1
|
Shi W, Xin Q, Yuan R, Yuan Y, Cong W, Chen K. Neovascularization: The Main Mechanism of MSCs in Ischemic Heart Disease Therapy. Front Cardiovasc Med 2021; 8:633300. [PMID: 33575274 PMCID: PMC7870695 DOI: 10.3389/fcvm.2021.633300] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been shown to effectively limit the infarct area in numerous clinical and preclinical studies. However, the primary mechanism associated with this activity in MSC transplantation therapy remains unclear. Blood supply is fundamental for the survival of myocardial tissue, and the formation of an efficient vascular network is a prerequisite for blood flow. The paracrine function of MSCs, which is throughout the neovascularization process, including MSC mobilization, migration, homing, adhesion and retention, regulates angiogenesis and vasculogenesis through existing endothelial cells (ECs) and endothelial progenitor cells (EPCs). Additionally, MSCs have the ability to differentiate into multiple cell lineages and can be mobilized and migrate to ischemic tissue to differentiate into ECs, pericytes and smooth muscle cells in some degree, which are necessary components of blood vessels. These characteristics of MSCs support the view that these cells improve ischemic myocardium through angiogenesis and vasculogenesis. In this review, the results of recent clinical and preclinical studies are discussed to illustrate the processes and mechanisms of neovascularization in ischemic heart disease.
Collapse
Affiliation(s)
- Weili Shi
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Yahui Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Keji Chen
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
2
|
Noh M, Choi YH, An YH, Tahk D, Cho S, Yoon JW, Jeon NL, Park TH, Kim J, Hwang NS. Magnetic Nanoparticle-Embedded Hydrogel Sheet with a Groove Pattern for Wound Healing Application. ACS Biomater Sci Eng 2019; 5:3909-3921. [PMID: 33438430 DOI: 10.1021/acsbiomaterials.8b01307] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endothelial progenitor cells (EPCs) can induce a pro-angiogenic response during tissue repair. Recently, EPC transplantations have been widely investigated in wound healing applications. To maximize the healing efficacy by EPCs, a unique scaffold design that allows cell retention and function would be desirable for in situ delivery. Herein, we fabricated an alginate/poly-l-ornithine/gelatin (alginate-PLO-gelatin) hydrogel sheet with a groove pattern for use as a cell delivery platform. In addition, we demonstrate the topographical modification of the hydrogel sheet surface with a groove pattern to modulate cell proliferation, alignment, and elongation. We report that the patterned substrate prompted morphological changes of endothelial cells, increased cell-cell interaction, and resulted in the active secretion of growth factors such as PDGF-BB. Additionally, we incorporated magnetic nanoparticles (MNPs) into the patterned hydrogel sheet for the magnetic field-induced transfer of cell-seeded hydrogel sheets. As a result, enhanced wound healing was observed via efficient transplantation of the EPCs with an MNP-embedded patterned hydrogel sheet (MPS). Finally, enhanced vascularization and dermal wound repair were observed with EPC seeded MPS.
Collapse
Affiliation(s)
- Miyeon Noh
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongha Tahk
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Advanced Machinery and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungwoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Advanced Machinery and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Kiaie N, Aghdam RM, Tafti SHA, Gorabi AM. Stem Cell-Mediated Angiogenesis in Tissue Engineering Constructs. Curr Stem Cell Res Ther 2018; 14:249-258. [PMID: 30394215 DOI: 10.2174/1574888x13666181105145144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/09/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022]
Abstract
Angiogenesis has always been a concern in the field of tissue engineering. Poor vascularization of engineered constructs is a problem for the clinical success of these structures. Among the various methods employed to induce angiogenesis, stem cells provide a promising tool for the future. The present review aims to present the application of stem cells in the induction of angiogenesis. Additionally, it summarizes recent advancements in stem cell-mediated angiogenesis of different tissue engineering constructs.
Collapse
Affiliation(s)
- Nasim Kiaie
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Tissue Engineering, Amirkabir University of Technology, Tehran 15875, Iran
| | - Rouhollah M Aghdam
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed H Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita M Gorabi
- Department of Basic and Clinical Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mantakaki A, Fakoya AOJ, Sharifpanah F. Recent advances and challenges on application of tissue engineering for treatment of congenital heart disease. PeerJ 2018; 6:e5805. [PMID: 30386701 PMCID: PMC6204240 DOI: 10.7717/peerj.5805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Congenital heart disease (CHD) affects a considerable number of children and adults worldwide. This implicates not only developmental disorders, high mortality, and reduced quality of life but also, high costs for the healthcare systems. CHD refers to a variety of heart and vascular malformations which could be very challenging to reconstruct the malformed region surgically, especially when the patient is an infant or a child. Advanced technology and research have offered a better mechanistic insight on the impact of CHD in the heart and vascular system of infants, children, and adults and identified potential therapeutic solutions. Many artificial materials and devices have been used for cardiovascular surgery. Surgeons and the medical industry created and evolved the ball valves to the carbon-based leaflet valves and introduced bioprosthesis as an alternative. However, with research further progressing, contracting tissue has been developed in laboratories and tissue engineering (TE) could represent a revolutionary answer for CHD surgery. Development of engineered tissue for cardiac and aortic reconstruction for developing bodies of infants and children can be very challenging. Nevertheless, using acellular scaffolds, allograft, xenografts, and autografts is already very common. Seeding of cells on surface and within scaffold is a key challenging factor for use of the above. The use of different types of stem cells has been investigated and proven to be suitable for tissue engineering. They are the most promising source of cells for heart reconstruction in a developing body, even for adults. Some stem cell types are more effective than others, with some disadvantages which may be eliminated in the future.
