1
|
Sümbelli Y, Mason AF, van Hest JCM. Toward Artificial Cell-Mediated Tissue Engineering: A New Perspective. Adv Biol (Weinh) 2023; 7:e2300149. [PMID: 37565690 DOI: 10.1002/adbi.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/12/2023]
Abstract
The fast-growing pace of regenerative medicine research has allowed the development of a range of novel approaches to tissue engineering applications. Until recently, the main points of interest in the majority of studies have been to combine different materials to control cellular behavior and use different techniques to optimize tissue formation, from 3-D bioprinting to in situ regeneration. However, with the increase of the understanding of the fundamentals of cellular organization, tissue development, and regeneration, has also come the realization that for the next step in tissue engineering, a higher level of spatiotemporal control on cell-matrix interactions is required. It is proposed that the combination of artificial cell research with tissue engineering could provide a route toward control over complex tissue development. By equipping artificial cells with the underlying mechanisms of cellular functions, such as communication mechanisms, migration behavior, or the coherent behavior of cells depending on the surrounding matrix properties, they can be applied in instructing native cells into desired differentiation behavior at a resolution not to be attained with traditional matrix materials.
Collapse
Affiliation(s)
- Yiğitcan Sümbelli
- Department of Biomedical Engineering, Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, The Netherlands
| | - Alexander F Mason
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jan C M van Hest
- Department of Biomedical Engineering, Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, The Netherlands
| |
Collapse
|
2
|
Rojas V, Larrondo LF. Coupling Cell Communication and Optogenetics: Implementation of a Light-Inducible Intercellular System in Yeast. ACS Synth Biol 2023; 12:71-82. [PMID: 36534043 PMCID: PMC9872819 DOI: 10.1021/acssynbio.2c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 12/23/2022]
Abstract
Cell communication is a widespread mechanism in biology, allowing the transmission of information about environmental conditions. In order to understand how cell communication modulates relevant biological processes such as survival, division, differentiation, and apoptosis, different synthetic systems based on chemical induction have been successfully developed. In this work, we coupled cell communication and optogenetics in the budding yeast Saccharomyces cerevisiae. Our approach is based on two strains connected by the light-dependent production of α-factor pheromone in one cell type, which induces gene expression in the other type. After the individual characterization of the different variants of both strains, the optogenetic intercellular system was evaluated by combining the cells under contrasting illumination conditions. Using luciferase as a reporter gene, specific co-cultures at a 1:1 ratio displayed activation of the response upon constant blue light, which was not observed for the same cell mixtures grown in darkness. Then, the system was assessed at several dark/blue-light transitions, where the response level varies depending on the moment in which illumination was delivered. Furthermore, we observed that the amplitude of response can be tuned by modifying the initial ratio between both strains. Finally, the two-population system showed higher fold inductions in comparison with autonomous strains. Altogether, these results demonstrated that external light information is propagated through a diffusible signaling molecule to modulate gene expression in a synthetic system involving microbial cells, which will pave the road for studies allowing optogenetic control of population-level dynamics.
Collapse
Affiliation(s)
- Vicente Rojas
- Departamento
de Genética Molecular y Microbiología, Facultad de Ciencias
Biológicas, Pontificia Universidad
Católica de Chile, Santiago 8331150, Chile
- Millennium
Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Luis F. Larrondo
- Departamento
de Genética Molecular y Microbiología, Facultad de Ciencias
Biológicas, Pontificia Universidad
Católica de Chile, Santiago 8331150, Chile
- Millennium
Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| |
Collapse
|
3
|
Moškon M, Komac R, Zimic N, Mraz M. Distributed biological computation: from oscillators, logic gates and switches to a multicellular processor and neural computing applications. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05711-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Cheng G, Lin C, Perez-Mercader J. Self-Organizing Microdroplet Protocells Displaying Light-Driven Oscillatory and Morphological Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101162. [PMID: 33977654 DOI: 10.1002/smll.202101162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The development of synthetic systems that enable the sustained active self-assembly of molecular blocks to mimic the complexity and dynamic behavior of living systems is of great interest in elucidating the origins of life, understanding the basic principles behind biological organization, and designing active materials. However, it remains a challenge to construct microsystems with dynamic behaviors and functions that are connected to molecular self-assembly processes driven by external energy. Here, an active self-assembly of microdroplet protocells with dynamic structure and high structural complexity through living radical polymerization under constant energy flux is reported. The active microdroplet protocells exhibit nonlinear behaviors including oscillatory growth and shrinkage. This relies on the transient stabilization of molecular assembly, which can channel the inflow of energy through noncovalent interactions of pure synthetic components. The intercommunication of microdroplet protocells through stochastic fusion leads to the formation of a variety of dynamic and higher-order biomimetic microstructures. This work constitutes an important step toward the realization of autonomous and dynamic microsystems and active materials with life-like properties.
