ. Priming of the Sander Parallelogram illusion separates perception from action. Exp Brain Res 2021; 239:2207-2220. [PMID: 34013396 DOI: 10.1007/s00221-021-06076-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
The two-visual stream hypothesis posits that the dorsal stream is less susceptible than the ventral stream to the effects of illusions and visual priming. While previous studies have separately examined these perceptual manipulations, the present study combined the effects of a visual illusion and priming to examine the possibility of dorsally guided actions being susceptible to the perceptual stimuli due to interactions between the two streams. Thirty-four participants were primed with a 'long' or 'short' version of the Sander Parallelogram illusion and were asked to either reach out and grasp or manually estimate the length of a rod placed on a version of the illusion that was on some trials the same as the prime (congruent) and on other trials was the inverse (incongruent). Due to the context-focused nature of ventral processing, we predicted that estimations would be more susceptible to the effects of the illusion and priming than grasps. Results showed that while participants' manual estimations were susceptible to both priming and the illusion, the grasps were only affected by the illusion, not by priming. The influence of the illusion on grip aperture was greater during manual estimations than it was during grasping. These findings support the notion that the functionally distinct dorsal and ventral streams interact under the current experimental paradigm. Outcomes of the study help better understand the nature of stimuli that promote interactions between the dorsal and ventral streams.
Collapse
Affiliation(s)
- Shannon A Senanayake
- Perception and Action Lab, Department of Psychology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Tiffany Carther-Krone
- Perception and Action Lab, Department of Psychology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jonathan J Marotta
- Perception and Action Lab, Department of Psychology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
14
|
Derbie AY, Chau BKH, Wong CHY, Chen LD, Ting KH, Lam BYH, Lee TMC, Chan CCH, Smith Y. Common and distinct neural trends of allocentric and egocentric spatial coding: An ALE meta-analysis. Eur J Neurosci 2021; 53:3672-3687. [PMID: 33880818 DOI: 10.1111/ejn.15240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/22/2023]
Abstract
The uniqueness of neural processes between allocentric and egocentric spatial coding has been controversial. The distinctive paradigms used in previous studies for manipulating spatial coding could have attributed for the inconsistent results. This study was aimed to generate converging evidence from previous functional brain imaging experiments for collating neural substrates associated with these two types of spatial coding. An additional aim was to test whether test-taking processes would have influenced the results. We obtained coordinate-based functional neuroimaging data for 447 subjects and performed activation likelihood estimation (ALE) meta-analysis. Among the 28 experiments, the results indicate two common clusters of convergence. They were the right precuneus and the right superior frontal gyrus as parts of the parieto-frontal circuit. Between-type differences were in the parieto-occipital circuit, with allocentric showing convergence in the superior occipital gyrus (SOG) cluster compared with egocentric showing convergence in the middle occipital gyrus (MOG) cluster. Task-specific influences were only found in allocentric spatial coding. Spatial judgment-oriented tasks seem to increase the demands on manipulating spatial relationships among the visual objects, while spatial navigation tasks seem to increase the demands on maintaining object representations. Our findings address the theoretical controversies on spatial coding that both the allocentric and egocentric types are common in their processes mediated by the parieto-frontal network, while unique and additional processes in the allocentric type are mediated by the parieto-occipital network. The positive results on possible task-specific confound offer insights into the future design of spatial tasks for eliciting spatial coding processes.
Collapse
Affiliation(s)
- Abiot Y Derbie
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Psychology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Bolton K H Chau
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Clive H Y Wong
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Li-Dian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Kin-Hung Ting
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bess Y H Lam
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Tatia M C Lee
- Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.,University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China
| | | |
Collapse
|
15
|
Longo MR, Rajapakse SS, Alsmith AJT, Ferrè ER. Shared contributions of the head and torso to spatial reference frames across spatial judgments. Cognition 2020; 204:104349. [PMID: 32599311 PMCID: PMC7520546 DOI: 10.1016/j.cognition.2020.104349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/30/2022]
Abstract
Egocentric frames of reference take the body as the point of origin of a spatial coordinate system. Bodies, however, are not points, but extended objects, with distinct parts that can move independently of one another. We recently developed a novel paradigm to probe the use of different body parts in simple spatial judgments, what we called the misalignment paradigm. In this study, we applied the misalignment paradigm in a perspective-taking task to investigate whether the weightings given to different body parts are shared across different spatial judgments involving different spatial axes. Participants saw birds-eye images of a person with their head rotated 45° relative to the torso. On each trial, a ball appeared and participants made judgments either of whether the ball was to the person's left or right, or whether the ball was in front of the person or behind them. By analysing the pattern of responses with respect to both head and torso, we quantified the contribution of each body part to the reference frames underlying each judgment. For both judgment types we found clear contributions of both head and torso, with more weight being given on average to the torso. Individual differences in the use of the two body parts were correlated across judgment types indicating the use of a shared set of weightings used across spatial axes and judgments. Moreover, retesting of participants several months later showed high stability of these weightings, suggesting that they are stable characteristics of people.