Collapse
Affiliation(s)
| | | | - Fatemeh Sharifpanah
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
5
|
Cikirikcioglu M, Sedelnikov N, Osorio-Da Cruz S, Khabiri E, Donmez Antal A, Tatar T, Tille JC, Hess OM, Kalangos A, Walpoth BH. Improved Neo-Endothelialization of Small Diameter ePTFE Grafts with Titanium Coating. Int J Artif Organs 2018; 29:990-9. [PMID: 17211821 DOI: 10.1177/039139880602901010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Patency of small synthetic bypass grafts is inferior compared to autologous grafts for revascularization procedures. Titanium coating of foreign surfaces has shown to decrease thrombogenicity, enhance biocompatibility and promote adhesion of endothelial cells. The aim of this study was to test the effect of titanium coating of small diameter ePTFE grafts on short term patency, neo-endothelialization and neointimal proliferation. Methods Bilateral carotid graft interposition was performed in 5 pigs with uncoated (n=5) and titanium-coated (n=5) ePTFE grafts (internal diameter=4 mm, length=5 cm), thus each pig served as its own control. At the end of the study (30 ± 3 days), patency and stenosis severity was assessed by carotid angiography. Animals were sacrificed and grafts were excised for histology and scanning electron microscopy. Morphometry of histologic sections was carried out to determine neointimal proliferation and percentage of neo-endothelial coverage. Results Patency rate was 80% for uncoated and titanium-coated grafts. Quantitative angiography did not show any significant difference in lumen size between two groups. Morphometry revealed a significantly higher cellular coverage with CD 31 positive endothelial cells for titanium-coated (84 ± 19%) than uncoated grafts (48 ± 26%, p<0.001). There was a non significant trend (p=0.112) towards increased neointimal proliferation in titanium-coated (94 ± 61 μm2/μm) compared to uncoated grafts (60 ± 57 μm2/μm). Conclusions Patency rate in uncoated and titanium-coated ePTFE grafts is similar at one month. However, titanium coated grafts show a significant improvement in neo-endothelialization compared to uncoated grafts.
Collapse
Affiliation(s)
- M Cikirikcioglu
- Department of Cardiovascular Surgery, University Hospital, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fujita K, Nishimoto S, Fujiwara T, Sotsuka Y, Tonooka M, Kawai K, Kakibuchi M. A new rabbit model of impaired wound healing in an X-ray-irradiated field. PLoS One 2017; 12:e0184534. [PMID: 28886194 PMCID: PMC5590982 DOI: 10.1371/journal.pone.0184534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/25/2017] [Indexed: 11/18/2022] Open
Abstract
Radiation is an important therapy for cancer with many benefits; however, its side effects, such as impaired wound healing, are a major problem. While many attempts have been made to overcome this particular disadvantage, there are few effective treatments for impaired wound healing in an X-ray-irradiated field. One reason for this deficiency is the lack of experimental models, especially animal models. We have previously reported a mouse model of impaired wound healing in which the irradiation area was restricted to the hindlimbs. In this mouse model, due to the size of the animal, a diameter of five millimeters was considered the largest wound size suitable for the model. In addition, the transplanted cells had to be harvested from other inbred animals. To investigate larger wounds and the impact of autologous specimen delivery, a rabbit model was developed. Rabbits were kept in a special apparatus to shield the body and hindlimbs while the irradiation field was exposed to radiation. Six weeks after irradiation, a 2 x 2 cm, full-thickness skin defect was made inside the irradiation field. Then, the wound area was observed over time. The wound area after irradiation was larger than that without irradiation at all time points. Both angiogenesis and collagen formation were reduced. For further study, as an example of using this model, the effect of autologous platelet-rich plasma (PRP) was observed. Autologous PRP from peripheral blood (pb-PRP) and bone marrow aspirate (bm-PRP) was processed and injected into the wounds in the irradiated field. Two weeks later, the wounds treated with bm-PRP were significantly smaller than those treated with phosphate buffer vehicle controls. In contrast, the wounds treated with pb-PRP were not significantly different from the controls. This rabbit model is useful for investigating the mechanism of impaired wound healing in an X-ray-irradiated field.
Collapse
Affiliation(s)
- Kazutoshi Fujita
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Soh Nishimoto
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- * E-mail:
| | - Toshihiro Fujiwara
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yohei Sotsuka
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Maki Tonooka
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kenichiro Kawai
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Masao Kakibuchi
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
7
|
Silva LPD, Pirraco RP, Santos TC, Novoa-Carballal R, Cerqueira MT, Reis RL, Correlo VM, Marques AP. Neovascularization Induced by the Hyaluronic Acid-Based Spongy-Like Hydrogels Degradation Products. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33464-33474. [PMID: 27960396 DOI: 10.1021/acsami.6b11684] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neovascularization has been a major challenge in many tissue regeneration strategies. Hyaluronic acid (HA) of 3-25 disaccharides is known to be angiogenic due to its interaction with endothelial cell receptors. This effect has been explored with HA-based structures but a transitory response is observed due to HA burst biodegradation. Herein we developed gellan gum (GG)-HA spongy-like hydrogels from semi-interpenetrating network hydrogels with different HA amounts. Enzymatic degradation was more evident in the GG-HA with high HA amount due to their lower mechanical stability, also resulting from the degradation itself, which facilitated the access of the enzyme to the HA in the bulk. GG-HA spongy-like hydrogels hyaluronidase-mediated degradation lead to the release of HA oligosaccharides of different amounts and sizes in a HA content-dependent manner which promoted in vitro proliferation of human umbilical cord vein endothelial cells (HUVECs) but not their migration. Although no effect was observed in human dermal microvascular endothelial cells (hDMECs) in vitro, the implantation of GG-HA spongy-like hydrogels in an ischemic hind limb mice model promoted neovascularization in a material-dependent manner, consistent with the in vitro degradation profile. Overall, GG-HA spongy-like hydrogels with a sustained release of HA oligomers are valuable options to improve tissue vascularization, a critical issue in several applications in the tissue engineering and regenerative medicine field.
