1
|
Arancibia D, Pol I, Vargas-Fernández M, Zárate RV, Signorelli JR, Zamorano P. OPTO-BLUE: An Integrated Bidirectional Optogenetic Lentiviral Platform for Controlled Light-Induced Gene Expression. Int J Mol Sci 2023; 24:ijms24119537. [PMID: 37298488 DOI: 10.3390/ijms24119537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Regulated systems for transgene expression are useful tools in basic research and a promising platform in biomedicine due to their regulated transgene expression by an inducer. The emergence of optogenetics expression systems enabled the construction of light-switchable systems, enhancing the spatial and temporal resolution of a transgene. The LightOn system is an optogenetic tool that regulates the expression of a gene of interest using blue light as an inducer. This system is based on a photosensitive protein (GAVPO), which dimerizes and binds to the UASG sequence in response to blue light, triggering the expression of a downstream transgene. Previously, we adapted the LightOn system to a dual lentiviral vector system for neurons. Here, we continue the optimization and assemble all components of the LightOn system into a single lentiviral plasmid, the OPTO-BLUE system. For functional validation, we used enhanced green fluorescent protein (EGFP) as an expression reporter (OPTO-BLUE-EGFP) and evaluated the efficiency of EGFP expression by transfection and transduction in HEK293-T cells exposed to continuous blue-light illumination. Altogether, these results prove that the optimized OPTO-BLUE system allows the light-controlled expression of a reporter protein according to a specific time and light intensity. Likewise, this system should provide an important molecular tool to modulate gene expression of any protein by blue light.
Collapse
Affiliation(s)
- Duxan Arancibia
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Iracy Pol
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Martín Vargas-Fernández
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Rafaella V Zárate
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile
- Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Janetti R Signorelli
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - Pedro Zamorano
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile
- Instituto Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile
| |
Collapse
|
2
|
Mahrou B, Pirhanov A, Alijanvand MH, Cho YK, Shin YJ. Degradation-driven protein level oscillation in the yeast Saccharomyces cerevisiae. Biosystems 2022; 219:104717. [PMID: 35690291 DOI: 10.1016/j.biosystems.2022.104717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Generating robust, predictable perturbations in cellular protein levels will advance our understanding of protein function and enable the control of physiological outcomes in biotechnology applications. Timed periodic changes in protein levels play a critical role in the cell division cycle, cellular stress response, and development. Here we report the generation of robust protein level oscillations by controlling the protein degradation rate in the yeast Saccharomyces cerevisiae. Using a photo-sensitive degron and red fluorescent proteins as reporters, we show that under constitutive transcriptional induction, repeated triangular protein level oscillations as fast as 5-10 min-scale can be generated by modulating the protein degradation rate. Consistent with oscillations generated though transcriptional control, we observed a continuous decrease in the magnitude of oscillations as the input modulation frequency increased, indicating low-pass filtering of input perturbation. By using two red fluorescent proteins with distinct maturation times, we show that the oscillations in protein level is largely unaffected by delays originating from functional protein formation. Our study demonstrates the potential for repeated control of protein levels by controlling the protein degradation rate without altering the transcription rate.
Collapse
Affiliation(s)
- Bahareh Mahrou
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA; Electrical Engineering Department, University of Connecticut, Storrs, CT, 06069, USA.
| | - Azady Pirhanov
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA
| | - Moluk Hadi Alijanvand
- Department of Epidemiology and Biostatistics, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yong Ku Cho
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA; Chemical and Biomolecular Engineering Department, University of Connecticut, Storrs, CT, 06269, USA.