Collapse
Affiliation(s)
- Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London, United Kingdom.
| | - Sampath S Rajapakse
- Department of Psychological Sciences, Birkbeck, University of London, United Kingdom
| | | | - Elisa R Ferrè
- Department of Psychology, Royal Holloway, University of London, United Kingdom
| |
Collapse
|
16
|
Colloby SJ, Nathan PJ, McKeith IG, Bakker G, O'Brien JT, Taylor JP. Cholinergic muscarinic M 1/M 4 receptor networks in dementia with Lewy bodies. Brain Commun 2020; 2:fcaa098. [PMID: 32954342 PMCID: PMC7475694 DOI: 10.1093/braincomms/fcaa098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Cholinergic dysfunction is central in dementia with Lewy bodies, possibly contributing to the cognitive and psychiatric phenotypes of this condition. We investigated baseline muscarinic M1/M4 receptor spatial covariance patterns in dementia with Lewy bodies and their association with changes in cognition and neuropsychiatric symptoms after 12 weeks of treatment with the cholinesterase inhibitor donepezil. Thirty-eight participants (14 cholinesterase inhibitor naive patients, 24 healthy older individuals) underwent 123I-iodo-quinuclidinyl-benzilate (M1/M4 receptor assessment) and 99mTc-exametazime (perfusion) single-photon emission computed tomography scanning. We implemented voxel principal components analysis, producing a series of images representing patterns of inter-correlated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns associated with patients. A discreet M1/M4 pattern that distinguished patients from controls (W1,19.7 = 16.7, P = 0.001), showed relative decreased binding in right lateral temporal and insula, as well as relative preserved/increased binding in frontal, precuneus, lingual and cuneal regions, implicating nodes within attention and dorsal visual networks. We then derived from patients an M1/M4 pattern that correlated with a positive change in mini-mental state examination (r = 0.52, P = 0.05), showing relative preserved/increased uptake in prefrontal, temporal pole and anterior cingulate, elements of attention-related networks. We also generated from patients an M1/M4 pattern that correlated with a positive change in neuropsychiatric inventory score (r = 0.77, P = 0.002), revealing relative preserved/increased uptake within a bilateral temporal-precuneal-striatal system. Although in a small sample and therefore tentative, we posit that optimal response of donepezil on cognitive and neuropsychiatric signs in patients with dementia with Lewy bodies were associated with a maintenance of muscarinic M1/M4 receptor expression within attentional/executive and ventral visual network hubs, respectively.
Collapse
Affiliation(s)
- Sean J Colloby
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Pradeep J Nathan
- Experimental Medicine, Neuroscience Therapeutic Area, Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, UK.,Department of Psychiatry, University of Cambridge, Cambridge CB2 0QC, UK
| | - Ian G McKeith
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Geor Bakker
- Experimental Medicine, Neuroscience Therapeutic Area, Sosei Heptares, Steinmetz Building, Granta Park, Cambridge CB21 6DG, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0QC, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
17
|
Martolini C, Cappagli G, Luparia A, Signorini S, Gori M. The Impact of Vision Loss on Allocentric Spatial Coding. Front Neurosci 2020; 14:565. [PMID: 32612500 PMCID: PMC7308590 DOI: 10.3389/fnins.2020.00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Several works have demonstrated that visual experience plays a critical role in the development of allocentric spatial coding. Indeed, while children with a typical development start to code space by relying on allocentric landmarks from the first year of life, blind children remain anchored to an egocentric perspective until late adolescence. Nonetheless, little is known about when and how visually impaired children acquire the ability to switch from an egocentric to an allocentric frame of reference across childhood. This work aims to investigate whether visual experience is necessary to shift from bodily to external frames of reference. Children with visual impairment and normally sighted controls between 4 and 9 years of age were asked to solve a visual switching-perspective task requiring them to assume an egocentric or an allocentric perspective depending on the task condition. We hypothesize that, if visual experience is necessary for allocentric spatial coding, then visually impaired children would have been impaired to switch from egocentric to allocentric perspectives. Results support this hypothesis, confirming a developmental delay in the ability to update spatial coordinates in visually impaired children. It suggests a pivotal role of vision in shaping allocentric spatial coding across development.