Collapse
Affiliation(s)
- Gong Cheng
- Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, Cambridge, MA, 02138, USA
| | - Chenyu Lin
- Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, Cambridge, MA, 02138, USA
| | - Juan Perez-Mercader
- Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, Cambridge, MA, 02138, USA
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| |
Collapse
|
5
|
A tunable population timer in multicellular consortia. iScience 2021; 24:102347. [PMID: 33898944 PMCID: PMC8059065 DOI: 10.1016/j.isci.2021.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 11/26/2022] Open
Abstract
Processing time-dependent information requires cells to quantify the duration of past regulatory events and program the time span of future signals. At the single-cell level, timer mechanisms can be implemented with genetic circuits. However, such systems are difficult to implement in single cells due to saturation in molecular components and stochasticity in the limited intracellular space. In contrast, multicellular implementations outsource some of the components of information-processing circuits to the extracellular space, potentially escaping these constraints. Here, we develop a theoretical framework, based on trilinear coordinate representation, to study the collective behavior of populations composed of three cell types under stationary conditions. This framework reveals that distributing different processes (in our case the production, detection and degradation of a time-encoding signal) across distinct strains enables the implementation of a multicellular timer. Our analysis also shows that the circuit can be easily tunable by varying the cellular composition of the consortium. We propose a chemical wire architecture for distributed biological computation Our model predicts how input signals can be restored or modulated in the output Chemical wires can store temporal information and the system can act as a timer Digital periodic input signals can be filtered by altering the strain ratios
Collapse
|
6
|
Fritts RK, McCully AL, McKinlay JB. Extracellular Metabolism Sets the Table for Microbial Cross-Feeding. Microbiol Mol Biol Rev 2021; 85:e00135-20. [PMID: 33441489 PMCID: PMC7849352 DOI: 10.1128/mmbr.00135-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transfer of nutrients between cells, or cross-feeding, is a ubiquitous feature of microbial communities with emergent properties that influence our health and orchestrate global biogeochemical cycles. Cross-feeding inevitably involves the externalization of molecules. Some of these molecules directly serve as cross-fed nutrients, while others can facilitate cross-feeding. Altogether, externalized molecules that promote cross-feeding are diverse in structure, ranging from small molecules to macromolecules. The functions of these molecules are equally diverse, encompassing waste products, enzymes, toxins, signaling molecules, biofilm components, and nutrients of high value to most microbes, including the producer cell. As diverse as the externalized and transferred molecules are the cross-feeding relationships that can be derived from them. Many cross-feeding relationships can be summarized as cooperative but are also subject to exploitation. Even those relationships that appear to be cooperative exhibit some level of competition between partners. In this review, we summarize the major types of actively secreted, passively excreted, and directly transferred molecules that either form the basis of cross-feeding relationships or facilitate them. Drawing on examples from both natural and synthetic communities, we explore how the interplay between microbial physiology, environmental parameters, and the diverse functional attributes of extracellular molecules can influence cross-feeding dynamics. Though microbial cross-feeding interactions represent a burgeoning field of interest, we may have only begun to scratch the surface.
Collapse
Affiliation(s)
- Ryan K Fritts
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
7
|
Yang S, Pieters PA, Joesaar A, Bögels BWA, Brouwers R, Myrgorodska I, Mann S, de Greef TFA. Light-Activated Signaling in DNA-Encoded Sender-Receiver Architectures. ACS NANO 2020; 14:15992-16002. [PMID: 33078948 PMCID: PMC7690052 DOI: 10.1021/acsnano.0c07537] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/14/2020] [Indexed: 05/22/2023]
Abstract
Collective decision making by living cells is facilitated by exchange of diffusible signals where sender cells release a chemical signal that is interpreted by receiver cells. A variety of nonliving artificial cell models have been developed in recent years that mimic various aspects of diffusion-based intercellular communication. However, localized secretion of diffusive signals from individual protocells, which is critical for mimicking biological sender-receiver systems, has remained challenging to control precisely. Here, we engineer light-responsive, DNA-encoded sender-receiver architectures, where protein-polymer microcapsules act as cell mimics and molecular communication occurs through diffusive DNA signals. We prepare spatial distributions of sender and receiver protocells using a microfluidic trapping array and set up a signaling gradient from a single sender cell using light, which activates surrounding receivers through DNA strand displacement. Our systematic analysis reveals how the effective signal range of a single sender is determined by various factors including the density and permeability of receivers, extracellular signal degradation, signal consumption, and catalytic regeneration. In addition, we construct a three-population configuration where two sender cells are embedded in a dense array of receivers that implement Boolean logic and investigate spatial integration of nonidentical input cues. The results offer a means for studying diffusion-based sender-receiver topologies and present a strategy to achieve the congruence of reaction-diffusion and positional information in chemical communication systems that have the potential to reconstitute collective cellular patterns.
Collapse
Affiliation(s)
- Shuo Yang
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Computational
Biology Group, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Pascal A. Pieters
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Computational
Biology Group, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Alex Joesaar
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Computational
Biology Group, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Bas W. A. Bögels
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Computational
Biology Group, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Rens Brouwers
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Computational
Biology Group, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Iuliia Myrgorodska
- Centre
for Protolife Research and Max Planck Bristol Centre for Minimal Biology,
School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Stephen Mann
- Centre
for Protolife Research and Max Planck Bristol Centre for Minimal Biology,
School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Tom F. A. de Greef
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Computational
Biology Group, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 MB, The Netherlands
| |
Collapse
|
8
|
The spatiotemporal system dynamics of acquired resistance in an engineered microecology. Sci Rep 2017; 7:16071. [PMID: 29167517 PMCID: PMC5700104 DOI: 10.1038/s41598-017-16176-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022] Open
Abstract
Great strides have been made in the understanding of complex networks; however, our understanding of natural microecologies is limited. Modelling of complex natural ecological systems has allowed for new findings, but these models typically ignore the constant evolution of species. Due to the complexity of natural systems, unanticipated interactions may lead to erroneous conclusions concerning the role of specific molecular components. To address this, we use a synthetic system to understand the spatiotemporal dynamics of growth and to study acquired resistance in vivo. Our system differs from earlier synthetic systems in that it focuses on the evolution of a microecology from a killer-prey relationship to coexistence using two different non-motile Escherichia coli strains. Using empirical data, we developed the first ecological model emphasising the concept of the constant evolution of species, where the survival of the prey species is dependent on location (distance from the killer) or the evolution of resistance. Our simple model, when expanded to complex microecological association studies under varied spatial and nutrient backgrounds may help to understand the complex relationships between multiple species in intricate natural ecological networks. This type of microecological study has become increasingly important, especially with the emergence of antibiotic-resistant pathogens.
