1
|
Pletzer B, Winkler-Crepaz K, Hillerer K. Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol 2023; 69:101060. [PMID: 36758768 DOI: 10.1016/j.yfrne.2023.101060] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
In this review we systematically summarize the effects of progesterone and synthetic progestins on neurogenesis, synaptogenesis, myelination and six neurotransmitter systems. Several parallels between progesterone and older generation progestin actions emerged, suggesting actions via progesterone receptors. However, existing results suggest a general lack of knowledge regarding the effects of currently used progestins in hormonal contraception regarding these cellular and molecular brain parameters. Human neuroimaging studies were reviewed with a focus on randomized placebo-controlled trials and cross-sectional studies controlling for progestin type. The prefrontal cortex, amygdala, salience network and hippocampus were identified as regions of interest for future preclinical studies. This review proposes a series of experiments to elucidate the cellular and molecular actions of contraceptive progestins in these areas and link these actions to behavioral markers of emotional and cognitive functioning. Emotional effects of contraceptive progestins appear to be related to 1) alterations in the serotonergic system, 2) direct/indirect modulations of inhibitory GABA-ergic signalling via effects on the allopregnanolone content of the brain, which differ between androgenic and anti-androgenic progestins. Cognitive effects of combined oral contraceptives appear to depend on the ethinylestradiol dose.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University Salzburg, Salzburg Austria.
| | | | - Katharina Hillerer
- Department of Gynaecology & Obstetrics, Private Medical University, Salzburg, Austria
| |
Collapse
|
2
|
Antonelli A, Giannini A, Chedraui P, Monteleone P, Caretto M, Genazzani AD, Mannella P, Simoncini T, Genazzani AR. Mood disorders and hormonal status across women's life: a narrative review. Gynecol Endocrinol 2022; 38:1019-1027. [PMID: 36433781 DOI: 10.1080/09513590.2022.2149730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Depressive disorders and anxiety states represent one of the most frequent psychiatric pathologies occurring transiently in vulnerable women throughout their life, from puberty to menopause. It is now known that sex hormones play a key role on the nervous system, interfering with neuronal plasticity and enhancing the processes of learning, memory, cognition, and mood. Numerous mechanisms are at the base of these processes, displaying interactions between estrogen and serotoninergic, dopaminergic, and GABAergic receptors at the central level. Therefore, given the sexual steroids fluctuations throughout the entire female lifespan, and considering the role played by sex hormones at the central level, it is not surprising to observe the onset of mood or neurodegenerative disorders over time. This is especially true for women in hormonal transition phase, such as puberty, postpartum and the menopausal transition. Moreover, all these conditions are characterized by hormone withdrawal, imbalance, or modifications due to menopausal hormone therapies or contraceptives which could prompt to a deterioration of mood and cognition impairment or to an improvement in the quality of life. More studies are needed to better understand the hormone-related effects on the nervous system, and the underlying pathways involved in transitional or chronic mood disorders, to promote new patient-specific therapeutic strategies more effective than the current ones and tailored according to the individual need and women's life period.
Collapse
Affiliation(s)
- Alice Antonelli
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Giannini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Peter Chedraui
- Instituto de Investigación e Innovación en Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
- Facultad de Ciencias de la Salud, Universidad Católica "Nuestra Señora de la Asunción", Asunción, Paraguay
| | - Patrizia Monteleone
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marta Caretto
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro D Genazzani
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Mannella
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Tommaso Simoncini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea R Genazzani
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Griksiene R, Monciunskaite R, Ruksenas O. What is there to know about the effects of progestins on the human brain and cognition? Front Neuroendocrinol 2022; 67:101032. [PMID: 36029852 DOI: 10.1016/j.yfrne.2022.101032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022]
Abstract
Progestins are an important component of hormonal contraceptives (HCs) and hormone replacement therapies (HRTs). Despite an increasing number of studies elucidating the effects of HCs and HRTs, little is known about the effects of different types of progestins included in these medications on the brain. Animal studies suggest that various progestins interact differently with sex steroid, mineralocorticoid and glucocorticoid receptors and have specific modulatory effects on neurotransmitter systems and on the expression of neuropeptides, suggesting differential impacts on cognition and behavior. This review focuses on the currently available knowledge from human behavioral and neuroimaging studies pooled with evidence from animal research regarding the effects of progestins on the brain. The reviewed information is highly relevant for improving women's mental health and making informed choices regarding specific types of contraception or treatment.