Collapse
Affiliation(s)
- Chiara Martolini
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Giulia Cappagli
- Center of Child Neuro-Ophthalmology, IRCCS Mondino Foundation, Pavia, Italy
| | - Antonella Luparia
- Center of Child Neuro-Ophthalmology, IRCCS Mondino Foundation, Pavia, Italy
| | - Sabrina Signorini
- Center of Child Neuro-Ophthalmology, IRCCS Mondino Foundation, Pavia, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
18
|
Lv M, Hu S. Asymmetrical Switch Costs in Spatial Reference Frames Switching. Perception 2020; 49:268-280. [DOI: 10.1177/0301006620906087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies found that the egocentric and allocentric reference frames are distinct in their functions, developmental trajectory, and neural basis. However, these two spatial reference frames exist in parallel, and people switch between them frequently in their daily lives. Using an allocentric and egocentric switching task, this study explored the cognitive processes involved in the switch between egocentric and allocentric reference frames and the possible asymmetry of switch costs. Sixty-two participants were tested in congruent (i.e., the target was on the same side in two reference frames) and incongruent conditions (i.e., the target was on a different side in two reference frames). The results indicated that the interaction between allocentric and egocentric reference frames was bidirectional and that the congruency effect was higher in the egocentric task than in the allocentric task. More important, the switch costs between allocentric and egocentric reference frames were found in both conditions, and the switch cost was higher for allocentric task. To our knowledge, this was the first study to focus on how switch costs and asymmetrical switch costs occur in allocentric and egocentric task switching.
Collapse
Affiliation(s)
- Ming Lv
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, China
| | - Siyuan Hu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, China
| |
Collapse
|
19
|
Lu Z, Fiehler K. Spatial updating of allocentric landmark information in real-time and memory-guided reaching. Cortex 2020; 125:203-214. [PMID: 32006875 DOI: 10.1016/j.cortex.2019.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/16/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022]
Abstract
The 2-streams model of vision suggests that egocentric and allocentric reference frames are utilized by the dorsal and the ventral stream for real-time and memory-guided movements, respectively. Recent studies argue against such a strict functional distinction and suggest that real-time and memory-guided movements recruit the same spatial maps. In this study we focus on allocentric spatial coding and updating of targets by using landmark information in real-time and memory-guided reaching. We presented participants with a naturalistic scene which consisted of six objects on a table that served as potential reach targets. Participants were informed about the target object after scene encoding, and were prompted by a go cue to reach to its position. After target identification a brief air-puff was applied to the participant's right eye inducing an eye blink. During the blink the target object disappeared from the scene, and in half of the trials the remaining objects, that functioned as landmarks, were shifted horizontally in the same direction. We found that landmark shifts systematically influenced participants' reaching endpoints irrespective of whether the movements were controlled online based on available target information (real-time movement) or memory-guided based on remembered target information (memory-guided movement). Overall, the effect of landmark shift was stronger for memory-guided than real-time reaching. Our findings suggest that humans can encode and update reach targets in an allocentric reference frame for both real-time and memory-guided movements and show stronger allocentric coding when the movement is based on memory.