Collapse
|
9
|
Rajamanikandan S, Jeyakanthan J, Srinivasan P. Discovery of potent inhibitors targeting Vibrio harveyi LuxR through shape and e-pharmacophore based virtual screening and its biological evaluation. Microb Pathog 2016; 103:40-56. [PMID: 27939874 DOI: 10.1016/j.micpath.2016.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/12/2023]
Abstract
Quorum sensing is widely recognized as an efficient mechanism in the regulation and production of several virulence factors, biofilm formation and stress responses. For this reason, quorum sensing circuit is emerging as a novel drug target for the development of anti-infective. Recently, cinnamaldehyde derivatives have been found to interfere with master quorum sensing transcriptional regulator and thereby decreasing the DNA binding ability of LuxR. However, the exact mode of cinnamaldehyde binding with LuxR and receptor interaction still remains inconclusive. In the current study, combined method of molecular docking and molecular dynamics simulations were performed to investigate the binding mode, dynamic and energy aspects of cinnamaldehyde derivatives into the binding site of LuxR. Based on the experimental and computational evidences, LuxR-3,4-dichloro-cinnamaldehyde complex was chosen for the development of e-pharmacophore model. Further, shape and e-pharmacophore based virtual screening were performed against ChemBridge database to find potent and suitable ligands for LuxR. By comparing the results of shape and e-pharmacophore based virtual screening; best 9 hit molecules were selected for further studies including ADMET prediction, molecular dynamics simulations and Prime MM-GBSA calculations. From the 9 hit molecules, the top most compound 3-(2,4-dichlorophenyl)-1-(1H-pyrrol-2-yl)-2-propen-1-one (ChemBridge-7364106) was selected for in vitro assays using Vibrio harveyi. The result revealed that ChemBridge-7364106 significantly reduced the bioluminescence production in a dose dependent manner. In addition, ChemBridge-7364106 showed a significant inhibition in biofilm formation and motility in V. harveyi. The results from the study suggest that ChemBridge-7364106 could serve as an anti-quorum sensing molecule for V. harveyi.
Collapse
Affiliation(s)
- Sundaraj Rajamanikandan
- Department of Bioinformatics, Science campus Alagappa University, Karaikudi, Tamilnadu, India
| | - Jeyaraman Jeyakanthan
- Department of Bioinformatics, Science campus Alagappa University, Karaikudi, Tamilnadu, India
| | - Pappu Srinivasan
- Department of Animal Health and Management, Science campus Alagappa University, Karaikudi, Tamilnadu, India.
| |
Collapse
|
10
|
Marchand N, Collins CH. Synthetic Quorum Sensing and Cell-Cell Communication in Gram-Positive Bacillus megaterium. ACS Synth Biol 2016. [PMID: 26203497 DOI: 10.1021/acssynbio.5b00099] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The components of natural quorum-sensing (QS) systems can be used to engineer synthetic communication systems that regulate gene expression in response to chemical signals. We have used the machinery from the peptide-based agr QS system from Staphylococcus aureus to engineer a synthetic QS system in Bacillus megaterium to enable autoinduction of a target gene at high cell densities. Growth and gene expression from these synthetic QS cells were characterized in both complex and minimal media. We also split the signal production and sensing components between two strains of B. megaterium to produce sender and receiver cells and characterized the resulting communication in liquid media and on semisolid agar. The system described in this work represents the first synthetic QS and cell-cell communication system that has been engineered to function in a Gram-positive host, and it has the potential to enable the generation of dynamic gene regulatory networks in B. megaterium and other Gram-positive organisms.
Collapse
Affiliation(s)
- Nicholas Marchand
- Department of Chemical and Biological Engineering, ‡Center for Biotechnology
and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Cynthia H. Collins
- Department of Chemical and Biological Engineering, ‡Center for Biotechnology
and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|
11
|
Zhang H, Wang X. Modular co-culture engineering, a new approach for metabolic engineering. Metab Eng 2016; 37:114-121. [PMID: 27242132 DOI: 10.1016/j.ymben.2016.05.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
Abstract
With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ 08854, USA.
| | - Xiaonan Wang
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Terrell JL, Wu HC, Tsao CY, Barber NB, Servinsky MD, Payne GF, Bentley WE. Nano-guided cell networks as conveyors of molecular communication. Nat Commun 2015; 6:8500. [PMID: 26455828 PMCID: PMC4633717 DOI: 10.1038/ncomms9500] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 08/28/2015] [Indexed: 01/06/2023] Open
Abstract
Advances in nanotechnology have provided unprecedented physical means to sample molecular space. Living cells provide additional capability in that they identify molecules within complex environments and actuate function. We have merged cells with nanotechnology for an integrated molecular processing network. Here we show that an engineered cell consortium autonomously generates feedback to chemical cues. Moreover, abiotic components are readily assembled onto cells, enabling amplified and 'binned' responses. Specifically, engineered cell populations are triggered by a quorum sensing (QS) signal molecule, autoinducer-2, to express surface-displayed fusions consisting of a fluorescent marker and an affinity peptide. The latter provides means for attaching magnetic nanoparticles to fluorescently activated subpopulations for coalescence into colour-indexed output. The resultant nano-guided cell network assesses QS activity and conveys molecular information as a 'bio-litmus' in a manner read by simple optical means.
