Weiss G, Strohmayer K, Koele W, Reinschissler N, Schenk M. Confirmation of human ovulation in assisted reproduction using an adhesive axillary thermometer (femSense®).
Front Digit Health 2022;
4:930010. [PMID:
36339517 PMCID:
PMC9634753 DOI:
10.3389/fdgth.2022.930010]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Objective
Timing for sexual intercourse is important in achieving pregnancy in natural menstrual cycles. Different methods of detecting the fertile window have been invented, among them luteinization hormone (LH) to predict ovulation and biphasic body basal temperature (BBT) to confirm ovulation retrospectively. The gold standard to detect ovulation in gynecology practice remains transvaginal ultrasonography in combination with serum progesterone. In this study we evaluated a wearable temperature sensing patch (femSense®) using continuous body temperature measurement to confirm ovulation and determine the end of the fertile window.
Methods
96 participants received the femSense® system consisting of an adhesive axillary thermometer patch and a smartphone application, where patients were asked to document information about their previous 3 cycles. Based on the participants data, the app predicted the cycle length and the estimated day of ovulation. From these predictions, the most probable fertile window and the day for applying the patch were derived. Participants applied and activated the femSense® patch on the calculated date, from which the patch continuously recorded their body temperature throughout a period of up to 7 days to confirm ovulation. Patients documented their daily urinary LH test positivity, and a transvaginal ultrasound was performed on day cycle day 7, 10, 12 and 14/15 to investigate the growth of one dominant follicle. If a follicle reached 15 mm in diameter, an ultrasound examination was carried out every day consecutively until ovulation. On the day ovulation was detected, serum progesterone was measured to confirm the results of the ultrasound. The performance of femSense® was evaluated by comparing the day of ovulation confirmation with the results of ovulation prediction (LH test) and detection (transvaginal ultrasound).
Results
The femSense® system confirmed ovulation occurrence in 60 cases (81.1%) compared to 48 predicted cases (64.9%) with the LH test (p = 0.041). Subgroup analysis revealed a positive trend for the femSense® system of specific ovulation confirmation within the fertile window of 24 h after ovulation in 42 of 74 cases (56.8%). Cycle length, therapy method or infertility reason of the patient did not influence accuracy of the femSense® system.
Conclusions
The femSense® system poses a promising alternative to the traditional BBT method and is a valuable surrogate marker to transvaginal ultrasound for confirmation of ovulation.
Collapse