Collapse
Affiliation(s)
- Zijian Lu
- Department of Experimental Psychology, Justus-Liebig-University, Giessen, Germany.
| | - Katja Fiehler
- Department of Experimental Psychology, Justus-Liebig-University, Giessen, Germany; Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
20
|
A pantomiming priming study on the grasp and functional use actions of tools. Exp Brain Res 2019; 237:2155-2165. [PMID: 31203403 DOI: 10.1007/s00221-019-05581-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/11/2019] [Indexed: 12/31/2022]
Abstract
It has previously been demonstrated that tool recognition is facilitated by the repeated visual presentation of object features affording actions, such as those related to grasping and their functional use. It is unclear, however, if this can also facilitate pantomiming. Participants were presented with an image of a prime followed by a target tool and were required to pantomime the appropriate action for each one. The grasp and functional use attributes of the target tool were either the same or different to the prime. Contrary to expectations, participants were slower at pantomiming the target tool relative to the prime regardless of whether the grasp and function of the tool were the same or different-except when the prime and target tools consisted of identical images of the same exemplar. We also found a decrease in accuracy of performing functional use actions for the target tool relative to the prime when the two differed in functional use but not grasp. We reconcile differences between our findings and those that have performed priming studies on tool recognition with differences in task demands and known differences in how the brain recognises tools and performs actions to make use of them.
Collapse
|
21
|
Amadeo MB, Campus C, Gori M. Impact of years of blindness on neural circuits underlying auditory spatial representation. Neuroimage 2019; 191:140-149. [PMID: 30710679 DOI: 10.1016/j.neuroimage.2019.01.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 11/30/2022] Open
Abstract
Early visual deprivation impacts negatively on spatial bisection abilities. Recently, an early (50-90 ms) ERP response, selective for sound position in space, has been observed in the visual cortex of sighted individuals during the spatial but not the temporal bisection task. Here, we clarify the role of vision on spatial bisection abilities and neural correlates by studying late blind individuals. Results highlight that a shorter period of blindness is linked to a stronger contralateral activation in the visual cortex and a better performance during the spatial bisection task. Contrarily, not lateralized visual activation and lower performance are observed in individuals with a longer period of blindness. To conclude, the amount of time spent without vision may gradually impact on neural circuits underlying the construction of spatial representations in late blind participants. These findings suggest a key relationship between visual deprivation and auditory spatial abilities in humans.
Collapse
Affiliation(s)
- Maria Bianca Amadeo
- Unit for Visually Impaired People (U-VIP), Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83 - 16152, Genova, Italy; Università degli studi di Genova, Department of Informatics, Bioengineering, Robotics and Systems Engineering, Via all'Opera Pia, 13 - 16145, Genova, Italy
| | - Claudio Campus
- Unit for Visually Impaired People (U-VIP), Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83 - 16152, Genova, Italy
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83 - 16152, Genova, Italy.
| |
Collapse
|
22
|
Shi X, Shen X, Qian X. Grasping and Pointing — Visual Conflict and Interference. Multisens Res 2018; 31:439-454. [DOI: 10.1163/22134808-00002576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/16/2017] [Indexed: 11/19/2022]
Abstract
There have been many debates of the two-visual-systems (whatvs. how or perceptionvs. action) hypothesis that was proposed by Goodale and his colleagues. Many researchers have provided a variety of evidence for or against the hypothesis. For instance, a study performed by Agliotiet al. offered good evidence for the two-visual-systems theory using the Ebbinghaus illusion, but some researchers who used other visual illusions failed to find consistent results. Therefore, we used a perceptual task of conflict or interference to test this hypothesis. If the conflict or interference in perception had an influence on the processing of perception alone and did not affect the processing of action, we could infer that the two visual systems are separated, and vice versa. In the current study, we carried out two experiments which employed the Stroop, Garner and SNARC paradigms and used graspable 3-D Arabic numerals. We aimed to find if the effects resulting from perceptual conflicts or interferences would affect participants’ grasping and pointing. The results showed that the interaction between Stroop and numeral order (ascending or descending, or SNARC) was significant, and the SNARC effect significantly affected action, but the main effects of Stroop and Garner interference were not significant. The results indicated that, to some degree, perceptual conflict affects action processing. The results did not provide evidence for two separate visual systems.