Collapse
Affiliation(s)
- Lucília P da Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Tírcia C Santos
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Ramon Novoa-Carballal
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Vitor M Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| |
Collapse
|
8
|
CD34/CD133 enriched bone marrow progenitor cells promote neovascularization of tissue engineered constructs in vivo. Stem Cell Res 2014; 13:465-77. [DOI: 10.1016/j.scr.2014.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 08/22/2014] [Accepted: 10/13/2014] [Indexed: 12/12/2022] Open
|
9
|
Kim J, Yang K, Park HJ, Cho SW, Han S, Shin Y, Chung S, Lee JH. Implantable microfluidic device for the formation of three-dimensional vasculature by human endothelial progenitor cells. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0021-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Moon SH, Kim SM, Park SJ, Kim H, Bae D, Choi YS, Chung HM. Development of a xeno-free autologous culture system for endothelial progenitor cells derived from human umbilical cord blood. PLoS One 2013; 8:e75224. [PMID: 24086472 PMCID: PMC3782462 DOI: 10.1371/journal.pone.0075224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 08/06/2013] [Indexed: 11/19/2022] Open
Abstract
Despite promising preclinical outcomes in animal models, a number of challenges remain for human clinical use. In particular, expanding a large number of endothelial progenitor cells (EPCs) in vitro in the absence of animal-derived products is the most critical hurdle remaining to be overcome to ensure the safety and efficiency of human therapy. To develop in vitro culture conditions for EPCs derived from human cord blood (hCB-EPCs), we isolated extracts (UCE) and collagen (UC-collagen) from umbilical cord tissue to replace their animal-derived counterparts. UC-collagen and UCE efficiently supported the attachment and proliferation of hCB-EPCs in a manner comparable to that of animal-derived collagen in the conventional culture system. Our developed autologous culture system maintained the typical characteristics of hCB-EPCs, as represented by the expression of EPC-associated surface markers. In addition, the therapeutic potential of hCB-EPCs was confirmed when the transplantation of hCB-EPCs cultured in this autologous culture system promoted limb salvage in a mouse model of hindlimb ischemia and was shown to contribute to attenuating muscle degeneration and fibrosis. We suggest that the umbilical cord represents a source for autologous biomaterials for the in vitro culture of hCB-EPCs. The main characteristics and therapeutic potential of hCB-EPCs were not compromised in developed autologous culture system. The absence of animal-derived products in our newly developed in vitro culture removes concerns associated with secondary contamination. Thus, we hope that this culture system accelerates the realization of therapeutic applications of autologous hCB-EPCs for human vascular diseases.
Collapse
Affiliation(s)
- Sung-Hwan Moon
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, South Korea
| | - Sun-Mi Kim
- Department of Applied Bioscience, CHA University, Seongnam-si, South Korea
| | - Soon-Jung Park
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, South Korea
- CHA Bio & Diostech Co., Ltd. Seoul, South Korea
| | - Hojin Kim
- Department of Applied Bioscience, CHA University, Seongnam-si, South Korea
| | | | - Yong-Soo Choi
- Department of Applied Bioscience, CHA University, Seongnam-si, South Korea
- CHA Bio & Diostech Co., Ltd. Seoul, South Korea
- * E-mail: (HMC); (YSC)
| | - Hyung-Min Chung
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, South Korea
- CHA Bio & Diostech Co., Ltd. Seoul, South Korea
- * E-mail: (HMC); (YSC)
| |
Collapse
|
11
|
Nishimoto S, Kawai K, Tsumano T, Fukuda K, Fujiwara T, Kakibuchi M. Impacts of bone marrow aspirate and peripheral blood derived platelet-rich plasma on the wound healing in chronic ischaemic limb. J Plast Surg Hand Surg 2013; 47:169-74. [PMID: 23621096 DOI: 10.3109/2000656x.2012.752739] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Platelet rich plasma (PRP) has attracted attention as a safe and cost-effective source of growth factors that stimulate cells to regenerate tissue. Bone marrow cells are also estimated as an effective material for treating chronic ulcers. With the same technique to concentrate PRP from peripheral blood, bone marrow aspirate was processed and marrow cells were concentrated as well as platelets. Impact of PRP derived from bone marrow aspirate (bm-PRP) and that from peripheral blood (pb-PRP) on wound healing of persistent ischaemic rabbits' limbs were observed. Full thickness skin defects were made on the thighs, which had been treated to be persistent ischaemic status 3 weeks previously. Saline, pb-PRP, and bm-PRP were injected into the wound floor, respectively. Skin defected areas on ischaemic limbs were significantly wider than those on non-ischaemic limbs. bm-PRP injected wounds showed a significantly smaller skin defect area compared with pb-PRP and ischaemic-saline wounds at all time points. Fluorescently dyed cells of bm-PRP, injected into the wounds, could be traced 4 weeks after, whereas those of pb-PRP could be traced no more than 2 weeks. Wound healing on an ischaemic limb was accelerated with bm-PRP, whereas pb-PRP could not show any significance from saline. This difference can be attributed to the kind of cells contained in the PRPs. Injection of bm-PRP is a good candidate for treating wounds on ischaemic limbs.