Collapse
Affiliation(s)
- Jessica L Terrell
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Hsuan-Chen Wu
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Nathan B Barber
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA
| | - Matthew D Servinsky
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
13
|
Artificial cell-cell communication as an emerging tool in synthetic biology applications. J Biol Eng 2015; 9:13. [PMID: 26265937 PMCID: PMC4531478 DOI: 10.1186/s13036-015-0011-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/25/2015] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is a widespread phenomenon in nature, ranging from bacterial quorum sensing and fungal pheromone communication to cellular crosstalk in multicellular eukaryotes. These communication modes offer the possibility to control the behavior of an entire community by modifying the performance of individual cells in specific ways. Synthetic biology, i.e., the implementation of artificial functions within biological systems, is a promising approach towards the engineering of sophisticated, autonomous devices based on specifically functionalized cells. With the growing complexity of the functions performed by such systems, both the risk of circuit crosstalk and the metabolic burden resulting from the expression of numerous foreign genes are increasing. Therefore, systems based on a single type of cells are no longer feasible. Synthetic biology approaches with multiple subpopulations of specifically functionalized cells, wired by artificial cell-cell communication systems, provide an attractive and powerful alternative. Here we review recent applications of synthetic cell-cell communication systems with a specific focus on recent advances with fungal hosts.
Collapse
|
14
|
Kong W, Celik V, Liao C, Hua Q, Lu T. Programming the group behaviors of bacterial communities with synthetic cellular communication. BIORESOUR BIOPROCESS 2014. [DOI: 10.1186/s40643-014-0024-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Synthetic biology is a newly emerged research discipline that focuses on the engineering of novel cellular behaviors and functionalities through the creation of artificial gene circuits. One important class of synthetic circuits currently under active development concerns the programming of bacterial cellular communication and collective population-scale behaviors. Because of the ubiquity of cell-cell interactions within bacterial communities, having an ability of engineering these circuits is vital to programming robust cellular behaviors. Here, we highlight recent advances in communication-based synthetic gene circuits by first discussing natural communication systems and then surveying various functional engineered circuits, including those for population density control, temporal synchronization, spatial organization, and ecosystem formation. We conclude by summarizing recent advances, outlining existing challenges, and discussing potential applications and future opportunities.
Collapse
|
15
|
Sahari A, Traore MA, Stevens AM, Scharf BE, Behkam B. Toward Development of an Autonomous Network of Bacteria-Based Delivery Systems (BacteriaBots): Spatiotemporally High-Throughput Characterization of Bacterial Quorum-Sensing Response. Anal Chem 2014; 86:11489-93. [DOI: 10.1021/ac5021003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Sahari
- School
of Biomedical Engineering and Sciences, ‡Mechanical Engineering Department, and §Department of
Biological Sciences Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mahama A. Traore
- School
of Biomedical Engineering and Sciences, ‡Mechanical Engineering Department, and §Department of
Biological Sciences Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ann M. Stevens
- School
of Biomedical Engineering and Sciences, ‡Mechanical Engineering Department, and §Department of
Biological Sciences Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Birgit E. Scharf
- School
of Biomedical Engineering and Sciences, ‡Mechanical Engineering Department, and §Department of
Biological Sciences Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bahareh Behkam
- School
of Biomedical Engineering and Sciences, ‡Mechanical Engineering Department, and §Department of
Biological Sciences Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
16
|
Pai A, Srimani JK, Tanouchi Y, You L. Generic metric to quantify quorum sensing activation dynamics. ACS Synth Biol 2014; 3:220-7. [PMID: 24011134 DOI: 10.1021/sb400069w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quorum sensing (QS) enables bacteria to sense and respond to changes in their population density. It plays a critical role in controlling different biological functions, including bioluminescence and bacterial virulence. It has also been widely adapted to program robust dynamics in one or multiple cellular populations. While QS systems across bacteria all appear to function similarly-as density-dependent control systems-there is tremendous diversity among these systems in terms of signaling components and network architectures. This diversity hampers efforts to quantify the general control properties of QS. For a specific QS module, it remains unclear how to most effectively characterize its regulatory properties in a manner that allows quantitative predictions of the activation dynamics of the target gene. Using simple kinetic models, here we show that the dominant temporal dynamics of QS-controlled target activation can be captured by a generic metric, 'sensing potential', defined at a single time point. We validate these predictions using synthetic QS circuits in Escherichia coli. Our work provides a computational framework and experimental methodology to characterize diverse natural QS systems and provides a concise yet quantitative criterion for selecting or optimizing a QS system for synthetic biology applications.