Collapse
Affiliation(s)
- Xia Shi
- Department of Psychology, Jiangxi University of Traditional Chinese Medicine, No. 1688 Meiling Avenue, Wanli District, Nanchang 330004, China
- Tianjin University of Technology and Education, Tianjin, China
- Zhejiang University, Hangzhou, China
| | - Xunbing Shen
- Department of Psychology, Jiangxi University of Traditional Chinese Medicine, No. 1688 Meiling Avenue, Wanli District, Nanchang 330004, China
- Zhejiang University, Hangzhou, China
| | | |
Collapse
|
23
|
Two visual pathways – Where have they taken us and where will they lead in future? Cortex 2018; 98:283-292. [DOI: 10.1016/j.cortex.2017.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023]
|
24
|
Vercillo T, Tonelli A, Gori M. Early visual deprivation prompts the use of body-centered frames of reference for auditory localization. Cognition 2018; 170:263-269. [DOI: 10.1016/j.cognition.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/05/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
|
25
|
Attention in action and perception: Unitary or separate mechanisms of selectivity? PROGRESS IN BRAIN RESEARCH 2017. [PMID: 29157415 DOI: 10.1016/bs.pbr.2017.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
What is the relation between the two visual stream hypothesis and selective visual attention? In this chapter, we first consider this question at a theoretical level before presenting an example of work from our lab that examines the question: Under what conditions does the emotional content of a visual object influence visually guided action? Previous research has demonstrated that fear can influence perception, both consciously and unconsciously, but it is unclear when fear influences visually guided action. The study tested participants with varying degrees of spiderphobia on two visually guided pointing tasks, while manipulating the emotional valence of the target (positive and negative) and the cognitive load of the participant (single vs dual task). Participants rapidly moved their finger from a home position to a suddenly appearing target image on a touch screen. The images were emotionally negative (e.g., spiders and scorpions) or positive (e.g., flowers and food). In order to test the effect of emotional valence on the online control of the reach, the target either remained static or jumped to a new location. In both the single and dual tasks, a stream of digits were presented on the screen near the finger's starting location, but only in the dual task were participants asked to identify a letter somewhere in the stream. In the single task, increased fear of spiders reduced the speed and accuracy of the movement. In the dual task, increased fear impaired letter identification, but pointing actions were now equally efficient for low- and high-fear participants. These results imply that the finger's autopilot is influenced by emotional content only when attention can be fully devoted to the identification of the emotion-evoking images. As such, the results support the view that the mechanisms of selection are not the same in the two visual streams.
Collapse
|
26
|
Cao Z, Wang Y, Zhang L. Real-time Acute Stress Facilitates Allocentric Spatial Processing in a Virtual Fire Disaster. Sci Rep 2017; 7:14616. [PMID: 29097754 PMCID: PMC5668298 DOI: 10.1038/s41598-017-14910-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/18/2017] [Indexed: 11/09/2022] Open
Abstract
Prior studies have shown that spatial cognition is influenced by stress prior to task. The current study investigated the effects of real-time acute stress on allocentric and egocentric spatial processing. A virtual reality-based spatial reference rule learning (SRRL) task was designed in which participants were instructed to make a location selection by walking to one of three poles situated around a tower. A selection was reinforced by either an egocentric spatial reference rule (leftmost or rightmost pole relative to participant) or an allocentric spatial reference rule (nearest or farthest pole relative to the tower). In Experiment 1, 32 participants (16 males, 16 females; aged from 18 to 27) performed a SRRL task in a normal virtual reality environment (VRE). The hit rates and rule acquisition revealed no difference between allocentric and egocentric spatial reference rule learning. In Experiment 2, 64 participants (32 males, 34 females; aged from 19 to 30) performed the SRRL task in both a low-stress VRE (a mini virtual arena) and a high-stress VRE (mini virtual arena with a fire disaster). Allocentric references facilitated learning in the high-stressful VRE. The results suggested that acute stress facilitate allocentric spatial processing.
Collapse
Affiliation(s)
- Zhengcao Cao
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, 100037, China
| | - Yamin Wang
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, 100037, China.