Collapse
Affiliation(s)
- Ramune Griksiene
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| | - Rasa Monciunskaite
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| | - Osvaldas Ruksenas
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| |
Collapse
|
4
|
Heller C, Kimmig ACS, Kubicki MR, Derntl B, Kikinis Z. Imaging the human brain on oral contraceptives: A review of structural imaging methods and implications for future research goals. Front Neuroendocrinol 2022; 67:101031. [PMID: 35998859 DOI: 10.1016/j.yfrne.2022.101031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 12/21/2022]
Abstract
Worldwide over 150 million women use oral contraceptives (OCs), which are the most prescribed form of contraception in both the United States and in European countries. Sex hormones, such as estradiol and progesterone, are important endogenous hormones known for shaping the brain across the life span. Synthetic hormones, which are present in OCs, interfere with the natural hormonal balance by reducing the endogenous hormone levels. Little is known how this affects the brain, especially during the most vulnerable times of brain maturation. Here, we review studies that investigate differences in brain gray and white matter in women using OCs in comparison to naturally cycling women. We focus on two neuroimaging methods used to quantify structural gray and white matter changes, namely structural MRI and diffusion MRI. Finally, we discuss the potential of these imaging techniques to advance knowledge about the effects of OCs on the brain and wellbeing in women.
Collapse
Affiliation(s)
- Carina Heller
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany; Department of Clinical Psychology, Friedrich Schiller University Jena, Germany.
| | - Ann-Christin S Kimmig
- Department of Psychiatry and Psychotherapy, Innovative Neuroimaging, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Marek R Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Innovative Neuroimaging, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany; Lead Graduate School, University of Tübingen, Tübingen, Germany
| | - Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Lacasse JM, Gomez-Perales E, Brake WG. Modeling hormonal contraception in female rats: A framework for studies in behavioral neurobiology. Front Neuroendocrinol 2022; 67:101020. [PMID: 35952797 DOI: 10.1016/j.yfrne.2022.101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022]
Abstract
Research on hormonal contraceptives (HC) in animal models is lacking, and as a result, so is our understanding of the impact of HC on the brain and behavior. Here, we provide a review of the pharmacology of HC, as well as the methodology and best practices for designing a model of HC in female rats. We outline specific methodological considerations regarding dosing, route of administration, exposure time/timing, and selecting a control group. We also provide a framework outlining important levels of analysis for thinking about the impact of HC on behavioral and neurobiological outcomes. The purpose of this review is to equip researchers with foundational knowledge, and some basic elements of experimental design for future studies investigating the impact of HC on the brain and behavior of female rats.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| | - Eamonn Gomez-Perales
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal H4B 1R6, Canada.
| |
Collapse
|
6
|
Fruzzetti F, Fidecicchi T. Hormonal Contraception and Depression: Updated Evidence and Implications in Clinical Practice. Clin Drug Investig 2021; 40:1097-1106. [PMID: 32980990 DOI: 10.1007/s40261-020-00966-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hormonal contraceptives are used worldwide by more than 100 million women. Some studies have been published about the possible appearance of depressive symptoms when using hormonal contraceptives, but this link is still a matter of debate. The purpose of this review is to provide an update of the literature on this issue, and to investigate the possible explanations of this problem based on animal and human studies. The main pathway responsible for menstrual cycle-related mood changes is the γ-aminobutyric acid pathway, which is sensitive to changes in the levels of progesterone and of its metabolites, the neurosteroids. In particular, allopregnanolone is a potentiating neurosteroid with anxiolytic and anti-convulsant effects whose levels change during a normal menstrual cycle together with progesterone levels. Progestins have different effects on allopregnanolone, mainly owing to their diverse androgenicity. Moreover, they might affect brain structure and function, even though the meaning of these changes has yet to be clarified. It is important to define the groups of women in which negative mood disorders are more likely to occur. Adolescence is a critical period and this age-specific vulnerability is complex and likely bidirectional. Moreover, women with a history of mood affective disorders or premenstrual dysphoric syndrome are at a higher risk when taking contraceptives. In this review, we aim to provide clinicians with advice on how to approach these difficult situations.