Collapse
Affiliation(s)
- Anand Pai
- Department
of Biomedical Engineering ‡Institute for Genome Sciences and Policy Duke University, Durham, North Carolina 27708, United States
| | - Jaydeep K. Srimani
- Department
of Biomedical Engineering ‡Institute for Genome Sciences and Policy Duke University, Durham, North Carolina 27708, United States
| | - Yu Tanouchi
- Department
of Biomedical Engineering ‡Institute for Genome Sciences and Policy Duke University, Durham, North Carolina 27708, United States
| | - Lingchong You
- Department
of Biomedical Engineering ‡Institute for Genome Sciences and Policy Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
17
|
Shong J, Collins CH. Quorum sensing-modulated AND-gate promoters control gene expression in response to a combination of endogenous and exogenous signals. ACS Synth Biol 2014; 3:238-46. [PMID: 24175658 DOI: 10.1021/sb4000965] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have constructed and characterized two synthetic AND-gate promoters that require both a quorum-sensing (QS) signal and an exogenously added inducer to turn on gene expression. The engineered promoters, LEE and TTE, contain binding sites for the QS-dependent repressor, EsaR, and either LacI or TetR, and they are induced by an acyl-homoserine lactone (AHL) signal and IPTG or aTc. Although repression of both LEE and TTE by wild-type EsaR was observed, induction of gene expression at physiologically relevant concentrations of AHL required the use of an EsaR variant with higher signal sensitivity. Gene expression from both LEE and TTE was shown to require both signal molecules, and gene expression above background levels was not observed with either signal alone. We added endogenous production of AHL to evaluate the ability of the promoters to function in a QS-dependent manner and observed that gene expression increased as a function of cell density only in the presence of exogenously added IPTG or aTc. Cell-cell communication-dependent AND-gate behaviors were demonstrated using an agar plate assay, where cells containing the engineered promoters were shown to respond to AHL produced by a second E. coli strain only in the presence of exogenously added IPTG or aTc. The promoters described in this work demonstrate that EsaR and its target DNA sequence can be used to engineer new promoters to respond to cell density or cell-cell communication. Further, the AND-gate promoters described here may serve as a template for new regulatory systems that integrate QS and the presence of key metabolites or other environmental cues to enable dynamic changes in gene expression for metabolic engineering applications.
Collapse
Affiliation(s)
- Jasmine Shong
- Department of Chemical
and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180 United States of America
- Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180 United States of America
| | - Cynthia H. Collins
- Department of Chemical
and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180 United States of America
- Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180 United States of America
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy New
York 12180 United States of America
| |
Collapse
|
18
|
Marchand N, Collins CH. Peptide-based communication system enablesEscherichia colitoBacillus megateriuminterspecies signaling. Biotechnol Bioeng 2013; 110:3003-12. [DOI: 10.1002/bit.24975] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/29/2013] [Accepted: 06/04/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Nicholas Marchand
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; 110 8th Street Troy New York 12180
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York
| | - Cynthia H. Collins
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; 110 8th Street Troy New York 12180
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York
| |
Collapse
|
19
|
Purcell O, Jain B, Karr JR, Covert MW, Lu TK. Towards a whole-cell modeling approach for synthetic biology. CHAOS (WOODBURY, N.Y.) 2013; 23:025112. [PMID: 23822510 PMCID: PMC3695969 DOI: 10.1063/1.4811182] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/28/2013] [Indexed: 06/02/2023]
Abstract
Despite rapid advances over the last decade, synthetic biology lacks the predictive tools needed to enable rational design. Unlike established engineering disciplines, the engineering of synthetic gene circuits still relies heavily on experimental trial-and-error, a time-consuming and inefficient process that slows down the biological design cycle. This reliance on experimental tuning is because current modeling approaches are unable to make reliable predictions about the in vivo behavior of synthetic circuits. A major reason for this lack of predictability is that current models view circuits in isolation, ignoring the vast number of complex cellular processes that impinge on the dynamics of the synthetic circuit and vice versa. To address this problem, we present a modeling approach for the design of synthetic circuits in the context of cellular networks. Using the recently published whole-cell model of Mycoplasma genitalium, we examined the effect of adding genes into the host genome. We also investigated how codon usage correlates with gene expression and find agreement with existing experimental results. Finally, we successfully implemented a synthetic Goodwin oscillator in the whole-cell model. We provide an updated software framework for the whole-cell model that lays the foundation for the integration of whole-cell models with synthetic gene circuit models. This software framework is made freely available to the community to enable future extensions. We envision that this approach will be critical to transforming the field of synthetic biology into a rational and predictive engineering discipline.
Collapse
Affiliation(s)
- Oliver Purcell
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
20
|
Shong J, Huang YM, Bystroff C, Collins CH. Directed evolution of the quorum-sensing regulator EsaR for increased signal sensitivity. ACS Chem Biol 2013; 8:789-95. [PMID: 23363022 DOI: 10.1021/cb3006402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of cell-cell communication or "quorum sensing (QS)" elements from Gram-negative Proteobacteria has enabled synthetic biologists to begin engineering systems composed of multiple interacting organisms. However, additional tools are necessary if we are to progress toward synthetic microbial consortia that exhibit more complex, dynamic behaviors. EsaR from Pantoea stewartii subsp. stewartii is a QS regulator that binds to DNA as an apoprotein and releases the DNA when it binds to its cognate signal molecule, 3-oxohexanoyl-homoserine lactone (3OC6HSL). In the absence of 3OC6HSL, EsaR binds to DNA and can act as either an activator or a repressor of transcription. Gene expression from P(esaR), which is repressed by wild-type EsaR, requires 100- to 1000-fold higher concentrations of signal than commonly used QS activators, such as LuxR and LasR. Here we have identified EsaR variants with increased sensitivity to 3OC6HSL using directed evolution and a dual ON/OFF screening strategy. Although we targeted EsaR-dependent derepression of P(esaR), our EsaR variants also showed increased 3OC6HSL sensitivity at a second promoter, P(esaS), which is activated by EsaR in the absence of 3OC6HSL. Here, the increase in AHL sensitivity led to gene expression being turned off at lower concentrations of 3OC6HSL. Overall, we have increased the signal sensitivity of EsaR more than 70-fold and generated a set of EsaR variants that recognize 3OC6HSL concentrations ranging over 4 orders of magnitude. QS-dependent transcriptional regulators that bind to DNA and are active in the absence of a QS signal represent a new set of tools for engineering cell-cell communication-dependent gene expression.