| | - Liang Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Whitwell RL, Goodale MA, Merritt KE, Enns JT. The Sander parallelogram illusion dissociates action and perception despite control for the litany of past confounds. Cortex 2017; 98:163-176. [PMID: 29100659 DOI: 10.1016/j.cortex.2017.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/07/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
The two visual systems hypothesis proposes that human vision is supported by an occipito-temporal network for the conscious visual perception of the world and a fronto-parietal network for visually-guided, object-directed actions. Two specific claims about the fronto-parietal network's role in sensorimotor control have generated much data and controversy: (1) the network relies primarily on the absolute metrics of target objects, which it rapidly transforms into effector-specific frames of reference to guide the fingers, hands, and limbs, and (2) the network is largely unaffected by scene-based information extracted by the occipito-temporal network for those same targets. These two claims lead to the counter-intuitive prediction that in-flight anticipatory configuration of the fingers during object-directed grasping will resist the influence of pictorial illusions. The research confirming this prediction has been criticized for confounding the difference between grasping and explicit estimates of object size with differences in attention, sensory feedback, obstacle avoidance, metric sensitivity, and priming. Here, we address and eliminate each of these confounds. We asked participants to reach out and pick up 3D target bars resting on a picture of the Sander Parallelogram illusion and to make explicit estimates of the length of those bars. Participants performed their grasps without visual feedback, and were permitted to grasp the targets after making their size-estimates to afford them an opportunity to reduce illusory error with haptic feedback. The results show unequivocally that the effect of the illusion is stronger on perceptual judgments than on grasping. Our findings from the normally-sighted population provide strong support for the proposal that human vision is comprised of functionally and anatomically dissociable systems.
Collapse
Affiliation(s)
- Robert L Whitwell
- Department of Psychology, The University of British Columbia, Canada
| | - Melvyn A Goodale
- The Brain and Mind Institute, The University of Western Ontario, Canada; Department of Psychology, The University of Western Ontario, Canada
| | - Kate E Merritt
- The Brain and Mind Institute, The University of Western Ontario, Canada
| | - James T Enns
- Department of Psychology, The University of British Columbia, Canada
| |
Collapse
|
28
|
Alsmith AJT, Ferrè ER, Longo MR. Dissociating contributions of head and torso to spatial reference frames: The misalignment paradigm. Conscious Cogn 2017; 53:105-114. [PMID: 28654839 DOI: 10.1016/j.concog.2017.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/19/2017] [Accepted: 06/12/2017] [Indexed: 11/26/2022]
Abstract
When we represent someone's view of a scene as egocentrically structured, where do we represent the origin of the reference frame? By analysing responses in a spatial perspective-taking task as a function of spatial location with respect to both head and torso, we isolated the respective contribution of each part to spatial judgments. Both the head and the torso contributed to judgements, though with greater contributions from the torso. A second experiment manipulating visual contrast of the torso showed that this does not reflect low-level differences in visual salience between body parts. Our results demonstrate that spatial perspective-taking relies on a weighted combination of reference frames centred on different parts of the body.
Collapse
Affiliation(s)
| | - Elisa R Ferrè
- Department of Psychology, Royal Holloway, University of London, UK
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London, UK.
| |
Collapse
|
29
|
Milner AD. How do the two visual streams interact with each other? Exp Brain Res 2017; 235:1297-1308. [PMID: 28255843 PMCID: PMC5380689 DOI: 10.1007/s00221-017-4917-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/13/2017] [Indexed: 11/28/2022]
Abstract
The current consensus divides primate cortical visual processing into two broad networks or "streams" composed of highly interconnected areas (Milner and Goodale 2006, 2008; Goodale 2014). The ventral stream, passing from primary visual cortex (V1) through to inferior parts of the temporal lobe, is considered to mediate the transformation of the contents of the visual signal into the mental furniture that guides memory, recognition and conscious perception. In contrast the dorsal stream, passing from V1 through to various areas in the posterior parietal lobe, is generally considered to mediate the visual guidance of action, primarily in real time. The brain, however, does not work through mutually insulated subsystems, and indeed there are well-documented interconnections between the two streams. Evidence for contributions from ventral stream systems to the dorsal stream comes from human neuropsychological and neuroimaging research, and indicates a crucial role in mediating complex and flexible visuomotor skills. Complementary evidence points to a role for posterior dorsal-stream visual analysis in certain aspects of 3-D perceptual function in the ventral stream. A series of studies of a patient with visual form agnosia has been instrumental in shaping our knowledge of what each stream can achieve in isolation; but it has also helped us to tease apart the relative dependence of parietal visuomotor systems on direct bottom-up visual inputs versus inputs redirected via perceptual systems within the ventral stream.
Collapse
Affiliation(s)
- A D Milner
- Durham University, Durham, UK.