Collapse
Affiliation(s)
- Franca Fruzzetti
- Department of Obstetrics and Gynecology, Pisa University Hospital of S. Chiara, Azienda Ospedaliera Universitaria, Via Roma 65, 56126, Pisa, Italy.
| | - Tiziana Fidecicchi
- Department of Obstetrics and Gynecology, Pisa University Hospital of S. Chiara, Azienda Ospedaliera Universitaria, Via Roma 65, 56126, Pisa, Italy
| |
Collapse
|
7
|
Neri M, Malune ME, Corda V, Piras B, Zedda P, Pilloni M, Orani MP, Vallerino V, Melis GB, Paoletti AM. Body composition and psychological improvement in healthy premenopausal women assuming the oral contraceptive containing micronized estradiol (E2) and nomegestrol acetate (NOMAC). Gynecol Endocrinol 2017; 33:958-962. [PMID: 28485628 DOI: 10.1080/09513590.2017.1322574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
This observational study was conducted in healthy premenopausal women, who presented themselves for contraceptive advice at the outpatient Family Planning Clinics of the Department of Obstetrics and Gynecology of the University of Cagliari, Hospital-University of Cagliari (Italy). After a screening period of three menstrual cycles, 48 women without contraindications to estroprogestin contraceptives (OCs) were included in the study. The primary purposes of the study were to evaluate whether a 12-month-treatment with the combined OC containing micronized estradiol (1.5 mg, E2) plus nomegestrol acetate (2.5 mg, NOMAC) (E2/NOMAC) interfere on anthropometric indices (AI), body composition (BC) and psychological status (PS). In subjects with dysmenorrhea (#36), its intensity was evaluated using the visuo analogic scale (VAS), both before and during the 12-month-treatment with E2/NOMAC. E2/NOMAC did not modify neither AI nor BC in the 40 subjects who concluded the study. The PS and the VAS of dysmenorrhea were significantly (p < 0.0001) improved from the first cycle of treatment and throughout the E2/NOMAC treatment in comparison with basal values. The study suggests that E2/NOMAC is devoid of negative effects on AI and BC, with additional benefits on PS and dysmenorrhea.
Collapse
Affiliation(s)
- Manuela Neri
- a Department of Surgical Sciences , University of Cagliari , Cagliari , Italy and
- b Department of Obstetrics and Gynecology at the University Hospital of Cagliari (AOUCA) , Cagliari , Italy
| | - Maria Elena Malune
- a Department of Surgical Sciences , University of Cagliari , Cagliari , Italy and
- b Department of Obstetrics and Gynecology at the University Hospital of Cagliari (AOUCA) , Cagliari , Italy
| | - Valentina Corda
- a Department of Surgical Sciences , University of Cagliari , Cagliari , Italy and
- b Department of Obstetrics and Gynecology at the University Hospital of Cagliari (AOUCA) , Cagliari , Italy
| | - Bruno Piras
- a Department of Surgical Sciences , University of Cagliari , Cagliari , Italy and
- b Department of Obstetrics and Gynecology at the University Hospital of Cagliari (AOUCA) , Cagliari , Italy
| | - Pierina Zedda
- a Department of Surgical Sciences , University of Cagliari , Cagliari , Italy and
- b Department of Obstetrics and Gynecology at the University Hospital of Cagliari (AOUCA) , Cagliari , Italy
| | - Monica Pilloni
- a Department of Surgical Sciences , University of Cagliari , Cagliari , Italy and
- b Department of Obstetrics and Gynecology at the University Hospital of Cagliari (AOUCA) , Cagliari , Italy
| | - Maria Paola Orani
- a Department of Surgical Sciences , University of Cagliari , Cagliari , Italy and
- b Department of Obstetrics and Gynecology at the University Hospital of Cagliari (AOUCA) , Cagliari , Italy
| | - Valerio Vallerino
- a Department of Surgical Sciences , University of Cagliari , Cagliari , Italy and
- b Department of Obstetrics and Gynecology at the University Hospital of Cagliari (AOUCA) , Cagliari , Italy
| | - Gian Benedetto Melis
- a Department of Surgical Sciences , University of Cagliari , Cagliari , Italy and
- b Department of Obstetrics and Gynecology at the University Hospital of Cagliari (AOUCA) , Cagliari , Italy
| | - Anna Maria Paoletti
- a Department of Surgical Sciences , University of Cagliari , Cagliari , Italy and
- b Department of Obstetrics and Gynecology at the University Hospital of Cagliari (AOUCA) , Cagliari , Italy
| |
Collapse
|
8
|
Giatti S, Melcangi RC, Pesaresi M. The other side of progestins: effects in the brain. J Mol Endocrinol 2016; 57:R109-26. [PMID: 27339142 DOI: 10.1530/jme-16-0061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/22/2016] [Indexed: 01/06/2023]
Abstract
Progestins are a broad class of progestational agents widely differing in their chemical structures and pharmacological properties. Despite emerging data suggest that progestins, besides their action as endometrial protection, can also have multiple nonreproductive functions, much remains to be discovered regarding the actions exerted by these molecules in the nervous system. Here, we report the role exerted by different progestins, currently used for contraception or in postmenopausal hormone replacement therapies, in regulating cognitive functions as well as social behavior and mood. We provide evidence that the effects and mechanisms underlying their actions are still confusing due to the use of different estrogens and progestins as well as different doses, duration of exposure, route of administration, baseline hormonal status and age of treated women. We also discuss the emerging issue concerning the relevant increase of these substances in the environment, able to deeply affect aquatic wildlife as well as to exert a possible influence in humans, which may be exposed to these compounds via contaminated drinking water and seafood. Finally, we report literature data showing the neurobiological action of progestins and in particular their importance during neurodegenerative events. This is extremely interesting, since some of the progestins currently used in clinical practice exert neuroprotective and anti-inflammatory effects in the nervous system, opening new promising opportunities for the use of these molecules as therapeutic agents for trauma and neurodegenerative disorders.