Collapse
Affiliation(s)
- Soh Nishimoto
- Department of Plastic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8131, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Wang Z, He Y, Yu X, Fu W, Wang W, Huang H. Rapid vascularization of tissue-engineered vascular grafts in vivo by endothelial cells in co-culture with smooth muscle cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1109-17. [PMID: 22331376 DOI: 10.1007/s10856-012-4576-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/31/2012] [Indexed: 05/15/2023]
Abstract
A major challenge facing the development of tissue-engineered vascular grafts (TEVGs), promising living replacements for diseased vascular structures, is enhancing angiogenesis. To promote rapid vascularization, endothelial cells (ECs) were co-cultured with smooth muscle cells (SMCs) in decellularized small intestinal submucosa scaffolds to regenerate angiogenic-TEVGs (A-TEVGs). Observation of the A-TEVGs at 1 month post-implantation revealed that a rich network of neocapillaries lining the blood vessel wall had developed; that the ECs of the neovasculatures had been derived from previously seeded ECs and later invading ECs of the host's vascular bed; that tissue vascularization had not significantly impaired mechanical properties; and that the maximal tensile strength of the A-TEVGs was of the same order of magnitude as that of native porcine femoral arteries. These results indicate that of the co-culturing of ECs with SMCs could enhance vascularization of TEVGs in vivo, possibly increasing graft perfusion and host integration.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Pediatric Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
13
|
Krawiec JT, Vorp DA. Adult stem cell-based tissue engineered blood vessels: A review. Biomaterials 2012; 33:3388-400. [DOI: 10.1016/j.biomaterials.2012.01.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/05/2012] [Indexed: 12/20/2022]
|
14
|
Apoptosis regulator through modulating IAP expression (ARIA) controls the PI3K/Akt pathway in endothelial and endothelial progenitor cells. Proc Natl Acad Sci U S A 2011; 108:9472-7. [PMID: 21593423 DOI: 10.1073/pnas.1101296108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endothelial and endothelial progenitor cells (ECs and EPCs) play a fundamental role in angiogenesis that is essential for numerous physiological and pathological processes. The phosphatase and tensin homolog (PTEN)/ phosphoinositide 3-kinase (PI3K) pathway has been implicated in angiogenesis, but the mechanism in the regulation of this pathway in ECs and EPCs is poorly understood. Here we show that ARIA (apoptosis regulator through modulating IAP expression), a transmembrane protein that we recently identified, regulates the PTEN/PI3K pathway in ECs and EPCs and controls developmental and postnatal angiogenesis in vivo. We found that ARIA is abundantly expressed in EPCs and regulates their angiogenic functions by modulating PI3K/Akt/endothelial nitric oxide synthase (eNOS) signaling. Genetic deletion of ARIA caused nonfatal bleeding during embryogenesis, in association with increased small vessel density and altered expression of various vascular growth factors including angiopoietins and VEGF receptors. Postnatal neovascularization induced by critical limb ischemia was substantially enhanced in ARIA-null mice, in conjunction with more bone marrow (BM)-derived ECs detected in ischemic muscles. Administration of PI3K or NO synthase inhibitor completely abolished the enhanced neovascularization in ARIA(-/-) mice. Mechanistically, we identified that ARIA interacts with PTEN at the intracellular domain independently of the PTEN phosphorylation in its C-terminal tail. Overexpressed ARIA increased PTEN in the membrane fraction, whereas ARIA-silencing reduced the membrane-associated PTEN, resulting in modified PI3K/Akt signaling. Taken together, our findings establish a previously undescribed mode of regulation of the PTEN/PI3K/Akt pathway by ARIA, and reveal a unique mechanism in the control of angiogenesis. These functions of ARIA might offer a unique therapeutic potential.
Collapse
|
15
|
Weber B, Zeisberger SM, Hoerstrup SP. Prenatally harvested cells for cardiovascular tissue engineering: fabrication of autologous implants prior to birth. Placenta 2011; 32 Suppl 4:S316-9. [PMID: 21575988 DOI: 10.1016/j.placenta.2011.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/04/2011] [Indexed: 12/17/2022]
Abstract
Using the principal of tissue engineering, several groups have demonstrated the feasibility of creating heart valves, blood vessels, and myocardial structures using autologous cells and biodegradable scaffold materials. In the current cardiovascular clinical scenario, the main medical need for a tissue engineering solution is in the field of pediatric applications treating congenital heart disease. In these young patients, the introduction of autologous viable and growing replacement structures, such as tissue engineered heart valves and vessels, would substantially reduce today's severe therapeutic limitations, which are mainly due to the need for repeat reoperations to adapt the current artificial prostheses to somatic growth. Based on high resolution imaging techniques, an increasing number of defects are diagnosed already prior to birth around week 20. For interventions, cells should be obtained already during pregnancy to provide tissue engineered implants either at birth or even prenatally. In our recent studies human fetal mesenchymal stem cells were isolated from routinely sampled prenatal amniotic fluid or chorionic villus specimens and expanded in vitro. Fresh and cryopreserved samples were used. After phenotyping and genotyping, cells were seeded onto synthetic biodegradable scaffolds and conditioned in a bioreactor. Leaflets were endothelialized with either amniotic fluid- or umbilical cord blood-derived endothelial progenitor cells and conditioned. Resulting tissues were analyzed by histology, immunohistochemistry, biochemistry (amounts of extracellular matrix, DNA), mechanical testing, and scanning electron microscopy (SEM) and were compared with native neonatal heart valve leaflets. Genotyping confirmed their fetal origin, and fresh versus cryopreserved cells showed comparable myofibroblast-like phenotypes. Neo-tissues exhibited organization, cell phenotypes, extracellular matrix production, and DNA content comparable to their native counterparts. Leaflet surfaces were covered with functional endothelia. SEM showed morphologically cellular distribution throughout the polymer and smooth surfaces. Mechanical profiles approximated those of native heart valves. These in vitro studies demonstrated the principal feasibility of using various human cell types isolated from fetal sources for cardiovascular tissue engineering. Umbilical cord blood-, amniotic fluid- and chorionic villi-derived cells have shown promising potential for the clinical realization of this congenital tissue engineering approach. Based on these results, future research must aim at further investigation as well as preclinical evaluation of prenatally harvested stem- or progenitor cells with regard to their potential for clinical use.