Collapse
Affiliation(s)
- Jasmine Shong
- Department
of Chemical and Biological Engineering, ‡Department of Biology, and §Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic
Institute, 110 8th St., Troy, New York 12180, United States
| | - Yao-Ming Huang
- Department
of Chemical and Biological Engineering, ‡Department of Biology, and §Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic
Institute, 110 8th St., Troy, New York 12180, United States
| | - Christopher Bystroff
- Department
of Chemical and Biological Engineering, ‡Department of Biology, and §Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic
Institute, 110 8th St., Troy, New York 12180, United States
| | - Cynthia H. Collins
- Department
of Chemical and Biological Engineering, ‡Department of Biology, and §Center for Biotechnology
and Interdisciplinary Studies, Rensselaer Polytechnic
Institute, 110 8th St., Troy, New York 12180, United States
| |
Collapse
|
21
|
Abstract
Quorum sensing(QS) is a mechanism of microbes to coordinate their activities, which allows them to function as multi-cellular systems. Recently, many researches have proved that the engineered QS system have a wide range of applications such as bioremediation of oil and heavy metal contaminated soils, and prevention of biofouling. Here we review the function of QS signals produced by bacteria, and the principle of enhancing degradative capacities of microbe. Specifically, we describe how QS system regulate the formation and dispersion of biofilms, which are reversible process that biofilms may be generated and removed as desired. The development of strategies to disrupt and manipulate QS are also implicated. Cells can be engineered to secrete QS signals to affect the behavior of neighboring cells in a consortium via engineered cellular communication. The complete genetic basis of QS may be used to control these communities of associated cells for bioremediation applications.
Collapse
|
22
|
Weber M, Buceta J. Dynamics of the quorum sensing switch: stochastic and non-stationary effects. BMC SYSTEMS BIOLOGY 2013; 7:6. [PMID: 23324134 PMCID: PMC3614889 DOI: 10.1186/1752-0509-7-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 01/07/2013] [Indexed: 12/23/2022]
Abstract
Background A wide range of bacteria species are known to communicate through the so called quorum sensing (QS) mechanism by means of which they produce a small molecule that can freely diffuse in the environment and in the cells. Upon reaching a threshold concentration, the signalling molecule activates the QS-controlled genes that promote phenotypic changes. This mechanism, for its simplicity, has become the model system for studying the emergence of a global response in prokaryotic cells. Yet, how cells precisely measure the signal concentration and act coordinately, despite the presence of fluctuations that unavoidably affects cell regulation and signalling, remains unclear. Results We propose a model for the QS signalling mechanism in Vibrio fischeri based on the synthetic strains lux01 and lux02. Our approach takes into account the key regulatory interactions between LuxR and LuxI, the autoinducer transport, the cellular growth and the division dynamics. By using both deterministic and stochastic models, we analyze the response and dynamics at the single-cell level and compare them to the global response at the population level. Our results show how fluctuations interfere with the synchronization of the cell activation and lead to a bimodal phenotypic distribution. In this context, we introduce the concept of precision in order to characterize the reliability of the QS communication process in the colony. We show that increasing the noise in the expression of LuxR helps cells to get activated at lower autoinducer concentrations but, at the same time, slows down the global response. The precision of the QS switch under non-stationary conditions decreases with noise, while at steady-state it is independent of the noise value. Conclusions Our in silico experiments show that the response of the LuxR/LuxI system depends on the interplay between non-stationary and stochastic effects and that the burst size of the transcription/translation noise at the level of LuxR controls the phenotypic variability of the population. These results, together with recent experimental evidences on LuxR regulation in wild-type species, suggest that bacteria have evolved mechanisms to regulate the intensity of those fluctuations.
Collapse
Affiliation(s)
- Marc Weber
- Computer Simulation and Modelling (Co,S,Mo,) Lab, Parc Científic de Barcelona, C/ Baldiri Reixac 4, 08028 Barcelona, Spain
| | | |
Collapse
|
23
|
Engineered cell-cell communication and its applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 146:97-121. [PMID: 24002441 DOI: 10.1007/10_2013_249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past several decades, biologists have become more appreciative of the fundamental role of intercellular communication in natural systems spanning prokaryotic biofilms to eukaryotic developmental systems and neurological networks. From an engineering perspective, the use of cell-cell communication provides an opportunity to engineer more complex and robust functions using cellular components. Indeed, this strategy has been adopted in synthetic biology in the creation of diverse gene circuits that program spatiotemporal dynamics in one or multiple populations. Gene circuits such as these may offer insights regarding basic biological questions and motifs or serve as a basis for novel applications.
Collapse
|
24
|
Chen BS, Hsu CY. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing. BMC SYSTEMS BIOLOGY 2012; 6:136. [PMID: 23101662 PMCID: PMC3554485 DOI: 10.1186/1752-0509-6-136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/10/2012] [Indexed: 11/10/2022]
Abstract
Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. Conclusion If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks.