| | - Yong-Jun Shin
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
3
|
Wu J, Chen B, Liu Y, Ma L, Huang W, Lin Y. Modulating gene regulation function by chemically controlled transcription factor clustering. Nat Commun 2022; 13:2663. [PMID: 35562359 PMCID: PMC9106659 DOI: 10.1038/s41467-022-30397-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/29/2022] [Indexed: 12/21/2022] Open
Abstract
Recent studies have suggested that transcriptional protein condensates (or clusters) may play key roles in gene regulation and cell fate determination. However, it remains largely unclear how the gene regulation function is quantitatively tuned by transcription factor (TF) clustering and whether TF clustering may confer emergent behaviors as in cell fate control systems. Here, to address this, we construct synthetic TFs whose clustering behavior can be chemically controlled. Through single-parameter tuning of the system (i.e., TF clustering propensity), we provide lines of evidence supporting the direct transcriptional activation and amplification of target genes by TF clustering. Single-gene imaging suggests that such amplification results from the modulation of transcriptional dynamics. Importantly, TF clustering propensity modulates the gene regulation function by significantly tuning the effective TF binding affinity and to a lesser extent the ultrasensitivity, contributing to bimodality and sustained response behavior that are reminiscent of canonical cell fate control systems. Collectively, these results demonstrate that TF clustering can modulate the gene regulation function to enable emergent behaviors, and highlight the potential applications of chemically controlled protein clustering. Transcription factor (TF) condensates appear to be pervasive, yet their roles remain debated. Here, the authors use a synthetic biology approach to show that TF clusters causally amplify transcription and can confer bimodality and “memory”.
Collapse
Affiliation(s)
- Jiegen Wu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Baoqiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yadi Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Liang Ma
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Wen Huang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Yihan Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China. .,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
4
|
Abstract
Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry—biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function.
Collapse
Affiliation(s)
- Caleb J. Bashor
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
| | - James J. Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
- Harvard–MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
5
|
Lin F, Dong L, Wang W, Liu Y, Huang W, Cai Z. An Efficient Light-Inducible P53 Expression System for Inhibiting Proliferation of Bladder Cancer Cell. Int J Biol Sci 2016; 12:1273-1278. [PMID: 27766041 PMCID: PMC5069448 DOI: 10.7150/ijbs.16162] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/12/2016] [Indexed: 02/05/2023] Open
Abstract
Optogenetic gene expression systems enable spatial-temporal modulation of gene transcription and cell behavior. Although applications in biomedicine are emerging, the utility of optogenetic gene switches remains elusive in cancer research due to the relative low gene activation efficiency. Here, we present an optimized CRISPR-Cas9-based light-inducible gene expression device that controls gene transcription in a dose-dependent manner. To prove the potential utility of this device, P53 was tested as a functional target in the bladder cancer cell models. It was illustrated that the light-induced P53 inhibited proliferation of 5637 and UMUC-3 cell effectively. The "light-on" gene expression system may demonstrate a novel therapeutic strategy for bladder cancer intervention.
Collapse
Affiliation(s)
- Fan Lin
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, PR China
| | - Liang Dong
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, PR China
| | - Weiming Wang
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, PR China
| | - Yuchen Liu
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, PR China
| | - Weiren Huang
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, PR China
| | - Zhiming Cai
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, PR China
| |
Collapse
|
6
|
Kis Z, Pereira HS, Homma T, Pedrigi RM, Krams R. Mammalian synthetic biology: emerging medical applications. J R Soc Interface 2016; 12:rsif.2014.1000. [PMID: 25808341 DOI: 10.1098/rsif.2014.1000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.
Collapse
Affiliation(s)
- Zoltán Kis
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Takayuki Homma
- Department of Bioengineering, Imperial College London, London, UK
| | - Ryan M Pedrigi
- Department of Bioengineering, Imperial College London, London, UK
| | - Rob Krams
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
7
|
Xie M, Fussenegger M. Mammalian designer cells: Engineering principles and biomedical applications. Biotechnol J 2015; 10:1005-18. [PMID: 26010998 DOI: 10.1002/biot.201400642] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/02/2015] [Accepted: 05/08/2015] [Indexed: 12/15/2022]
Abstract
Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision.