Collapse
Affiliation(s)
- B Weber
- Department of Surgical Research and Clinic for Cardiovascular Surgery, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland
| | | | | |
Collapse
|
16
|
Parajó Y, D'Angelo I, Welle A, Garcia-Fuentes M, Alonso MJ. Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB. Drug Deliv 2011; 17:596-604. [PMID: 20883178 DOI: 10.3109/10717544.2010.509357] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of a vascular network in tissue-engineered constructs is a fundamental bottleneck of bioregenerative medicine, particularly when the size of the implant exceeds a certain limit given by diffusion lengths and/or if the host tissue shows a very active metabolism. One of the approaches to achieve the vascularization of tissue constructs is generating a sustained release of proangiogenic factors from the ischemic site. This work describes the formation and characterization of hyaluronic acid-chitosan (HA/CS) nanoparticles for the delivery of two pro-angiogenic growth factors: vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF-BB). These nanoparticles were prepared by an ionic gelification technique, and different formulations were developed by encapsulating the growth factors in association with two stabilizing agents: bovine serum albumin or heparin sodium salt. These carriers were characterized with regard to their physicochemical properties, their stability in biological media, and their cytotoxicity in the C3a hepatoma cell line. The results show that nanoparticles around 200 nm can be prepared by this method. HA/CS nanoparticles were stable when incubated in EMEM cell culture medium or in water at 37°C for 24 h. Cell culture tests confirmed that HA/CS nanoparticles are not cytotoxic within the concentration range used for growth factor delivery. Moreover, HA/CS nanoparticles were able to entrap efficiently both growth factors, reaching association values of 94% and 54% for VEGF and PDGF, respectively. In vitro release studies confirm that PDGF-BB is released from HA/CS nanoparticles in a sustained manner over approximately 1 week. On the other hand, VEGF is completely released within the first 24 h.
Collapse
Affiliation(s)
- Yolanda Parajó
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
17
|
Wyler von Ballmoos M, Yang Z, Völzmann J, Baumgartner I, Kalka C, Di Santo S. Endothelial progenitor cells induce a phenotype shift in differentiated endothelial cells towards PDGF/PDGFRβ axis-mediated angiogenesis. PLoS One 2010; 5:e14107. [PMID: 21124835 PMCID: PMC2991332 DOI: 10.1371/journal.pone.0014107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 10/29/2010] [Indexed: 11/26/2022] Open
Abstract
Background Endothelial Progenitor Cells (EPC) support neovascularization and regeneration of injured endothelium both by providing a proliferative cell pool capable of differentiation into mature vascular endothelial cells and by secretion of angiogenic growth factors. Objective The aim of this study was to investigate the role of PDGF-BB and PDGFRβ in EPC-mediated angiogenesis of differentiated endothelial cells. Methods and Results Conditioned medium from human EPC (EPC-CM) cultured in hypoxic conditions contained substantially higher levels of PDGF-BB as compared to normoxic conditions (P<0.01). EPC-CM increased proliferation (1.39-fold; P<0.001) and migration (2.13-fold; P<0.001) of isolated human umbilical vein endothelial cells (HUVEC), as well as sprouting of vascular structures from ex vivo cultured aortic rings (2.78-fold increase; P = 0.01). The capacity of EPC-CM to modulate the PDGFRβ expression in HUVEC was assessed by western blot and RT-PCR. All the pro-angiogenic effects of EPC-CM on HUVEC could be partially inhibited by inactivation of PDGFRβ (P<0.01). EPC-CM triggered a distinct up-regulation of PDGFRβ (2.5±0.5; P<0.05) and its phosphorylation (3.6±0.6; P<0.05) in HUVEC. This was not observed after exposure of HUVEC to recombinant human PDGF-BB alone. Conclusion These data indicate that EPC-CM sensitize endothelial cells and induce a pro-angiogenic phenotype including the up-regulation of PDGFRβ, thereby turning the PDGF/PDGFRβ signaling-axis into a critical element of EPC-induced endothelial angiogenesis. This finding may be utilized to enhance EPC-based therapy of ischemic tissue in future.
Collapse
Affiliation(s)
- Moritz Wyler von Ballmoos
- Department of Cardiac Surgery, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Zijiang Yang
- Division of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Völzmann
- Division of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Iris Baumgartner
- Division of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Kalka
- Division of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- * E-mail:
| | - Stefano Di Santo
- Division of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Zeisberger SM, Zoller S, Riegel M, Chen S, Krenning G, Harmsen MC, Sachinidis A, Zisch AH. Optimization of the culturing conditions of human umbilical cord blood-derived endothelial colony-forming cells under xeno-free conditions applying a transcriptomic approach. Genes Cells 2010; 15:671-87. [PMID: 20497237 DOI: 10.1111/j.1365-2443.2010.01409.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Establishment of fetal bovine serum (FBS)-free cell culture conditions is essential for transplantation therapies. Blood-derived endothelial colony-forming cells (ECFCs) are potential candidates for regenerative medicine applications. ECFCs were isolated from term umbilical cord blood units and characterized by flow cytometry, capillary formation and responsiveness to cytokines. ECFCs were expanded under standard, FBS-containing endothelial medium, or transferred to chemically defined endothelial media without FBS. Microarray expression profiling was applied to compare the transcriptome profiles in FBS-containing versus FBS-free culture. ECFC outgrowth in standard medium was successful in 92% of cord blood units. The karyotype of expanded ECFCs remained normal. Without FBS, ECFC initiation and expansion failed. Modest proliferation, changes in cell morphology and organization and cell death have been observed after passaging. Gene ontology analysis revealed a broad down-regulation of genes involved in cell cycle progression and up-regulation of genes involved in stress response and apoptosis. Interestingly, genes participating in lipid biosynthesis were markedly up-regulated. Detection of several endothelial cell-specific marker genes showed the maintenance of the endothelial cell characteristics during serum-free culture. Although ECFCs maintain their endothelial characteristics during serum-free culturing, they could not be expanded. Additional supply of FBS-free media with lipid concentrates might increase the ECFC survival.