- Department of Psychology, Science Laboratories, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
30
|
Colloby SJ, McKeith IG, Burn DJ, Wyper DJ, O'Brien JT, Taylor JP. Cholinergic and perfusion brain networks in Parkinson disease dementia. Neurology 2016; 87:178-85. [PMID: 27306636 PMCID: PMC4940066 DOI: 10.1212/wnl.0000000000002839] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/30/2016] [Indexed: 01/05/2023] Open
Abstract
Objective: To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia (PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12 weeks of treatment with donepezil. Methods: Forty-nine participants (25 PDD and 24 elderly controls) underwent 123I-QNB and 99mTc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis, producing a series of PC images of patterns of interrelated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs). Results: We found an M1/M4 SCP of relative decreased binding in basal forebrain, temporal, striatum, insula, and anterior cingulate (F1,47 = 31.9, p < 0.001) in cholinesterase inhibitor–naive patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corresponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal and prefrontal areas (F1,47 = 177.5, p < 0.001) and nodes of the frontoparietal and default mode networks (DMN). The M1/M4 pattern that correlated with an improvement in MMSE (r = 0.58, p = 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior cingulate areas coinciding with the DMN and frontoparietal networks. Conclusion: Dysfunctional limbic-paralimbic and salience cholinergic networks were associated with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may be prerequisite for cognitive remediation following cholinergic treatment in this condition.
Collapse
Affiliation(s)
- Sean J Colloby
- From the Institute of Neuroscience (S.J.C., I.G.M., D.J.B., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; SINAPSE (D.J.W.), Institute of Neuroscience and Psychology, University of Glasgow; and Department of Psychiatry (J.T.O.), University of Cambridge, UK.
| | - Ian G McKeith
- From the Institute of Neuroscience (S.J.C., I.G.M., D.J.B., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; SINAPSE (D.J.W.), Institute of Neuroscience and Psychology, University of Glasgow; and Department of Psychiatry (J.T.O.), University of Cambridge, UK
| | - David J Burn
- From the Institute of Neuroscience (S.J.C., I.G.M., D.J.B., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; SINAPSE (D.J.W.), Institute of Neuroscience and Psychology, University of Glasgow; and Department of Psychiatry (J.T.O.), University of Cambridge, UK
| | - David J Wyper
- From the Institute of Neuroscience (S.J.C., I.G.M., D.J.B., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; SINAPSE (D.J.W.), Institute of Neuroscience and Psychology, University of Glasgow; and Department of Psychiatry (J.T.O.), University of Cambridge, UK
| | - John T O'Brien
- From the Institute of Neuroscience (S.J.C., I.G.M., D.J.B., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; SINAPSE (D.J.W.), Institute of Neuroscience and Psychology, University of Glasgow; and Department of Psychiatry (J.T.O.), University of Cambridge, UK
| | - John-Paul Taylor
- From the Institute of Neuroscience (S.J.C., I.G.M., D.J.B., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; SINAPSE (D.J.W.), Institute of Neuroscience and Psychology, University of Glasgow; and Department of Psychiatry (J.T.O.), University of Cambridge, UK
| |
Collapse
|
31
|
Ruotolo F, Iachini T, Ruggiero G, van der Ham IJM, Postma A. Frames of reference and categorical/coordinate spatial relations in a "what was where" task. Exp Brain Res 2016; 234:2687-96. [PMID: 27180248 PMCID: PMC4978766 DOI: 10.1007/s00221-016-4672-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/05/2016] [Indexed: 11/30/2022]
Abstract
The aim of this study was to explore how people use egocentric (i.e., with respect to their body) and allocentric (i.e., with respect to another element in the environment) references in combination with coordinate (metric) or categorical (abstract) spatial information to identify a target element. Participants were asked to memorize triads of 3D objects or 2D figures, and immediately or after a delay of 5 s, they had to verbally indicate what was the object/figure: (1) closest/farthest to them (egocentric coordinate task); (2) on their right/left (egocentric categorical task); (3) closest/farthest to another object/figure (allocentric coordinate task); (4) on the right/left of another object/figure (allocentric categorical task). Results showed that the use of 2D figures favored categorical judgments over the coordinate ones with either an egocentric or an allocentric reference frame, whereas the use of 3D objects specifically favored egocentric coordinate judgments rather than the allocentric ones. Furthermore, egocentric judgments were more accurate than allocentric judgments when the response was Immediate rather than delayed and 3D objects rather than 2D figures were used. This pattern of results is discussed in the light of the functional roles attributed to the frames of reference and spatial relations by relevant theories of visuospatial processing.