Collapse
Affiliation(s)
- Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,Faculty of Life Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Cao J, Arha M, Sudrik C, Mukherjee A, Wu X, Kane RS. A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells. Nucleic Acids Res 2015; 43:4353-62. [PMID: 25845589 PMCID: PMC4417184 DOI: 10.1093/nar/gkv290] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023] Open
Abstract
We describe a simple strategy to control mRNA translation in both prokaryotic and eukaryotic cells which relies on a unique protein–RNA interaction. Specifically, we used the Pumilio/FBF (PUF) protein to repress translation by binding in between the ribosome binding site (RBS) and the start codon (in Escherichia coli), or by binding to the 5′ untranslated region of target mRNAs (in mammalian cells). The design principle is straightforward, the extent of translational repression can be tuned and the regulator is genetically encoded, enabling the construction of artificial signal cascades. We demonstrate that this approach can also be used to regulate polycistronic mRNAs; such regulation has rarely been achieved in previous reports. Since the regulator used in this study is a modular RNA-binding protein, which can be engineered to target different 8-nucleotide RNA sequences, our strategy could be used in the future to target endogenous mRNAs for regulating metabolic flows and signaling pathways in both prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Jicong Cao
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Manish Arha
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Chaitanya Sudrik
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Abhirup Mukherjee
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xia Wu
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ravi S Kane
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
9
|
Ye H, Fussenegger M. Synthetic therapeutic gene circuits in mammalian cells. FEBS Lett 2014; 588:2537-44. [PMID: 24844435 DOI: 10.1016/j.febslet.2014.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/05/2014] [Indexed: 12/19/2022]
Abstract
In the emerging field of synthetic biology, scientists are focusing on designing and creating functional devices, systems, and organisms with novel functions by engineering and assembling standardised biological building blocks. The progress of synthetic biology has significantly advanced the design of functional gene networks that can reprogram metabolic activities in mammalian cells and provide new therapeutic opportunities for future gene- and cell-based therapies. In this review, we describe the most recent advances in synthetic mammalian gene networks designed for biomedical applications, including how these synthetic therapeutic gene circuits can be assembled to control signalling networks and applied to treat metabolic disorders, cancer, and immune diseases. We conclude by discussing the various challenges and future prospects of using synthetic mammalian gene networks for disease therapy.
Collapse
Affiliation(s)
- Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Life Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
10
|
Brown AJ, Sweeney B, Mainwaring DO, James DC. Synthetic promoters for CHO cell engineering. Biotechnol Bioeng 2014; 111:1638-47. [PMID: 24615264 DOI: 10.1002/bit.25227] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 01/15/2023]
Abstract
We describe for the first time the creation of a library of 140 synthetic promoters specifically designed to regulate the expression of recombinant genes in CHO cells. Initially, 10 common viral promoter sequences known to be active in CHO cells were analyzed using bioinformatic sequence analysis programs to determine the identity and relative abundance of transcription factor regulatory elements (TFREs; or transcription factor binding sites) they contained. Based on this, 28 synthetic reporters were constructed that each harbored seven repeats of a discrete TFRE sequence upstream of a minimal CMV core promoter element and secreted alkaline phosphatase (SEAP) reporter gene. After evaluation of the relative activity of TFREs by transient expression in CHO-S cells, we constructed a first generation library of 96 synthetic promoters derived from random ligation of six active TFREs inserted into the same reporter construct backbone. Comparison of the sequence and relative activity of first generation promoters revealed that individual TFRE blocks were either relatively abundant in active promoters (NFκB, E-box), equally distributed across promoters of varying activity (C/EBPα, GC-box) or relatively abundant in low activity promoters (E4F1, CRE). These data were utilized to create a second generation of 44 synthetic promoters based on random ligation of a fixed ratio of 4 TFREs (NFκB 5: E-box 3: C/EBPα 1: GC-box 1). Comparison of the sequence and relative activity of second generation promoters revealed that the most active promoters contained relatively high numbers of both NFκB and E-box TFREs in approximately equal proportion, with a correspondingly low number of GC-box and C/EBPα blocks. The most active second generation promoters achieved approximately twice the activity of a control construct harboring the human cytomegalovirus (CMV) promoter. Lastly, we evaluated the function of a subset of synthetic promoters exhibiting a broad range of activity in different CHO cell host cell lines (CHO-S, CHO-K1, and CHO-DG44) and across extended fed-batch transient expression in CHO-S cells. In general, the different synthetic promoters both maintained their relative activity and the most active promoters consistently and significantly exceeded the activity of the CMV control promoter. For advanced cell engineering strategies our synthetic promoter libraries offer precise control of recombinant transcriptional activity in CHO cells spanning over two orders of magnitude.