Collapse
|
19
|
Jones CP, Pitchford SC, Lloyd CM, Rankin SM. CXCR2 mediates the recruitment of endothelial progenitor cells during allergic airways remodeling. Stem Cells 2009; 27:3074-81. [PMID: 19785013 PMCID: PMC3385349 DOI: 10.1002/stem.222] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Airway remodeling is a central feature of asthma and includes the formation of new peribronchial blood vessels, which is termed angiogenesis. In a number of disease models, bone marrow-derived endothelial progenitor cells (EPCs) have been shown to contribute to the angiogenic response. In this study we set out to determine whether EPCs were recruited into the lungs in a model of allergic airways disease and to identify the factors regulating EPC trafficking in this model. We observed a significant increase in the number of peribronchial blood vessels at day 24, during the acute inflammatory phase of the model. This angiogenic response was associated with an increase in the quantity of EPCs recoverable from the lung. These EPCs formed colonies after 21 days in culture and were shown to express CD31, von Willebrand factor, and vascular endothelial growth factor (VEGF) receptor 2, but were negative for CD45 and CD14. The influx in EPCs was associated with a significant increase in the proangiogenic factors VEGF-A and the CXCR2 ligands, CXCL1 and CXCL2. However, we show directly that, while the CXCL1 and CXCL2 chemokines can recruit EPCs into the lungs of allergen-sensitized mice, VEGF-A was ineffective in this respect. Further, the blockade of CXCR2 significantly reduced EPC numbers in the lungs after allergen exposure and led to a decrease in the numbers of peribronchial blood vessels after allergen challenge with no effect on inflammation. The data presented here provide in vivo evidence that CXCR2 is critical for both EPC recruitment and the angiogenic response in this model of allergic inflammation of the airways.
Collapse
Affiliation(s)
- Carla P Jones
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, United Kingdom
| | | | | | | |
Collapse
|
20
|
Lucchinetti E, Zeisberger SM, Baruscotti I, Wacker J, Feng J, Zaugg K, Dubey R, Zisch AH, Zaugg M. Stem cell-like human endothelial progenitors show enhanced colony-forming capacity after brief sevoflurane exposure: preconditioning of angiogenic cells by volatile anesthetics. Anesth Analg 2009; 109:1117-26. [PMID: 19762739 DOI: 10.1213/ane.0b013e3181b5a277] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Endothelial progenitor cells play a pivotal role in tissue repair, and thus are used for cell replacement therapies in "regenerative medicine." We tested whether the anesthetic sevoflurane would modulate growth or mobilization of these angiogenic cells. METHODS In an in vitro model, mononuclear cells isolated from peripheral blood of healthy donors were preconditioned with sevoflurane (3 times 30 min at 2 vol% interspersed by 30 min of air). Colony-forming units were determined after 9 days in culture and compared with time-matched untreated control. Using magnetic cell sorting, CD133+/CD34+ endothelial progenitors were enriched from human umbilical cord blood, and vascular endothelial growth factor (VEGF), VEGFR2 (KDR), granulocyte colony-stimulating factor (G-CSF), STAT3, c-kit, and CXCR4 expressions were determined in sevoflurane-treated and untreated cells by real-time reverse transcriptase polymerase chain reaction. In a volunteer study with crossover design, we tested whether sevoflurane inhalation (<1 vol% end-tidal concentration) would mobilize endothelial progenitor cells from the bone marrow niche into the circulation using flow cytometry of peripheral blood samples. VEGF and G-CSF plasma levels were also measured. RESULTS In vitro sevoflurane exposure of mononuclear cells enhanced colony-forming capacity and increased VEGF mRNA levels in CD133+/CD34+ cord blood cells (P = 0.017). Sevoflurane inhalation in healthy volunteers did not alter the number of CD133+/CD34+ or KDR+/CD34+ endothelial progenitors in the circulation, but increased the number of colony-forming units (P = 0.034), whereas VEGF and G-CSF plasma levels remained unchanged. CONCLUSIONS Sevoflurane preconditioning promotes growth and proliferation of stem cell-like human endothelial progenitors. Hence, it may be used to promote perioperative vascular healing and to support cell replacement therapies.
Collapse
Affiliation(s)
- Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine, University of Alberta, 8-120 Clinical Sciences Building, Edmonton Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Koga M, Sudo R, Abe Y, Yamamoto K, Ando J, Ikeda M, Tanishita K. Contribution of Rat Endothelial Progenitor Cells on Three-Dimensional Network FormationIn Vitro. Tissue Eng Part A 2009; 15:2727-39. [DOI: 10.1089/ten.tea.2008.0417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Masaki Koga
- Department of System Design Engineering, Keio University, Yokohama, Japan
| | - Ryo Sudo
- Department of System Design Engineering, Keio University, Yokohama, Japan
| | - Yoshinori Abe
- Department of System Design Engineering, Keio University, Yokohama, Japan
| | - Kimiko Yamamoto
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Joji Ando
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mariko Ikeda
- Department of System Design Engineering, Keio University, Yokohama, Japan
| | - Kazuo Tanishita
- Department of System Design Engineering, Keio University, Yokohama, Japan
| |
Collapse
|
22
|
Di Santo S, Yang Z, Wyler von Ballmoos M, Voelzmann J, Diehm N, Baumgartner I, Kalka C. Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS One 2009; 4:e5643. [PMID: 19479066 PMCID: PMC2682571 DOI: 10.1371/journal.pone.0005643] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/29/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy. METHODOLOGY/PRINCIPAL FINDINGS EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2+/-2.9% and 83.7+/-3.0% vs. 53.5+/-2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62+/-0.03 and 1.68+/-0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6+/-0.3 and 8.1+/-0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7+/-44.1 vs. 340.0+/-29.1 CD34(+)/CD45(-) cells/1x10(5) mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9+/-0.7 vs. 2.6+/-0.4 CD34(+) cells/HPF, P<0.001) 3 days after the last injection. CONCLUSIONS/SIGNIFICANCE Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Stefano Di Santo
- Department of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Zijiang Yang
- Department of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Moritz Wyler von Ballmoos
- Department of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Voelzmann
- Department of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicolas Diehm
- Department of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Iris Baumgartner
- Department of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Kalka
- Department of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Kielty CM, Stephan S, Sherratt MJ, Williamson M, Shuttleworth CA. Applying elastic fibre biology in vascular tissue engineering. Philos Trans R Soc Lond B Biol Sci 2007; 362:1293-312. [PMID: 17588872 PMCID: PMC2440413 DOI: 10.1098/rstb.2007.2134] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and patency. In blood vessels, they endow vessels with the critical property of elastic recoil. They also influence vascular cell behaviour through direct interactions and by regulating growth factor activation. This review addresses physiological elastic fibre assembly and contributions to vessel structure and function, and how elastic fibre biology is now being exploited in small diameter vascular graft design.