Collapse
Affiliation(s)
- Bor-Sen Chen
- Lab of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | | |
Collapse
|
25
|
Biliouris K, Babson D, Schmidt-Dannert C, Kaznessis YN. Stochastic simulations of a synthetic bacteria-yeast ecosystem. BMC SYSTEMS BIOLOGY 2012; 6:58. [PMID: 22672814 PMCID: PMC3485176 DOI: 10.1186/1752-0509-6-58] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/08/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND The field of synthetic biology has greatly evolved and numerous functions can now be implemented by artificially engineered cells carrying the appropriate genetic information. However, in order for the cells to robustly perform complex or multiple tasks, co-operation between them may be necessary. Therefore, various synthetic biological systems whose functionality requires cell-cell communication are being designed. These systems, microbial consortia, are composed of engineered cells and exhibit a wide range of behaviors. These include yeast cells whose growth is dependent on one another, or bacteria that kill or rescue each other, synchronize, behave as predator-prey ecosystems or invade cancer cells. RESULTS In this paper, we study a synthetic ecosystem comprising of bacteria and yeast that communicate with and benefit from each other using small diffusible molecules. We explore the behavior of this heterogeneous microbial consortium, composed of Saccharomyces cerevisiae and Escherichia coli cells, using stochastic modeling. The stochastic model captures the relevant intra-cellular and inter-cellular interactions taking place in and between the eukaryotic and prokaryotic cells. Integration of well-characterized molecular regulatory elements into these two microbes allows for communication through quorum sensing. A gene controlling growth in yeast is induced by bacteria via chemical signals and vice versa. Interesting dynamics that are common in natural ecosystems, such as obligatory and facultative mutualism, extinction, commensalism and predator-prey like dynamics are observed. We investigate and report on the conditions under which the two species can successfully communicate and rescue each other. CONCLUSIONS This study explores the various behaviors exhibited by the cohabitation of engineered yeast and bacterial cells. The way that the model is built allows for studying the dynamics of any system consisting of two species communicating with one another via chemical signals. Therefore, key information acquired by our model may potentially drive the experimental design of various synthetic heterogeneous ecosystems.
Collapse
Affiliation(s)
- Konstantinos Biliouris
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| | - David Babson
- University of Minnesota Biotechnology Institute, 140 Gortner Lab, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 140 Gortner Laboratory, Saint Paul, MN 55108, USA
| | - Yiannis N Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Directed evolution: an evolving and enabling synthetic biology tool. Curr Opin Chem Biol 2012; 16:285-91. [PMID: 22673064 DOI: 10.1016/j.cbpa.2012.05.186] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/06/2012] [Accepted: 05/11/2012] [Indexed: 01/08/2023]
Abstract
Synthetic biology, with its goal of designing biological entities for wide-ranging purposes, remains a field of intensive research interest. However, the vast complexity of biological systems has heretofore rendered rational design prohibitively difficult. As a result, directed evolution remains a valuable tool for synthetic biology, enabling the identification of desired functionalities from large libraries of variants. This review highlights the most recent advances in the use of directed evolution in synthetic biology, focusing on new techniques and applications at the pathway and genome scale.
Collapse
|
27
|
Foundations for the design and implementation of synthetic genetic circuits. Nat Rev Genet 2012; 13:406-20. [DOI: 10.1038/nrg3227] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Shong J, Jimenez Diaz MR, Collins CH. Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol 2012; 23:798-802. [PMID: 22387100 DOI: 10.1016/j.copbio.2012.02.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
The use of microbial consortia for bioprocessing has been limited by our ability to reliably control community composition and function simultaneously. Recent advances in synthetic biology have enabled population-level coordination and control of ecosystem stability and dynamics. Further, new experimental and computational tools for screening and predicting community behavior have also been developed. The integration of synthetic biology with metabolic engineering at the community level is vital to our ability to apply system-level approaches to building and optimizing synthetic consortia for bioprocessing applications. This review details new methods, tools and opportunities that together have the potential to enable a new paradigm of bioprocessing using synthetic microbial consortia.
Collapse
Affiliation(s)
- Jasmine Shong
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA
| | | | | |
Collapse
|
29
|
Payne S, Smith RP, You L. Quantitative analysis of the spatiotemporal dynamics of a synthetic predator-prey ecosystem. Methods Mol Biol 2012; 813:315-30. [PMID: 22083751 DOI: 10.1007/978-1-61779-412-4_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A major focus in synthetic biology is the rational design and implementation of gene circuits to control dynamics of individual cells and, increasingly, cellular populations. Population-level control is highlighted in recent studies which attempt to design and implement synthetic ecosystems (or engineered microbial consortia). On the one hand, these engineered systems may serve as a critical technological foundation for practical applications. On the other hand, they may serve as well-defined model systems to examine biological questions of broad relevance. Here, using a synthetic predator-prey ecosystem as an example, we illustrate the basic experimental techniques involved in system implementation and characterization. By extension, these techniques are applicable to the analysis of other microbial-based synthetic or natural ecosystems.
Collapse
Affiliation(s)
- Stephen Payne
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
30
|
Wu CH, Lee HC, Chen BS. Robust synthetic gene network design via library-based search method. Bioinformatics 2011; 27:2700-6. [DOI: 10.1093/bioinformatics/btr465] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Song H, Payne S, Tan C, You L. Programming microbial population dynamics by engineered cell-cell communication. Biotechnol J 2011; 6:837-49. [PMID: 21681967 PMCID: PMC3697107 DOI: 10.1002/biot.201100132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/30/2011] [Accepted: 04/26/2011] [Indexed: 11/08/2022]
Abstract
A major aim of synthetic biology is to program novel cellular behavior using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behavior at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications.