Collapse
Affiliation(s)
- Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, University of Sheffield, Mappin St., Sheffield, S1 3JD, England
| | | | | | | |
Collapse
|
11
|
Cao J, Arha M, Sudrik C, Schaffer DV, Kane RS. Bidirectional Regulation of mRNA Translation in Mammalian Cells by Using PUF Domains. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Cao J, Arha M, Sudrik C, Schaffer DV, Kane RS. Bidirectional regulation of mRNA translation in mammalian cells by using PUF domains. Angew Chem Int Ed Engl 2014; 53:4900-4. [PMID: 24677733 DOI: 10.1002/anie.201402095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Indexed: 12/12/2022]
Abstract
The regulation of gene expression is crucial in diverse areas of biological science, engineering, and medicine. A genetically encoded system based on the RNA binding domain of the Pumilio and FBF (PUF) proteins was developed for the bidirectional regulation (i.e., either upregulation or downregulation) of the translation of a target mRNA. PUF domains serve as designable scaffolds for the recognition of specific RNA elements and the specificity can be easily altered to target any 8-nucleotide RNA sequence. The expression of a reporter could be varied by over 17-fold when using PUF-based activators and repressors. The specificity of the method was established by using wild-type and mutant PUF domains. Furthermore, this method could be used to activate the translation of target mRNA downstream of PUF binding sites in a light-dependent manner. Such specific bidirectional control of mRNA translation could be particularly useful in the fields of synthetic biology, developmental biology, and metabolic engineering.
Collapse
Affiliation(s)
- Jicong Cao
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 (USA)
| | | | | | | | | |
Collapse
|
13
|
Pogenberg V, Consani Textor L, Vanhille L, Holton SJ, Sieweke MH, Wilmanns M. Design of a bZip transcription factor with homo/heterodimer-induced DNA-binding preference. Structure 2014; 22:466-77. [PMID: 24530283 DOI: 10.1016/j.str.2013.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/30/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
The ability of basic leucine zipper transcription factors for homo- or heterodimerization provides a paradigm for combinatorial control of eukaryotic gene expression. It has been unclear, however, how facultative dimerization results in alternative DNA-binding repertoires on distinct regulatory elements. To unravel the molecular basis of such coupled preferences, we determined two high-resolution structures of the transcription factor MafB as a homodimer and as a heterodimer with c-Fos bound to variants of the Maf-recognition element. The structures revealed several unexpected and dimer-specific coiled-coil-heptad interactions. Based on these findings, we have engineered two MafB mutants with opposite dimerization preferences. One of them showed a strong preference for MafB/c-Fos heterodimerization and enabled selection of heterodimer-favoring over homodimer-specific Maf-recognition element variants. Our data provide a concept for transcription factor design to selectively activate dimer-specific pathways and binding repertoires.
Collapse
Affiliation(s)
| | | | - Laurent Vanhille
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Simon J Holton
- EMBL Hamburg c/o DESY, Notkestraße 85, 22603 Hamburg, Germany
| | - Michael H Sieweke
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France; Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | | |
Collapse
|
14
|
Immune signal transduction in leishmaniasis from natural to artificial systems: Role of feedback loop insertion. Biochim Biophys Acta Gen Subj 2014; 1840:71-9. [DOI: 10.1016/j.bbagen.2013.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/31/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022]
|
15
|
Heng BC, Aubel D, Fussenegger M. G protein-coupled receptors revisited: therapeutic applications inspired by synthetic biology. Annu Rev Pharmacol Toxicol 2013; 54:227-49. [PMID: 24160705 DOI: 10.1146/annurev-pharmtox-011613-135921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) mediate the majority of cellular responses to hormones and neurotransmitters within the human body. They have much potential in the emerging field of synthetic biology, which is the rational, systematic design of biological systems with desired functionality. The responsiveness of GPCRs to a plethora of endogenous and exogenous ligands and stimuli make them ideal sensory receptor modules of synthetic gene networks. Such networks can activate target gene expression in response to a specific stimulus. Additionally, because GPCRs are important pharmacological targets of various human diseases, genes encoding their protein/peptide ligands can also be incorporated as target genes of the response output elements of synthetic gene networks. This review aims to critically examine the potential role of GPCRs in constructing therapeutic synthetic gene networks and to discuss various challenges in utilizing GPCRs for synthetic biology applications.