Collapse
Affiliation(s)
- Silvia Giatti
- Department of Pharmacological and Biomolecular SciencesCenter of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular SciencesCenter of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | - Marzia Pesaresi
- Department of Pharmacological and Biomolecular SciencesCenter of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Barriga P P, Ambrosi Penazzo N, Franco Finotti M, Celis AA, Cerdas O, Chávez JA, Cuitiño LA, Fernandes CE, Plata MA, Tirán-Saucedo J, Vanhauwaert PS. At 10 years of chlormadinone use in Latin America: a review. Gynecol Endocrinol 2016; 32:517-20. [PMID: 27113551 DOI: 10.3109/09513590.2016.1153059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chlormadinone acetate (CMA) is a progesterone derivative (17α-acetoxy-6-chloro-4,6-pregnadiene-3,20-dione), first synthesized in 1961. It was used as progestin-based hormone replacement therapy; since 1999 it was first used for oral contraception combined with ethinyl estradiol (EE). CMA exerts a potent progestagenic effect, about one third higher than that observed with endogenous progesterone. CMA is also an anti-estrogen, showing no androgenic effects (at birth control dose). Unlike progesterone, it has a mild glucosteroidal effect with no anti-mineralocorticoid effect at all. These biological actions have allowed CMA to have a role for therapeutic use in dysmenorrhea, hyperandrogenism, and as a contraceptive agent. In addition, CMA has exhibited beneficial neuroendocrine effects on women's mood. CMA-EE combination has shown excellent contraceptive efficacy, high tolerability, and compliance due to its risk-benefit profile, having additional benefits on skin and hair, such as reduction of seborrhea and acne. Metabolic tolerance of CMA has been demonstrated in several clinical studies. Currently, CMA is formulated to be taken as oral caplets in a 21 caplets package containing 0.03 mg/EE and 2 mg CMA per pill with/without seven placebo additional pills. Another presentation has 24 caplets containing 0.02 mg/EE and 2 mg CMA plus four placebo pills.
Collapse
Affiliation(s)
| | | | - Marta Franco Finotti
- c Department of Endocrine Gynecology , School of Medicine of the Universidad Federal de Goias , Goiania , Brazil
| | - Alfredo A Celis
- d Presidente de la Sociedad Peruana de Obstetricia y Ginecología-SPOG , Lima , Perú
| | - Oscar Cerdas
- e Departamento de Ginecología y Obstetricia , Hospital de San Juan de Dios, Director Nacional de Posgrado de, SEP/UCR , San José , Costa Rica
| | - Jorge Armando Chávez
- f Department of Gynecology-Obstetrics , Pontificia Universidad Católica , Quito , Ecuador
| | - Luis Alfredo Cuitiño
- g Department of Gynecology-Obstetrics , Intramédica Medical Center - Concepción , Santiago , Chile
| | | | | | - José Tirán-Saucedo
- j Department of Gynecology and Obstetrics , Hospital Christus Muguerza/UDEM , Monterrey , NL Mexico , and
| | - Paula Sofía Vanhauwaert
- k Hospital Clínico de la Fuerza Aérea de Chile , Clínica Alemana de Santiago, Santiago , Chile
| |
Collapse
|
10
|
|
11
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
12
|
|