Collapse
Affiliation(s)
- Hao Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Stephen Payne
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
- Center for Systems Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
32
|
Chen PW, Chen BS. Robust synchronization analysis in nonlinear stochastic cellular networks with time-varying delays, intracellular perturbations and intercellular noise. Math Biosci 2011; 232:116-34. [PMID: 21624379 DOI: 10.1016/j.mbs.2011.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 05/03/2011] [Accepted: 05/07/2011] [Indexed: 11/16/2022]
Abstract
Naturally, a cellular network consisted of a large amount of interacting cells is complex. These cells have to be synchronized in order to emerge their phenomena for some biological purposes. However, the inherently stochastic intra and intercellular interactions are noisy and delayed from biochemical processes. In this study, a robust synchronization scheme is proposed for a nonlinear stochastic time-delay coupled cellular network (TdCCN) in spite of the time-varying process delay and intracellular parameter perturbations. Furthermore, a nonlinear stochastic noise filtering ability is also investigated for this synchronized TdCCN against stochastic intercellular and environmental disturbances. Since it is very difficult to solve a robust synchronization problem with the Hamilton-Jacobi inequality (HJI) matrix, a linear matrix inequality (LMI) is employed to solve this problem via the help of a global linearization method. Through this robust synchronization analysis, we can gain a more systemic insight into not only the robust synchronizability but also the noise filtering ability of TdCCN under time-varying process delays, intracellular perturbations and intercellular disturbances. The measures of robustness and noise filtering ability of a synchronized TdCCN have potential application to the designs of neuron transmitters, on-time mass production of biochemical molecules, and synthetic biology. Finally, a benchmark of robust synchronization design in Escherichia coli repressilators is given to confirm the effectiveness of the proposed methods.
Collapse
Affiliation(s)
- Po-Wei Chen
- Laboratory of Control and Systems Biology, National Tsing-Hua University, Hsin-chu, Taiwan
| | | |
Collapse
|
33
|
Mitchell RJ, Lee SK, Kim T, Ghim CM. Microbial linguistics: perspectives and applications of microbial cell-to-cell communication. BMB Rep 2011; 44:1-10. [PMID: 21266100 DOI: 10.5483/bmbrep.2011.44.1.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inter-cellular communication via diffusible small molecules is a defining character not only of multicellular forms of life but also of single-celled organisms. A large number of bacterial genes are regulated by the change of chemical milieu mediated by the local population density of its own species or others. The cell density-dependent "autoinducer" molecules regulate the expression of those genes involved in genetic competence, biofilm formation and persistence, virulence, sporulation, bioluminescence, antibiotic production, and many others. Recent innovations in recombinant DNA technology and micro-/nano-fluidics systems render the genetic circuitry responsible for cell-to-cell communication feasible to and malleable via synthetic biological approaches. Here we review the current understanding of the molecular biology of bacterial intercellular communication and the novel experimental protocols and platforms used to investigate this phenomenon. A particular emphasis is given to the genetic regulatory circuits that provide the standard building blocks which constitute the syntax of the biochemical communication network. Thus, this review gives focus to the engineering principles necessary for rewiring bacterial chemo-communication for various applications, ranging from population-level gene expression control to the study of host-pathogen interactions.
Collapse
Affiliation(s)
- Robert J Mitchell
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | | | | | | |
Collapse
|
34
|
Yi Q, Zhou T. Communication-induced multistability and multirhythmicity in a synthetic multicellular system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051907. [PMID: 21728571 DOI: 10.1103/physreve.83.051907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/28/2011] [Indexed: 05/31/2023]
Abstract
Traditionally, the main role of cell-to-cell communication was thought of as synchronizing a population of cells, thereby coordinating cellular behavior. Here we show that cell density, which quantifies cellular communication, can induce multistability and multirhythmicity in a synthetic multicellular system, where individual oscillators are a combination of repressillator and hysteresis-based oscillators and are coupled through a quorum-sensing mechanism. Specifically, for moderately small cell densities, the coupled system can exhibit multistability including stable homogenous and inhomogeneous steady states. For moderately large cell densities, it has the potential to generate multirhythmicity including multimode oscillations such as an in-phase periodic solution, antiphase periodic solution, asymmetric periodic solution, mixed-mode oscillations, coexistence of periodic orbits of several different modes, and bursting oscillations such as periodic bursting, torus quasiperiodic bursting, and chaotic bursting. Such versatility of cell-to-cell communication would be beneficial for cells or organisms to live in diversely changeable environments.
Collapse
Affiliation(s)
- Qizhi Yi
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, China
| | | |
Collapse
|
35
|
Abstract
Phenotypic robustness is a highly sought after goal for synthetic biology. There are many well-studied examples of robust systems in biology, and for the advancement of synthetic biology, particularly in performance-critical applications, fundamental understanding of how robustness is both achieved and maintained is very important. A synthetic circuit may fail to behave as expected for a multitude of reasons, and since many of these failures are difficult to predict a priori, a better understanding of a circuit's behavior as well as its possible failures are needed. In this chapter, we outline work that has been done in developing design principles for robust synthetic circuits, as well as sharing our experiences designing and constructing gene circuits.
Collapse
|
36
|
Wood TK, Hong SH, Ma Q. Engineering biofilm formation and dispersal. Trends Biotechnol 2010; 29:87-94. [PMID: 21131080 DOI: 10.1016/j.tibtech.2010.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 02/07/2023]
Abstract
Anywhere water is in the liquid state, bacteria will exist as biofilms, which are complex communities of cells that are cemented together. Although frequently associated with disease and biofouling, biofilms are also important for engineering applications, such as bioremediation, biocatalysis and microbial fuel cells. Here, we review approaches to alter genetic circuits and cell signaling towards controlling biofilm formation, and emphasize utilizing these tools for engineering applications. Based on a better understanding of the genetic basis of biofilm formation, we find that biofilms might be controlled by manipulating extracellular signals, and that they might be dispersed using conserved intracellular signals and regulators. Biofilms could also be formed at specific locations where they might be engineered to make chemicals or treat human disease.
Collapse
Affiliation(s)
- Thomas K Wood
- Department of Chemical Engineering, 220 Jack E. Brown Building, Texas A & M University, College Station, TX 77843-3122, USA.
| | | | | |
Collapse
|