1
|
Ten Brink AF, Heiner I, Dijkerman HC, Strauch C. Pupil dilation reveals the intensity of touch. Psychophysiology 2024; 61:e14538. [PMID: 38362931 DOI: 10.1111/psyp.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Touch is important for many aspects of our daily activities. One of the most important tactile characteristics is its perceived intensity. However, quantifying the intensity of perceived tactile stimulation is not always possible using overt responses. Here, we show that pupil responses can objectively index the intensity of tactile stimulation in the absence of overt participant responses. In Experiment 1 (n = 32), we stimulated three reportedly differentially sensitive body locations (finger, forearm, and calf) with a single tap of a tactor while tracking pupil responses. Tactile stimulation resulted in greater pupil dilation than a baseline without stimulation. Furthermore, pupils dilated more for the more sensitive location (finger) than for the less sensitive location (forearm and calf). In Experiment 2 (n = 20) we extended these findings by manipulating the intensity of the stimulation with three different intensities, here a short vibration, always at the little finger. Again, pupils dilated more when being stimulated at higher intensities as compared to lower intensities. In summary, pupils dilated more for more sensitive parts of the body at constant stimulation intensity and for more intense stimulation at constant location. Taken together, the results show that the intensity of perceived tactile stimulation can be objectively measured with pupil responses - and that such responses are a versatile marker for touch research. Our findings may pave the way for previously impossible objective tests of tactile sensitivity, for example in minimally conscious state patients.
Collapse
Affiliation(s)
- Antonia F Ten Brink
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Iris Heiner
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - H Chris Dijkerman
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Christoph Strauch
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Friedman G, Turk KW, Budson AE. The Current of Consciousness: Neural Correlates and Clinical Aspects. Curr Neurol Neurosci Rep 2023; 23:345-352. [PMID: 37303019 PMCID: PMC10287796 DOI: 10.1007/s11910-023-01276-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE OF REVIEW In this review, we summarize the current understanding of consciousness including its neuroanatomic basis. We discuss major theories of consciousness, physical exam-based and electroencephalographic metrics used to stratify levels of consciousness, and tools used to shed light on the neural correlates of the conscious experience. Lastly, we review an expanded category of 'disorders of consciousness,' which includes disorders that impact either the level or experience of consciousness. RECENT FINDINGS Recent studies have revealed many of the requisite EEG, ERP, and fMRI signals to predict aspects of the conscious experience. Neurological disorders that disrupt the reticular activating system can affect the level of consciousness, whereas cortical disorders from seizures and migraines to strokes and dementia may disrupt phenomenal consciousness. The recently introduced memory theory of consciousness provides a new explanation of phenomenal consciousness that may explain better than prior theories both experimental studies and the neurologist's clinical experience. Although the complete neurobiological basis of consciousness remains a mystery, recent advances have improved our understanding of the physiology underlying level of consciousness and phenomenal consciousness.
Collapse
Affiliation(s)
- Garrett Friedman
- Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, 150 S. Huntington Ave., Jamaica Plain, Boston, MA, 02130, USA
| | - Katherine W Turk
- Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, 150 S. Huntington Ave., Jamaica Plain, Boston, MA, 02130, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Andrew E Budson
- Center for Translational Cognitive Neuroscience, VA Boston Healthcare System, 150 S. Huntington Ave., Jamaica Plain, Boston, MA, 02130, USA.
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Kronemer SI, Aksen M, Ding JZ, Ryu JH, Xin Q, Ding Z, Prince JS, Kwon H, Khalaf A, Forman S, Jin DS, Wang K, Chen K, Hu C, Agarwal A, Saberski E, Wafa SMA, Morgan OP, Wu J, Christison-Lagay KL, Hasulak N, Morrell M, Urban A, Todd Constable R, Pitts M, Mark Richardson R, Crowley MJ, Blumenfeld H. Human visual consciousness involves large scale cortical and subcortical networks independent of task report and eye movement activity. Nat Commun 2022; 13:7342. [PMID: 36446792 PMCID: PMC9707162 DOI: 10.1038/s41467-022-35117-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
The full neural circuits of conscious perception remain unknown. Using a visual perception task, we directly recorded a subcortical thalamic awareness potential (TAP). We also developed a unique paradigm to classify perceived versus not perceived stimuli using eye measurements to remove confounding signals related to reporting on conscious experiences. Using fMRI, we discovered three major brain networks driving conscious visual perception independent of report: first, increases in signal detection regions in visual, fusiform cortex, and frontal eye fields; and in arousal/salience networks involving midbrain, thalamus, nucleus accumbens, anterior cingulate, and anterior insula; second, increases in frontoparietal attention and executive control networks and in the cerebellum; finally, decreases in the default mode network. These results were largely maintained after excluding eye movement-based fMRI changes. Our findings provide evidence that the neurophysiology of consciousness is complex even without overt report, involving multiple cortical and subcortical networks overlapping in space and time.
Collapse
Affiliation(s)
- Sharif I Kronemer
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Mark Aksen
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Julia Z Ding
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jun Hwan Ryu
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Qilong Xin
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Zhaoxiong Ding
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jacob S Prince
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Hunki Kwon
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Aya Khalaf
- Department of Neurology, Yale University, New Haven, CT, USA
- Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Sarit Forman
- Department of Neurology, Yale University, New Haven, CT, USA
| | - David S Jin
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Kevin Wang
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Kaylie Chen
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Claire Hu
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Akshar Agarwal
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Erik Saberski
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Syed Mohammad Adil Wafa
- Department of Neurology, Yale University, New Haven, CT, USA
- Child Study Center, Yale University, New Haven, CT, USA
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Owen P Morgan
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jia Wu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | | | | | | | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Hal Blumenfeld
- Department of Neurology, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|