Collapse
Affiliation(s)
- Francesco Ruotolo
- Helmholtz Institute, Experimental Psychology, Utrecht University, Utrecht, The Netherlands. .,Laboratory of Cognitive Science and Immersive Virtual Reality, Department of Psychology, Second University of Naples, Caserta, Italy.
| | - Tina Iachini
- Laboratory of Cognitive Science and Immersive Virtual Reality, Department of Psychology, Second University of Naples, Caserta, Italy
| | - Gennaro Ruggiero
- Laboratory of Cognitive Science and Immersive Virtual Reality, Department of Psychology, Second University of Naples, Caserta, Italy
| | - Ineke J M van der Ham
- Faculty of Social and Behavioral Sciences, Leiden University, Leiden, The Netherlands
| | - Albert Postma
- Helmholtz Institute, Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
32
|
Vaziri S, Connor CE. Representation of Gravity-Aligned Scene Structure in Ventral Pathway Visual Cortex. Curr Biol 2016; 26:766-74. [PMID: 26923785 DOI: 10.1016/j.cub.2016.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/01/2015] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Abstract
The ventral visual pathway in humans and non-human primates is known to represent object information, including shape and identity [1]. Here, we show the ventral pathway also represents scene structure aligned with the gravitational reference frame in which objects move and interact. We analyzed shape tuning of recently described macaque monkey ventral pathway neurons that prefer scene-like stimuli to objects [2]. Individual neurons did not respond to a single shape class, but to a variety of scene elements that are typically aligned with gravity: large planes in the orientation range of ground surfaces under natural viewing conditions, planes in the orientation range of ceilings, and extended convex and concave edges in the orientation range of wall/floor/ceiling junctions. For a given neuron, these elements tended to share a common alignment in eye-centered coordinates. Thus, each neuron integrated information about multiple gravity-aligned structures as they would be seen from a specific eye and head orientation. This eclectic coding strategy provides only ambiguous information about individual structures but explicit information about the environmental reference frame and the orientation of gravity in egocentric coordinates. In the ventral pathway, this could support perceiving and/or predicting physical events involving objects subject to gravity, recognizing object attributes like animacy based on movement not caused by gravity, and/or stabilizing perception of the world against changes in head orientation [3-5]. Our results, like the recent discovery of object weight representation [6], imply that the ventral pathway is involved not just in recognition, but also in physical understanding of objects and scenes.
Collapse
Affiliation(s)
- Siavash Vaziri
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charles E Connor
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Filimon F. Are All Spatial Reference Frames Egocentric? Reinterpreting Evidence for Allocentric, Object-Centered, or World-Centered Reference Frames. Front Hum Neurosci 2015; 9:648. [PMID: 26696861 PMCID: PMC4673307 DOI: 10.3389/fnhum.2015.00648] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/16/2015] [Indexed: 12/19/2022] Open
Abstract
The use and neural representation of egocentric spatial reference frames is well-documented. In contrast, whether the brain represents spatial relationships between objects in allocentric, object-centered, or world-centered coordinates is debated. Here, I review behavioral, neuropsychological, neurophysiological (neuronal recording), and neuroimaging evidence for and against allocentric, object-centered, or world-centered spatial reference frames. Based on theoretical considerations, simulations, and empirical findings from spatial navigation, spatial judgments, and goal-directed movements, I suggest that all spatial representations may in fact be dependent on egocentric reference frames.
Collapse
Affiliation(s)
- Flavia Filimon
- Adaptive Behavior and Cognition, Max Planck Institute for Human Development Berlin, Germany ; Berlin School of Mind and Brain, Humboldt Universität zu Berlin Berlin, Germany
| |
Collapse
|
34
|
Affiliation(s)
- Bruno G Breitmeyer
- Department of Psychology & Center of Neuro-engineering and Cognitive Science, University of Houston, USA.
| | | | - Michael Niedeggen
- Experimental Psychology and Neuropsychology, Freie Universität Berlin, Germany
| |
Collapse
|