Collapse
Affiliation(s)
- Boon Chin Heng
- Department of Biosystems Science and Engineering, ETH Zürich, CH-4058 Basel, Switzerland;
| | | | | |
Collapse
|
16
|
Bacchus W, Weber W, Fussenegger M. Increasing the dynamic control space of mammalian transcription devices by combinatorial assembly of homologous regulatory elements from different bacterial species. Metab Eng 2013. [DOI: 10.1016/j.ymben.2012.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Design and Application of Synthetic Biology Devices for Therapy. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Lanza AM, Cheng JK, Alper HS. Emerging synthetic biology tools for engineering mammalian cell systems and expediting cell line development. Curr Opin Chem Eng 2012. [DOI: 10.1016/j.coche.2012.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Polstein LR, Gersbach CA. Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc 2012; 134:16480-3. [PMID: 22963237 PMCID: PMC3468123 DOI: 10.1021/ja3065667] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Advanced gene regulatory systems are necessary for scientific
research,
synthetic biology, and gene-based medicine. An ideal system would
allow facile spatiotemporal manipulation of gene expression within
a cell population that is tunable, reversible, repeatable, and can
be targeted to diverse DNA sequences. To meet these criteria, a gene
regulation system was engineered that combines light-sensitive proteins
and programmable zinc finger transcription factors. This system, light-inducible
transcription using engineered zinc finger proteins (LITEZ), uses
two light-inducible dimerizing proteins from Arabidopsis thaliana, GIGANTEA and the LOV domain of FKF1, to control synthetic zinc
finger transcription factor activity in human cells. Activation of
gene expression in human cells engineered with LITEZ was reversible
and repeatable by modulating the duration of illumination. The level
of gene expression could also be controlled by modulating light intensity.
Finally, gene expression could be activated in a spatially defined
pattern by illuminating the human cell culture through a photomask
of arbitrary geometry. LITEZ enables new approaches for precisely
regulating gene expression in biotechnology and medicine, as well
as studying gene function, cell–cell interactions, and tissue
morphogenesis.
Collapse
Affiliation(s)
- Lauren R Polstein
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
20
|
Gitzinger M, Kemmer C, Fluri DA, El-Baba MD, Weber W, Fussenegger M. The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucleic Acids Res 2011; 40:e37. [PMID: 22187155 PMCID: PMC3300003 DOI: 10.1093/nar/gkr1251] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapies.
Collapse
Affiliation(s)
- Marc Gitzinger
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Synthetic biology aims to create functional devices, systems and organisms with novel and useful functions on the basis of catalogued and standardized biological building blocks. Although they were initially constructed to elucidate the dynamics of simple processes, designed devices now contribute to the understanding of disease mechanisms, provide novel diagnostic tools, enable economic production of therapeutics and allow the design of novel strategies for the treatment of cancer, immune diseases and metabolic disorders, such as diabetes and gout, as well as a range of infectious diseases. In this Review, we cover the impact and potential of synthetic biology for biomedical applications.
Collapse
Affiliation(s)
- Wilfried Weber
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104 Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Hebelstrasse 25, Freiburg, D-79104 Germany
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058 Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058 Switzerland
| |
Collapse
|
22
|
Nissim L, Bar-Ziv RH. A tunable dual-promoter integrator for targeting of cancer cells. Mol Syst Biol 2011; 6:444. [PMID: 21179016 PMCID: PMC3018173 DOI: 10.1038/msb.2010.99] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/25/2010] [Indexed: 12/12/2022] Open
Abstract
Precise discrimination between similar cellular states is essential for autonomous decision-making scenarios, such as in vivo targeting of diseased cells. Discrimination could be achieved by delivering an effector gene expressed under a highly active context-specific promoter. Yet, a single-promoter approach has linear response and offers limited control of specificity and efficacy. Here, we constructed a dual-promoter integrator, which expresses an effector gene only when the combined activity of two internal input promoters is high. A tunable response provides flexibility in choosing promoter inputs and effector gene output. Experiments using one premalignant and four cancer cell lines, over a wide range of promoter activities, revealed a digital-like response of input amplification following a sharp activation threshold. The response function is cell dependent with its overall magnitude increasing with degree of malignancy. The tunable digital-like response provides robustness, acts to remove input noise minimizing false-positive identification of cell states, and improves targeting precision and efficacy.