Collapse
Affiliation(s)
- Cay M Kielty
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | |
Collapse
|
24
|
Cai H, Gehrig P, Scott TM, Zimmermann R, Schlapbach R, Zisch AH. MnSOD marks cord blood late outgrowth endothelial cells and accompanies robust resistance to oxidative stress. Biochem Biophys Res Commun 2006; 350:364-9. [PMID: 17010941 DOI: 10.1016/j.bbrc.2006.09.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 09/12/2006] [Indexed: 11/24/2022]
Abstract
Cord blood is source of colony-forming progenitors to vascular endothelial cells for potential use in cell therapies. These cells-called blood late outgrowth endothelial cells (OECs)-have undergone endothelial differentiation, but appear to still possess functional properties different from mature endothelial cells. A large-scale comparative proteomics screen of cord blood OECs versus human vein endothelial cells (HUVECs) using two-dimensional gel electrophoresis and mass spectrometry identified specific expression of manganese superoxide dismutase (MnSOD), a key antioxidant enzyme expressed in the mitochondria, in OECs but not in HUVECs. Immunoblotting verified significant MnSOD levels in all OEC isolates tested and maintained throughout passaging. Endothelial function and cell survival/proliferation assays in the presence of high cytotoxic doses of the superoxide generator compound LY83583 showed OECs profoundly better protected against oxidative stress than HUVECs. Such cytoprotective levels of MnSOD cells could give therapeutic cell transplants a survival advantage in necrotic or ischemic conditions.
Collapse
Affiliation(s)
- Hao Cai
- Department of Obstetrics, University Hospital Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Reconstructive surgery using autologous vessels is the conventional approach for substitution of diseased vessels or for generation of bypass to improve blood supply downstream of stenosed vessels. In some circumstances the use of autologous material is not possible due to concomitant diseases or previous use, and artificial grafts must be used. Unfortunately, these grafts cannot substitute small-caliber arterial vessels because of thrombotic complications. The objective of tissue engineering at the vascular level is then to generate biological substitutes of arterial conduits with functional characteristics of native vessels, combining cellular components with biodegradable scaffolds. These research projects started in several laboratories, in the late 1990s, and have expanded in different directions using a number of experimental approaches. The objective of this review is to give an overview of the results so far obtained in this area of research, and to discuss the problems related to these investigations, at the experimental and clinical level. The article provides an overview of different biodegradable scaffolds used, experimental techniques for vessels maturation in vitro under mechanical stimulation, and of differentiated as well as precursors of vascular cells, which opens new opportunities for further development of this form of cell transplantation. Finally, the current available results in clinical research will be discussed.
Collapse
Affiliation(s)
- Chiara Arrigoni
- Department of Biomedical Engineering, Mario Negri Institute for Pharmacological Research, 24125 Bergamo, Italy
| | | | | |
Collapse
|
26
|
Alobaid N, Salacinski HJ, Sales KM, Ramesh B, Kannan RY, Hamilton G, Seifalian AM. Nanocomposite Containing Bioactive Peptides Promote Endothelialisation by Circulating Progenitor Cells: An In vitro Evaluation. Eur J Vasc Endovasc Surg 2006; 32:76-83. [PMID: 16466940 DOI: 10.1016/j.ejvs.2005.11.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 11/13/2005] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The formation of an endothelial cell layer on the luminal surface of cardiovascular devices, especially bypass grafts, is an important attribute in order to improve their patency. Endothelial progenitor cells (EPCs) have a potential role in the endothelialisation of bypass grafts. We hypothesised that a novel approach to improve endothelialisation of bypass grafts by EPCs would be the creation on the graft lumen of a microenvironment that supports EPC adhesion and differentiation. METHODS A new generation of nanocomposite based on silsesquioxane in the form of polyhedral oligomeric silsesquioxane (POSS) nanocages which incorporate bioactive peptides (RGD) was made into sheets. Peripheral blood mononuclear cells (PBMCs) containing EPCs isolated from six consenting young, healthy, adult volunteers were then plated both on (1) sheets of the nanocomposite with the bioactive peptide, (2) sheets of the nanocomposite without the bioactive peptide, (3) culture dishes as control and then cultured in presence of vascular endothelial growth factor (VEGF). Confirmation of endothelial and EPCs markers was carried out using fluorescence-activated cell sorter (FACS) analysis, reverse transcription polymerase chain reaction (RT-PCR) and immunostaining. RESULTS One to two percent of PBMCs expressed CD34 as determined by FACS analysis. Cells were demonstrated to express mRNA for the EPC markers CD34, platelet-endothelial cell adhesion molecule-1 (CD31), CD133 and vascular endothelial growth factor receptor-2(FlK-1/KDR). Endothelial cell-colony forming units were formed between day 5 and day 7 after plating. Colonies were confirmed to be endothelial like cells by immunostaining. There were significantly greater numbers of EPC colonies on the bioactive nanocomposites as compared to the nanocomposite alone and the uncoated dishes. CONCLUSION We report a new nanocomposite based biomaterial that has been demonstrated, in vitro, to promote endothelialisation from PBMCs containing EPCs.