Collapse
Affiliation(s)
- Lior Nissim
- Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
23
|
Liang J, Luo Y, Zhao H. Synthetic biology: putting synthesis into biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:7-20. [PMID: 21064036 PMCID: PMC3057768 DOI: 10.1002/wsbm.104] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself—encompassing many branches of science and across many scales of application. New DNA synthesis and assembly techniques have made routine customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery—a self‐replicating organism—is being pursued at this moment. The aim of this article is to dissect and organize these various components of synthetic biology into a coherent picture. WIREs Syst Biol Med 2011 3 7–20 DOI: 10.1002/wsbm.104 This article is categorized under:
Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > Metabolomics
Collapse
Affiliation(s)
- Jing Liang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
24
|
Early Career Research Award Lecture. Structure, evolution and dynamics of transcriptional regulatory networks. Biochem Soc Trans 2011; 38:1155-78. [PMID: 20863280 DOI: 10.1042/bst0381155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The availability of entire genome sequences and the wealth of literature on gene regulation have enabled researchers to model an organism's transcriptional regulation system in the form of a network. In such a network, TFs (transcription factors) and TGs (target genes) are represented as nodes and regulatory interactions between TFs and TGs are represented as directed links. In the present review, I address the following topics pertaining to transcriptional regulatory networks. (i) Structure and organization: first, I introduce the concept of networks and discuss our understanding of the structure and organization of transcriptional networks. (ii) Evolution: I then describe the different mechanisms and forces that influence network evolution and shape network structure. (iii) Dynamics: I discuss studies that have integrated information on dynamics such as mRNA abundance or half-life, with data on transcriptional network in order to elucidate general principles of regulatory network dynamics. In particular, I discuss how cell-to-cell variability in the expression level of TFs could permit differential utilization of the same underlying network by distinct members of a genetically identical cell population. Finally, I conclude by discussing open questions for future research and highlighting the implications for evolution, development, disease and applications such as genetic engineering.
Collapse
|
25
|
Weber W, Fussenegger M. Synthetic gene networks in mammalian cells. Curr Opin Biotechnol 2010; 21:690-6. [DOI: 10.1016/j.copbio.2010.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/12/2010] [Accepted: 07/12/2010] [Indexed: 12/14/2022]
|
26
|
Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proc Natl Acad Sci U S A 2010; 107:15898-903. [PMID: 20713708 DOI: 10.1073/pnas.1009747107] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The development of biomolecular devices that interface with biological systems to reveal new insights and produce novel functions is one of the defining goals of synthetic biology. Our lab previously described a synthetic, riboregulator system that affords for modular, tunable, and tight control of gene expression in vivo. Here we highlight several experimental advantages unique to this RNA-based system, including physiologically relevant protein production, component modularity, leakage minimization, rapid response time, tunable gene expression, and independent regulation of multiple genes. We demonstrate this utility in four sets of in vivo experiments with various microbial systems. Specifically, we show that the synthetic riboregulator is well suited for GFP fusion protein tracking in wild-type cells, tight regulation of toxic protein expression, and sensitive perturbation of stress response networks. We also show that the system can be used for logic-based computing of multiple, orthogonal inputs, resulting in the development of a programmable kill switch for bacteria. This work establishes a broad, easy-to-use synthetic biology platform for microbiology experiments and biotechnology applications.
Collapse
|
27
|
Dao Duc K, Holcman D. Threshold activation for stochastic chemical reactions in microdomains. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:041107. [PMID: 20481677 DOI: 10.1103/physreve.81.041107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Indexed: 05/29/2023]
Abstract
The mean time to reach a threshold (MTT) is the mean first passage time for the number of bound molecules to reach a given value. In the theory of chemical reactions involving a small number of ligands and molecules, the MTT represents the first time a given number of binding sites is formed. In that context, the MTT can be used to characterize the stability of chemical processes, especially when they underlie a biological function. Using a Markov-chain description, we compute here the MTT, in terms of fundamental parameters, such as the number of molecules, the ligands and the forward and backward binding rates. We find that the MTT depends non-linearly on the threshold T , and this result may have several applications, ranging from cellular biology to synaptic plasticity. We confirm our analytical computations with Brownian simulations.
Collapse
Affiliation(s)
- K Dao Duc
- Département de Mathématiques et de Biologie, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | |
Collapse
|
28
|
|
29
|
|