Collapse
Affiliation(s)
- N Alobaid
- Academic Division of Surgical and Interventional Sciences, Biomaterials and Tissue Engineering Centre (BTEC), University College London, Hampstead Campus, London NW3 2PF, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Trentin D, Hall H, Wechsler S, Hubbell JA. Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1alpha variant for local induction of angiogenesis. Proc Natl Acad Sci U S A 2006; 103:2506-11. [PMID: 16477043 PMCID: PMC1413769 DOI: 10.1073/pnas.0505964102] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Indexed: 11/18/2022] Open
Abstract
Hypoxia-inducible factor (HIF) constitutes a target in therapeutic angiogenesis. HIF-1alpha functions as a sensor of hypoxia and induces expression of vascular endothelial growth factor (VEGF), which then induces angiogenesis. To explore the potential of HIF-1alpha gene therapy in stimulating wound healing, we delivered a gene encoding a stabilized form of HIF-1alpha, lacking the oxygen-sensitive degradation domain, namely HIF-1alpha deltaODD, by using a previously characterized peptide-based gene delivery vector in fibrin as a surgical matrix. The peptide vector consisted of multiple domains: (i) A cysteine-flanked lysine hexamer provided DNA interactions that were stable extracellularly but destabilized intracellularly after reduction of the formed disulfide bonds. This DNA-binding domain was fused to either (ii) a fibrin-binding peptide for entrapment within the matrix or (iii) a nuclear localization sequence for efficient nuclear targeting. The HIF-1alpha deltaODD gene was expressed and translocated to the nucleus under normoxic conditions, leading to up-regulation of vascular endothelial growth factor (VEGF)-A165 mRNA and protein levels in vitro. When the peptide-DNA nanoparticles entrapped in fibrin matrices were applied to full-thickness dermal wounds in the mouse (10 microg per wound in 30 microl of fibrin), angiogenesis was increased comparably strongly to that induced by VEGF-A165 protein (1.25 microg per wound in 30 microl of fibrin). However, the maturity of the vessels induced by HIF-1alpha deltaODD was significantly higher than that induced by VEGF-A165 protein, as shown by stabilization of the neovessels with smooth muscle. Nonviral, local administration of this potent angiogenesis-inducing gene by using this peptide vector represents a powerful approach in tissue engineering and therapeutic angiogenesis.
Collapse
Affiliation(s)
- Diana Trentin
- *Integrative Biosciences Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; and
| | - Heike Hall
- Department of Materials, Swiss Federal Institute of Technology Zurich (ETHZ), Wolfgang-Pauli-Strasse 10, CH-8092 Zurich, Switzerland
| | - Sandra Wechsler
- *Integrative Biosciences Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; and
| | - Jeffrey A. Hubbell
- *Integrative Biosciences Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; and
| |
Collapse
|
28
|
Williams DF. To engineer is to create: the link between engineering and regeneration. Trends Biotechnol 2006; 24:4-8. [PMID: 16289395 DOI: 10.1016/j.tibtech.2005.10.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 09/08/2005] [Accepted: 10/27/2005] [Indexed: 11/26/2022]
Abstract
Tissue engineering is a radically different approach to reconstruction of the body following degenerative diseases, trauma or chronic debilitating conditions. Although there have been some successes, tissue engineering is not yet delivering significant progress in terms of clinical outcomes and commercialization. Part of the problem is that we have failed to understand what tissue engineering really means and to appreciate that engineering is synonymous with creation. These processes involve many different phases and there has been minimal integration of these phases within tissue-engineering paradigms. The conventional concept, based upon a temporal sequence from sourcing cells through to the incorporation of generated tissue into a host, has to be transformed by a systems engineering approach in which all biological and technological phases, and the inter-relationships between them, are fully integrated. It might be that real success will not be achieved until systems biology is superimposed onto this systems engineering paradigm.
Collapse
Affiliation(s)
- David F Williams
- UK Centre for Tissue Engineering, University of Liverpool, Liverpool, UK.
| |
Collapse
|
29
|
Sieminski AL, Hebbel RP, Gooch KJ. Improved microvascular network in vitro by human blood outgrowth endothelial cells relative to vessel-derived endothelial cells. ACTA ACUST UNITED AC 2005; 11:1332-45. [PMID: 16259589 DOI: 10.1089/ten.2005.11.1332] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Evidence suggests that bone marrow-derived cells circulating in adult blood, sometimes called endothelial progenitor cells, contribute to neovascularization in vivo and give rise to cells expressing endothelial markers in culture. To explore the utility of blood-derived cells expressing an endothelial phenotype for creating tissue-engineered microvascular networks, we employed a three-dimensional in vitro angiogenesis model to compare microvascular network formation by human blood outgrowth endothelial cells (HBOECs) with three human vessel-derived endothelial cell (EC) types: human umbilical vein ECs (HUVECs), and adult and neonatal human microvascular ECs. Under every condition investigated, HBOECs within collagen gels elongated significantly more than any other cell type. Under all conditions investigated, gel contraction and cell elongation were correlated, with HBOECs demonstrating the largest generation of force. HBOECs did not exhibit a survival advantage, nor did they enhance elongation of HUVECs when the two cell types were cocultured. Network formation of both HBOECs and HUVECs was inhibited by blocking antibodies to alpha2beta1, but not alpha(v)beta3, integrins. Taken together, these data suggest that superior network exhibited by HBOECs relative to vessel-derived endothelial cells is not due to a survival advantage, use of different integrins, or secretion of an autocrine/paracrine factor, but may be related to increased force generation.
Collapse
Affiliation(s)
- A L Sieminski
- Department of Bioengineering and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6392, USA
| | | | | |
Collapse
|